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Two symmetrically coupled populations of N oscillators with inertia m display chaotic solutions with broken
symmetry similar to experimental observations with mechanical pendulums. In particular, we report evidence
of intermittent chaotic chimeras, where one population is synchronized and the other jumps erratically between
laminar and turbulent phases. These states have finite lifetimes diverging as a power law with N and m. Lyapunov
analyses reveal chaotic properties in quantitative agreement with theoretical predictions for globally coupled
dissipative systems.
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Introduction. Chimera states are remarkable dynamical
states emerging in populations of coupled identical oscillators,
where the population splits into two parts: one synchro-
nized and the other composed of incoherently oscillating
elements [1]. These states were initially discovered in chains
of nonlocally coupled oscillators, however they can equally
emerge in models of globally coupled populations [1–3].
Chimeras have been observed in a repertoire of different
models [2–9] and in various experimental settings, including
mechanical [10,11], (electro)chemical [12,13], and lasing
systems [14], among others. Usually, the incoherent oscil-
lators give rise to regular macroscopic dynamics that are
either stationary, periodic (so-called breathing chimera), or
even quasiperiodic [3,7]. Only recently have spatiotemporally
chaotic chimeras been numerically identified in rings of
coupled oscillators [15–18]. However, a detailed characteri-
zation of the dynamical properties of these states has been
reported only for phase oscillators with finite-range interac-
tions: In this case chimeras are transient and weakly chaotic
[16,19]. More specifically, the lifetimes of these states diverge
exponentially with the system size, while their dynamics
becomes regular in the thermodynamic limit. In contrast, for
globally connected populations, chaotic chimeras have so far
only been observed in pulse-coupled oscillators [20] without
further analysis.

In this Rapid Communication, we report the existence
of various irregular solutions with broken symmetry in an
experiment with two mechanically coupled populations of
pendulums and analyze in depth a model that reproduces
this complex dynamics. Three pertinent examples from the
experiment, shown in Figs. 1(a)–1(c), are of particular interest.
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The first two examples represent chimeras: In Fig. 1(a) the
order parameter of the desynchronized population oscillates
quite irregularly, while in Fig. 1(b) it enters a regime of almost
periodic oscillations. Figure 1(c) reports a situation where both
populations are irregularly oscillating. We introduce a simple
model [Eq. (1)] capable of reproducing all these different
dynamical behaviors, as it can be appreciated by the simu-
lations reported in Figs. 1(d)–1(f). The model consists of two
symmetrically globally coupled populations of N Kuramoto
phase oscillators with inertia.

The introduction of inertia allows the oscillators to syn-
chronize via the adaptation of their own frequencies, in
analogy with the mechanism observed in certain species of
fireflies [21]. The modification of the classical Kuramoto
model with the addition of an inertial term leads to first-
order synchronization transitions and complex hysteretic
phenomena [22–27]. Furthermore, networks of phase coupled
oscillators with inertia have recently been employed to
investigate self-synchronization in power grids [28–31] and in
disordered arrays of Josephson junctions [32]. In the absence
of dissipation, Eq. (1) reduces to the Hamiltonian mean-field
model, a paradigm of long-range interacting systems [33].

Our analysis will mainly focus on the solution shown in
Fig. 1(a), which we term an intermittent chaotic chimera (ICC).
This state exhibits turbulent phases interrupted by laminar
regimes, analogous to the one reported in Fig. 1(b). The third
state shown in Fig. 1(c) is a chaotic two-population (C2P)
state; here the erratic dynamics is induced by the evolution
of the nonclustered oscillators belonging to both populations.
In particular, we show that ICCs are transient states for finite
inertia and system size, whose lifetimes diverge as a power
law with N and m. Furthermore, in the thermodynamic limit
the intermittent oscillations disappear and the turbulent regime
prevails over the laminar one. The stability properties of the
ICC can be ascribed to the universality class of globally
coupled systems [34], which are distinct from those reported
for chaotic chimeras in chains of oscillators [19]. This result
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FIG. 1. (Color online) Order parameters R(1) (solid black curve)
and R(2) (dashed red curve) for the two coupled populations versus
time: (a)–(c) experimental measurements and (d)–(f) numerical
simulations of the model (1) with m = 10. Initial conditions are
(a), (b), (d), and (e) BSCs and (c) and (f) UCs and N = 15. The
experiments are carried out with (a) and (b) f = 160 beats per
minute (bpm) and l = 17 cm and (c) f = 184 bpm and l = 25 cm
and experimental time is measured in seconds.

clearly illustrates that the stability of chimera states strongly
depends on the underlying network topology.

Experimental setup. The setup is shown in Fig. 2 and
it is identical to the one described in [10]. The experi-
ment is composed of purely mechanical parts. In particular,

FIG. 2. (Color online) Experimental setup: sketch of the mechan-
ical system studied in [10], composed of two swings (A and B)
coupled with a spring mechanism, each of which is loaded with
N = 15 metronomes.

following [3], two populations of nonlocally coupled
metronomes were considered: within each population oscil-
lators were coupled strongly, but they were coupled more
weakly to the neighboring population. Metronomes take the
role of self-sustained oscillators [35], whose working principle
is identical to Huygens’s pendulum clocks [36], except that
the escapement in the metronome is driven by a spring rather
than a mass pulled by gravity. While friction inherent to the
mechanical elements attenuates large-amplitude oscillations
toward the unperturbed amplitude associated with its unper-
turbed frequency, small pendulum oscillations are amplified
by the spring that drives the metronome via its escapement
mechanism. This lends the metronome the characteristics of a
self-sustained oscillator [35]. A number N = 15 of identical
metronomes running with identical frequencies were placed
on each of two aluminum swings suspended by four rods.
The strong coupling within one population is mediated by the
motion of the swing onto which the metronomes are attached.
As one increases the common frequency f of the metronomes,
more momentum is transferred to the swing, leading to a
stronger coupling among the metronomes. A single swing
follows a phase transition from a disordered to a synchronized
state as the coupling within the population increases [35,37].
The weaker coupling between the two swings is facilitated by
a pair of tunable steel springs, attached to the adjacent rods of
the opposing swings. The distance of the spring relative to the
pivot can be adjusted: This changes the spring lever l and the
associated torque, thus effectively tuning the spring coupling
strength between the two metronome populations.

The motion of swings and metronomes is visualized by
attaching UV fluorescent spots on swings and metronome
pendulums and the spot motion is digitally recorded using
a digital single-lens reflex photocamera. Subsequently, digital
data analysis is used to measure the swing and pendulum
motion. The relative motion of the pendulums is recon-
structed by subtraction of the swing coordinates. Amplitudes
and phases are then obtained via Hilbert transformation
of the signal. The phases are used to quantify the level
of synchronization for each population by using the order
parameters defined in the following. For exhaustive details
on the experimental setup and methods, see [10].

Model and methods. We consider a network of two symmet-
rically coupled populations of N oscillators. The phase θ

(σ )
i of

the ith oscillator in population σ = 1,2 evolves according to
the differential equation

mθ̈
(σ )
i + θ̇

(σ )
i = � +

2∑
σ ′=1

Kσσ ′

N

N∑
j=1

sin
(
θ

(σ ′)
j − θ

(σ )
i − γ

)
,(1)

where the oscillators are assumed to be identical with inertia
m, natural frequency � = 1, and a fixed phase lag γ = π −
0.02. The self-coupling (cross-coupling) among oscillators
belonging to the same population (different populations) is
defined as Kσσ = 0.3 (Kσσ ′ ≡ Kσ ′σ = 0.2), with Kσσ > Kσσ ′

as in previous studies on chimera states [3,38,39]. We consider
two types of initial conditions: (i) broken-symmetry conditions
(BSCs), realized by initializing the first (second) population
with identical (random) phases and frequencies, which may
lead to the emergence of chimera states, and (ii) uniform
conditions (UCs) where both populations are initialized with
random values and which can result in a CP2 state [40].
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The collective evolution of each population will be
characterized in terms of the macroscopic fields ρ(σ )(t) =
R(σ )(t) exp [i�(t)] = N−1 ∑N

j=1 exp [iθ (σ )
j (t)]. The modulus

R(σ ) is an order parameter for the synchronization transition
being one [O(N−1/2)] for synchronous (asynchronous) states.

The microscopic stability can be measured in terms of
the associated ordered spectrum of the Lyapunov expo-
nents (LEs) {λi}, i = 1, . . . ,4N , representing the exponential
growth rates of infinitesimal perturbations. The dynamics is
chaotic whenever the maximal LE λM ≡ λ1 is positive. For
the studied model, presenting a constant viscous dissipative
term, the spectrum satisfies the following pairing rule [41]:
λi + λ4N−i+1 = −1/m. Therefore, the analysis can be limited
to the first 2N exponents. The Lyapunov spectrum can be
numerically estimated by employing the standard method
reported in [42]. This amounts to considering for each LE
λk , the evolution of a 4N -dimensional tangent vector T (k) =
{δθ̇ (1)

i ,δθ̇
(2)
i ,δθ

(1)
i ,δθ

(2)
i }, i = 1, . . . ,N , whose dynamics is

ruled by the linearization of Eq. (1):

mδθ̈
(σ )
i + δθ̇

(σ )
i =

2∑
σ ′=1

Kσσ ′

N

N∑
j=1

A
(σ ′σ )
ji

(
δθ

(σ ′)
j − δθ

(σ )
i

)
, (2)

where A
(σ ′σ )
ji = cos (θ (σ ′)

j − θ
(σ )
i − γ ). The orbit and the tan-

gent vectors are followed for a time lapse Ts by performing
Gram-Schmidt orthonormalization at fixed time intervals
�t , after discarding an initial transient evolution Tt . We
have employed �t = 5 and Tt = 5000; for BSCs we have
integrated the system for times 8 × 104 � Ts � 3 × 105 with
N = 100, . . . ,800 and for UCs for times 3 × 104 � Ts �
1 × 106 with N = 100, . . . ,400. The integrations have been
performed with a fourth-order Runge-Kutta scheme with time
step 5 × 10−4.

A characterization of the dynamical evolution on short time
scales can be achieved by considering the probability distri-
bution function P (�) of the finite time LE � [43]. The finite
time LE is calculated by estimating the exponential growth
rate of the magnitude of the maximal tangent vector T (1) over
finite time windows �t , namely, � = 1

�t
ln ||T (1)

i (�t)||, where
||T (1)(0)|| ≡ 1. In order to estimate P (�), we have collected
100 000 data points for each system size, obtained from ten
different orbits, each of duration Ts = 100 000 with �t = 10.

Intermittent chaotic chimeras. Starting simulations with
BSCs at small masses (m � 4), the system is not chaotic
[as shown in Fig. 3(a)] and it displays a multitude of
coexisting breathing chimeras [3]. Furthermore, while the
synchronous state R(1) = R(2) ≡ 1 remains stable also in the
presence of inertia (m > 0), the stationary chimeras associated
with constant order parameters with R(1) < R(2) ≡ 1 are no
longer observed. For sufficiently large masses, a solution
with broken symmetry emerges, where one population is
fully synchronized with R(2) ≡ 1, while the other population
exhibits wide collective irregular oscillations in the order
parameter R(1)(t) between zero and one, as shown in Figs. 1(d)
and 3(b). These are ICCs and they represent the main subject
of this Rapid Communication.

As shown in Fig. 3(b), the erratic oscillations of R(1) are
interrupted by laminar phases, where R(1) stays in proximity to
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FIG. 3. (Color online) (a) Average maximal LE 〈λ1〉 vs m for
N = 100: black circles (red squares) refer to BSCs (UCs). (b) Order
parameter R (black solid line) and finite time LE � (red dashed
line) for the chaotic population vs time t for N = 200 and m = 10.
The corresponding P (�) (solid red line) is shown in (c) with the
Gaussian fit (black dashed line). The inset shows the probability p0

versus N . The values 〈λ1〉 are obtained by following each realization
for a time span t = 50 000 and by averaging over 100 different initial
conditions.

one displaying small oscillations. This regime is characterized
by a large part of the oscillators in the chaotic population
getting entrained to the synchronous population, apart a few
oscillators, which keep oscillating with a common distinct
frequency, but with incoherent phases. An analogous regime
is also experimentally observed, as reported in Fig. 1(b), how-
ever, due to the smaller size of the populations, the amplitude
of the oscillations is larger. Furthermore, by estimating the
finite time LE �, we show that the laminar phases are indeed
regular, since they are associated with � � 0 [see Fig. 3(b)].
In particular, the distribution P (�), reported in Fig. 3(c),
reveals a clear peak at � = 0, associated with the laminar
regime, superimposed on a seemingly Gaussian distribution.
The probability p0 to observe a laminar phase can be estimated
by integrating P (�) within a narrow interval around � = 0.
This probability is reported in the inset of Fig. 3(c) for
10 � N � 1600 and it shows a power-law decay with N for
sufficiently large system sizes, namely, N � 50. This is a clear
indication that the laminar episodes tend to disappear in the
thermodynamic limit.

To characterize the erratic phase, we give an estimate of
the average LE �(∗) restricted to this phase. This estimate is
obtained by evaluating the maximum of P (�) with a Gaussian
fit to the data, once the channels around � = 0 are removed.
The corresponding data, reported in Fig. 4(a) for various N ,
reveal a clear decay of �(∗) as 1/ ln (N ). Furthermore, the
extrapolated value of �(∗) � 0.022 for N → ∞ is definitely
positive, thus indicating that the chaotic state persists in the
thermodynamic limit for finite m, contrary to what is usually
observed for the Kuramoto model in [19,44]. This logarithmic
dependence of the maximal LE λM with the system size was
previously reported for globally coupled networks in [34],
where, for dissipative systems, the authors showed analytically
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FIG. 4. (Color online) (a) Plot of �(∗) (symbols) versus 1/ ln(N )
for 50 � N � 1600 and the corresponding fit; the dot-dashed black
curve with the shaded area denotes λM (∞) with its error bar.
(b) Lyapunov spectrum for N = 100; the dashed red line is λ(s).
(c) Positive part of the Lyapunov spectra for various sizes, the dashed
(green) line is λ(c). (d) Average lifetimes 〈τ 〉 of the ICC vs N for
inertia m = 8 (red squares) and m = 10 (black triangles). The inset
shows 〈τ 〉 vs m for N = 30 for ICCs. The blue dashed line in the main
panel (inset) refers to a power law with exponent 1.60 (2.50). (a)–(c)
The values of 〈τ 〉 are averaged over 200–3000 different realizations
of BSCs and m = 10.

that

λM (N ) = λ(c) + D

2
+ a

ln(N )
+ O

(
1

ln2(N )

)
, (3)

where λ(c) is the mean-field LE obtained by considering an
isolated unit of the chaotic population forced by the two fields
ρ(1) and ρ(2) and D is the diffusion coefficient associated with
the fluctuations of λ(c) [34]. In particular, D can be measured
by the scaling of the variance of ln d(t), where d(t) is the
modulus of the Lyapunov vector associated with the single
forced unity. Namely, for sufficiently long times it is expected
that 〈[ln d(t) − λ(c)t]2〉 � Dt with the average 〈·〉 performed
over many realizations. In the present case, we measured λ(c) �
0.0116(5) and D � 0.0180(10), thus the expected asymptotic
LE should be λM (∞) � 0.021(1), which is in good agreement
with the previously reported numerical extrapolation as shown
in Fig. 4(a). This represents the first quantitative verification
of the prediction (3) for a dissipative system with continuous
time and in particular for an intermittent dynamics.

A more detailed analysis of the stability of this state can
be achieved by estimating the Lyapunov spectra for various
system sizes: We observe that the spectrum is composed of
a positive part made of N − 2 exponents and a negative part
composed of N exponents [see Fig. 4(b)]. Two exponents
are exactly zero: One is always present for systems with
continuous time, while the second arises due to the invariance
of Eq. (1) for uniform phase shifts. The negative part of
the spectrum is composed of an isolated LE, quantifying
the longitudinal stability of the synchronized population, and
N − 1 identical LEs, which measure the transverse stability
of the synchronous solution [45]. The value of this negative
plateau in the spectrum coincides with the mean-field LE

λ(s) = −0.0266(5) calculated for an isolated oscillator of the
synchronized population, as shown in Fig. 4(b).

Furthermore, the central part of the positive spectrum
reveals a tendency to flatten towards the mean-field value λ(c)

associated with the chaotic population for increasing system
sizes [see Fig. 4(c) for N = 200, 400, and 800], while the
largest and smallest positive Lyapunov exponents tend to split
from the rest of the spectrum. This scaling of the Lyapunov
spectra has been found to be a general property of fully coupled
dynamical systems. In particular, the authors in [34,46] have
shown that in the thermodynamic limit the spectrum becomes
asymptotically flat (thus trivially extensive), but this part is
sandwiched between subextensive bands containing typically
O(log N ) exponents scaling as in Eq. (3) with N . We can safely
affirm that the chaotic population in the ICC reveals properties
that are typical of fully coupled systems, contrasting with the
results reported for chaotic chimeras emerging in spatially
extended systems [16,19].

Let us now examine if the ICCs are transient states; indeed,
we observe for different masses that the chaotic chimeras
converge to a regular (nonchaotic) state after a transient time τ .
This amounts to the fact that the system remains entrapped in
a laminar state, which could be either fully synchronous or a
breathing chimera, without returning to the turbulent phase.
We have measured the average life times 〈τ 〉 [47] of the
ICCs for two masses, namely, m = 8 and 10, and various
system sizes 5 � N � 150. These results are displayed in
Fig. 4(d). From the figure it is clear that for N � 10 one has
a power-law divergence of the synchronization time with an
exponent α � 1.60(5). The divergence of τ is directly related
to the vanishing of the laminar phases (p0 → 0) observable for
N → ∞. Unfortunately, due to CPU limitations, we cannot
explore larger system sizes to verify that this scaling is
present over more decades. However, we can safely affirm
that these times are not diverging exponentially with N

as reported in [16]. This is a further indication that our
phenomenon has a different nature, which is deeply related
to the topology presently considered. Indeed, exponentially
diverging transients for metastable states have usually been
reported in the context of spatially extended systems [48],
while metastable states with lifetime diverging as 〈τ 〉 ∝
Nα – with α � 1.7 – have been reported for the Hamiltonian
version of our model [25,49]. Furthermore, we have tested the
dependence of 〈τ 〉 on the mass for one system size, namely,
N = 30, and we observe that 〈τ 〉 is diverging also as a power
law of m with an exponent 2.50(5) [see the inset of Fig. 4(d)].
It is important to remark that regular chimeras, appearing
for m = 0, are not transient for this topology, as we have
numerically verified.

Chaotic two-population state. With UCs, the system
evolves towards chaotic solutions already at smaller masses,
namely, m > 1, as shown in Fig. 3(a). With these initial
conditions the multistability is strongly enhanced and many
different coexisting states with broken symmetry are observ-
able, either regular or chaotic. By focusing on the chaotic
solutions, the so-called C2P state reported in Figs. 1(c), 1(f),
and 5(a), we observe that in all the cases the oscillators of
the two populations form a common cluster, characterized
by a common average frequency, plus a certain number of
oscillators with larger frequencies [see Fig. 5(d)]. These states
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data refer to C2P states and to m = 9; the system sizes are (c) N = 200
and (a), (b), and (d) N = 50. The time averages have been performed
at time T � 5 × 104.

resemble imperfect chimeras recently observed in experiments
on coupled metronomes [11] and in chains of rotators [50].

The C2P states are characterized by a broken symmetry
since the dynamics of the two populations takes place on dif-
ferent macroscopic chaotic attractors, as is clearly observable
in Figs. 5(a) and 5(b). In particular, the differences in the
oscillation amplitudes of R(1) and R(2) are due to the different
number of oscillators contributing to the common cluster in the
two populations [22,23,27]. The multistability is also reflected
in the associated Lyapunov spectra. Three examples are shown
in Fig. 5(c): Their shapes are extremely different, presenting
different numbers of positive and negative LEs. However, a
general result is that the oscillators contributing to the chaotic
dynamics are the ones out of the common cluster. As shown
in [46], the contribution of each oscillator i to the chaotic
dynamics can be measured in terms of the corresponding
squared component of the normalized maximal Lyapunov
vector T (1), namely, ξ

(σ )
i (t) = [δθ̇ (σ )

i (t)]2 + [δθ (σ )
i (t)]2, with

||T (1)(t) = 1||. The time-averaged components of the vector ξ̄i

are shown in Fig. 5(d), where it is evident that the contribution
ξ̄i of the oscillators belonging to the common cluster is
essentially negligible.

Conclusion. We have shown that a simple model of coupled
oscillators with inertia can reproduce the erratic behaviors
observed in our experiment of two coupled populations of
mechanical pendulums. The presence of inertia is a distinctive
ingredient to observe the emergence of chaotic regimes, such
as ICCs and C2Ps. The detailed characterization of the ICC
dynamics reveals that its chaotic properties can be interpreted
in the framework of fully coupled dissipative systems [34].
However, our study extends the validity of the results reported
in [34] to networks with inhomogeneous coupling displaying
intermittent dynamics. Together with the results reported
in [16,19] for a ring geometry, this clearly indicates that
the stability properties of chaotic chimeras strongly depend
on the underlying network topology. It would be extremely
challenging to investigate if the topology also influences the
stability of nonchaotic chimeras.

Our dissipative model is quite remarkable since it differs
from a Hamiltonian model only by a constant dissipative term
proportional to 1/m that vanishes in the limit of large inertia.
This suggests that for sufficiently large m dynamical properties
characteristic of conservative models should be observable.
Indeed, the Lyapunov spectrum exhibits a pairing rule [40]
similar to that of Hamiltonian models. Furthermore, ICCs are
metastable states whose lifetime diverges as �N1.6, in analogy
with quasistationary states in the Hamiltonian mean-field
model [33].
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