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Collective oscillations in disordered neural networks
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We investigate the onset of collective oscillations in a excitatory pulse-coupled network of leaky integrate-
and-fire neurons in the presence of quenched and annealed disorder. We find that the disorder induces a weak
form of chaos that is analogous to that arising in the Kuramoto model for a finite number N of oscillators [O.
V. Popovych et al., Phys. Rev. E 71 065201(R) (2005)]. In fact, the maximum Lyapunov exponent turns out to
scale to zero for N— o, with an exponent that is different for the two types of disorder. In the thermodynamic
limit, the random-network dynamics reduces to that of a fully homogeneous system with a suitably scaled
coupling strength. Moreover, we show that the Lyapunov spectrum of the periodically collective state scales to
zero as 1/N?, analogously to the scaling found for the “splay state.”
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I. INTRODUCTION

One of the most general and relevant dynamical phenom-
ena observed in the mammalian brain is the rhythmic coher-
ent behavior involving different neuronal populations [1].
The dynamics of neural circuits has been widely studied, by
invoking various kinds of neuron models; collective oscilla-
tions are commonly associated with the inhibitory role of
interneurons [2]. However, coherent activity patterns have
been observed also in “in vivo” measurements of the devel-
oping rodent neocortex and hyppocampus for a short period
after birth [3], despite the fact that at this early stage the
nature of the involved synapses is essentially excitatory [4].

Independently, theoretical studies of fully coupled excita-
tory networks of leaky integrate-and-fire (LIF) neurons have
revealed the onset of macroscopic collective periodic oscil-
lations [5,6] (CPOs). This dynamical state is quite peculiar:
the collective oscillations are a manifestation of a partial
synchronization among the neuron dynamics and this is one
way of identifying this phenomenon, which is, however,
more subtle: the macroscopic period of the oscillations does
not coincide with (is longer than) the average interspike-
interval (ISI) of the single neurons and the two quantities are
irrationally related. In fact, this phenomenon is also called
self-organized quasiperiodicity and can be observed in a
wide class of globally coupled systems [7]. In the context of
pulse-coupled neural networks, CPOs arise from the destabi-
lization of a regime characterized by a constant mean-field
and a strictly periodic evolution of the single neurons: this
regime, termed “splay state,” has been widely studied in sev-
eral contexts, including computational neuroscience [8].

Since real neural circuits are not expected to have a full
connectivity [9], it is important to investigate the role of
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dilution on the occurrence of the stability of CPO. We do so
by investigating an excitatory network of LIF neurons with
20% of missing links in two different setups: quenched dis-
order, where the network topology is fixed; annealed disor-
der, where the active connections are randomly and indepen-
dently chosen at each pulse emission. The physiological
motivation of the latter topology relies on the fact that the
synaptic transmission of signals is a stochastic, or unreliable
[10], process. As a first step, we rewrite the dynamical equa-
tions as a suitable event-driven map, by extending the ap-
proach developed in [11]. We do so by introducing a pair of
variables for each neuron, to account for the evolution of the
local electric field. This step is particularly important for the
computation of the Lyapunov exponents, as it allows ex-
pressing the evolution equations into a “canonical” form and
thereby simplifies the implementation of standard dynamical
system tools.

We find that the regime of CPOs is robust against the
presence of dilution, both in the quenched and annealed
setup. However, at variance with the homogeneous fully
coupled case, the dynamics of finite disordered networks
turns out to be chaotic, although the degree of chaoticity
decreases with the number N of neurons. In fact, the maxi-
mum Lyapunov exponent goes to zero as 1/NP. The expo-
nent S is smaller in the quenched setup, indicating that finite-
size effects are stronger. In the homogeneous case, we are
able to determine the full Lyapunov spectrum for sufficiently
large numbers of neurons. As a result, we find that the first
band of the spectrum scales as that of the splay state [8,12],
namely, as 1/N?

The paper is organized as follows. In Sec. II we introduce
the model and the event-driven map that is used to carry out
the stability analysis. In Sec. III we discuss the collective
dynamical behaviors observed in the presence of disorder.
Sec. IV is devoted to the Lyapunov analysis of these coher-
ent solutions in the large N limit. Finally, in Sec. V, we
summarize the main results and the open problems.
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II. MODEL

We study a network of N neurons, whose individual dy-
namics is modeled as a LIF oscillator. Following Ref. [11],
the membrane potential x;(r) of the i-th oscillator evolves
according to the differential equation

x(t)=a-xt)+gE(t) i=1,...,N, (1)
where a>1 is the suprathreshold input current and g>0
gauges the coupling strength of the excitatory interaction
with the neural field E,(¢). At variance with the fully coupled
network, where all neurons depend on the same “mean-field”
E(7), here we consider a general setup, where neurons have
different connectivities inside the network. As a result, it is
necessary and sufficient to introduce an explicit dependence
of the neural field on the index i. The discharge mechanism
operating in real neurons is modeled by assuming that when
the membrane potential reaches the threshold value x;=1, it
is reset to the value x;=0, while a pulse p(7) is transmitted to
and instantaneously received by the connected neurons. The
field E;(r) is represented as the linear superposition of the
pulses p() received by neuron i at all times ¢, <f: the integer
index n orders the sequence of the pulses emitted in the
network. Each pulse p(7) is weighted according to the
strength of the connection C;; between the emitting [(n)]
and the receiving (i) neuron. In general, the connectivity
matrix C is assumed to be nonsymmetric. Moreover, since
the examined networks are not fully coupled, the sequence of
pulses contributing to E; depends on the pool of neurons that
are actually connected to neuron i. This is specified by the
connectivity matrix C, as specified in the following formula:

Et)=— 2 Cint—1t)pt—-1,), (2)

1
N nlt, <t

where 6(x) is the Heavyside function and the shape of the
single pulse emitted at time #=0 is given by p(f)=a’t exp(
—at), where 1/« is the pulse width [5,8]. Since also in the
diluted case we will consider massively connected networks
[13], where the average number of synaptic inputs per neu-
ron varies proportionally to the system size, it is natural to
scale the synaptic strength with N as done in Eq. (2).

The model is fully characterized by the two sets of equa-
tions [Egs. (1) and (2)]. The dynamical system has a peculiar
mathematical structure, with the field variable appearing as a
memory kernel, which involves a summation over all past
spiking events. We find much more convenient to turn the
explicit Eq. (2) into the implicit differential equation

2
E{0)+2aE(0) + @E(W) == 2 Cppdli=1,). (3)

n\tn<t

As a result, the dynamics of the neural network model
takes the more “canonical” form of a set of coupled ordinary
differential Egs. (1) and (3), which can be analyzed with the
standard methods of dynamical systems (see, e.g.,
[5,8,11,12]).

PHYSICAL REVIEW E 81, 046119 (2010)

A. Event-driven map

The presence of &-like pulses into the set of coupled dif-
ferential Egs. (1) and (3) may still appear as an intrinsic
technical difficulty for the estimation of the stability proper-
ties. Actually, the standard algorithms for the evaluation of
Lyapunov exponents rely upon the integration of differen-
tiable operators acting in tangent space (see [14]). However,
one can easily get rid of this problem by transforming the
differential equations into a discrete-time event-driven map-
ping. This task can be accomplished by integrating Eq. (3)
from time £, to time z,,; (¢, representing the time immedi-
ately after the emission of the n-th pulse). An explicit map-
ping can be written by introducing the auxiliary variable Q;

= aEi+Ei,
En+1)= E,-(n)e““(”) + Q;(n) m(n)e= ™, (4a)
2

o
Qin+1)= Qi(n)e_m(n) + Cj(n+1),iﬁ’ (4b)

x(n+1)= xi(n)e_f(”) +a(l—e ™)+ gH(n). (4¢)

Here 7(n)=t,,,—t, is the interspike time interval: it is deter-
mined by the largest membrane potential (identified by the
label m(n)) reaching the threshold value x,,=1 at time 7.,

_ a— xm(n)
= I“L g (n) - 1}’ ®
where
-1(n) _ ,—am(n) (n n)e—an)
Hin = < (E,(n) L2 f) TR 0
©

for the parameter values considered in this paper (g>0 and
a>1), H(n)>0.

Altogether, the model now reads as a discrete-time map of
3N-1 variables, {E;,Q;,x;}: one degree of freedom, x,,,
=1, is eliminated as a result of having constructed the
discrete-time dynamics with reference to a suitable Poincaré
section. At variance with the usual approach (see, e.g., Ref.
[15]), the evolution equation does neither involve &-like tem-
poral discontinuities, nor formally infinite sequences of past
events: the map is a piecewise smooth dynamical system.

For the sake of simplicity, we assume that the entries of
the connectivity matrix C;; are either 0 or 1 (the homoge-
neous fully coupled case corresponding to C; ;=1 for all j’s
and i’s). If the entries are chosen randomly, symmetries are
lost and the only way to determine the asymptotic state for a
finite N is by numerically simulating map (4). In what fol-
lows, we consider two different setups: the synaptic connec-
tions are randomly chosen and are constant in time
(quenched disorder); each time a neuron fires, the neurons
receiving the excitatory pulse are randomly chosen (annealed
disorder).

B. Linear stability analysis

As usual, the stability of Eq. (4) can be analyzed by fol-
lowing the evolution of infinitesimal perturbations in the tan-
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gent space. The corresponding equations are obtained by lin-
earizing Eq. (4) as follows:

SE(n+ 1) = e “"SE(n) + (n)e"*"" 60,(n) — {aE,(n)

X[ar(n) - 110,(n)}e™ " 57(n), (7a)
80(n+1)=e*[50,(n) - aQ,(n)]dr(n),  (7b)
Sx(n+1)=e ™[ 8x,(n) - x;(n) r(n)] + ae”"51(n)
+g6H(n) i=1,....N-1; &,(n+1)=0.
(7¢)

An explicit expression of 7(n) can be obtained by differen-
tiating Eqgs. (5) and (6)

o1(n) = 7,6x,(n) + 70E(n) + 7060(n), (8)

where 7,:=d7/dx; and analogous definitions are adopted for
7z and 7,. Moreover, 6H,(n) is a short-cut notation for the
linearization of expression (6), which in turn depends on
SE,(n), 6Q(n), and S7(n). For more mathematical details see
[11,12,16].

The degree of chaoticity of a given dynamical state is
obtained by computing the Lyapunov spectrum, i.e., the set
of 3N—1 exponential growth rates \; along the independent
directions in tangent space. The Lyapunov spectrum has been
numerically estimated by implementing the standard algo-
rithm [14].

III. COLLECTIVE DYNAMICS

In the fully coupled homogeneous case the local fields E;,
Q; are independent of the index i and the number of equa-
tions reduces to N+ 1. Depending whether « is smaller or
larger than a critical value «.(g), the dynamics either con-
verges to a so-called splay state, with constant E(z), or to a
partially synchronized state, where E(¢) and x,(r) evolve pe-
riodically and quasiperiodically, respectively [5,6].

This “mean-field” dynamics is expected to change in dis-
ordered networks. Given the neuron dependence of the fields
E; and Q;, we find it convenient to introduce the average
variables,
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FIG. 1. (Color online) Minimal and maximal values of E(n) for
different « values for N=1,600 with quenched disorder and g
=0.4.
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as a tool to characterize the resulting dynamical regimes and
to compare with the homogeneous case. All the results re-
ported in this paper have been obtained by fixing the fraction
f of missing connections equal to f=0.2. Numerical investi-
gation for different choices of f (not reported here) show
similar results. In analogy with the analysis of the homoge-
neous case, we have chosen « as the main control parameter
(one can easily realize that choosing g would be equivalent).
In Fig. 1 we plot the maximum and the minimum values

of E(n) for different values of a, for g=0.4 and N=1600 in
the presence of quenched disorder. The bifurcation diagram
is similar to the one observed in the globally coupled net-
works [5]. However, the splay state found for small « values
has been replaced by a fluctuating asynchronous state, where

the average field E(r) is only approximately constant (the

difference between min E(n) and max E(n) is of the size of
the symbols). The periodic collective state is analogously
affected by small irregular fluctuations. This strong similarity
between globally coupled and the diluted networks is not
surprising: for any finite value of f, upon increasing N, the
differences among the fields E,(r) should progressively dis-
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FIG. 2. (Color online) E(n) versus Q(n) for various system size: (a) annealed disorder and (b) quenched case here is shown also the

annealed result for N=100,000. All data refers to a=9.
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FIG. 3. (Color online) gE(n) versus gQ(n). The (blue) curve
represents the attractor of a globally coupled system with N
=1,600 and g=0.32, while the black dots refer to the annealed case
with N=100,000 and g=0.4. For both cases «=9 and a=1.3.

appear. In fact, in the limit N— %, we expect randomly di-
luted networks to behave as fully coupled ones, provided that
variables and parameters are properly rescaled. More pre-

cisely, the average field E(¢) in a network with a fraction f of
missing links and a coupling constant g, is expected to be
equivalent to the neural field E generated in a fully coupled
network with coupling constant g(1—f). This expectation is
confirmed by the critical value &, separating the two dynami-
cal phases. As shown in Fig. 1, for g=0.4 and f=0.2, a,
~ 6.8, a value which coincides, within the statistical error,
with the critical value found in a globally coupled network
with g=0.32=0.4 X (1-0.2) [11]. A further consequence of
the fact that the dynamics of disordered networks reduces in
the thermodynamic limit to that of homogeneous fully
coupled ones is that the sample-to-sample fluctuations typi-
cal of quenched disorder should vanish as well. For this rea-
son we have not performed averages of different realizations
of the disorder.

A more detailed representation of the quenched dynamics
above @, is obtained by looking at the projection in the plane

[E(n),0(n)]. In Fig. 2 data sets are shown for @=9 and
increasing values of N: panels a and b correspond to the
annealed and quenched case, respectively. This allows seeing
that the two kinds of disorder yield indeed qualitatively simi-
lar results.
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More precisely, the phase points cluster around closed
curves, revealing a “noisy” periodic dynamics. In the an-
nealed case, the fluctuations can be attributed to the stochas-
ticity of the evolution rule. Surprisingly, they are even larger
in the quenched case, which corresponds to a deterministic
dynamics, in which case they must be attributed to the pres-
ence of deterministic chaos.

Upon increasing N, the amplitude of the fluctuations de-
creases and the attractor shape converges to an asymptotic
curve, which should correspond to that of a homogeneous
fully coupled network with a properly rescaled coupling
strength g. This expectation is indeed confirmed in Fig. 3,
where the attractor of a homogeneous network (with N
=1600 and g=0.32) superposes to that of the annealed dy-
namics (with N=10° and g=0.4). In the quenched case, the
asymptotic shape is the same, but the convergence is slower.

In order to investigate quantitatively the scaling behavior
of the finite-size corrections, we have studied the N depen-
dence of

AQ =(0)(N) = (0)(), (10)

where the angular brackets denote the (time) average of Q
value of all configurations falling within the lower

gE(n)-window [0.36, 0.44]. Since the asymptotic value

(0)(=) is independent of the setup, we have extrapolated it
in the simpler context of a fully coupled network with g

=0.32 As a result, we find that AQ always converges to zero
as power law, N7, with B=1 in the fully coupled network,
B=0.55 for quenched disorder, and 8=0.82 for annealed dis-
order [see Fig. 4(a)]. These latter values have to be consid-
ered as approximate estimates, affected both by statistical
errors and finite-size corrections. A more accurate estimate is
beyond our computational capabilities. However, for the
present purpose, the relative differences are large enough to
conclude that quenched disorder is characterized by a slower
convergence.

As a further test of the collective dynamics, we have com-
puted the standard deviation o(n) of the instantaneous fields
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FIG. 4. (Color online) (a) The quantity AQ [see Eq. (10)] versus the network size; (black) triangles refer to the quenched case, while (red)
squares to the annealed one: data fits are reported as dashed lines. The reported values have been obtained by averaging over 6 X 10° to
3 X 107 consecutive spikes. (b) Standard deviation o [see Eq. (11)] versus N: circles and diamonds refer to the annealed and quenched case,
respectively. The standard deviation have been averaged over M =900 iterates. All data refers to f=0.2, a=9, g=0.4, and a=1.3.
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FIG. 5. (Color online) Lyapunov exponents X\, versus k/N.
Complete spectrum for N=50 for a=3 (a) and @=9 (b). Rescaled
Lyapunov eigenvalues of the first band \; X N? for different system
sizes, namely, N=50 (filled black circles), 100 (open red squares),
200 (green open triangles), and 400 (blue crosses), for a=3 (c) and
a=9 (d). For @=3 in (c) also the analytical expression (dashed
black line) reported in Eq. (29) in [12] is shown. The data has been
obtained by following the evolution in the tangent space of the
event-driven map for a number of consecutive spikes of the order of
103-10°, after discarding a transient composed by 50,000 X N
spikes.

N 1/2
S Ef(n)

i=1

o(n)= -En)| (11)
which is a measure of the degree of synchronization among
the various fields. In Fig. 4(b) we plot the time average (o)
for annealed and quenched disorder: in both cases (o) de-
creases with N as N~'/2. These results confirm once more that
in the limit N— o the neural field dynamics converges to
that of homogeneous networks, irrespectively of the disorder.

IV. LYAPUNOV ANALYSIS

In order to provide a more detailed characterization of the
macroscopic as well as of the microscopic dynamics, in this
section we analyze the Lyapunov spectra for the fully
coupled network and for its disordered variants.

A. Globally coupled network

In this case, the fields seen by the neurons are equal to
one another and it is therefore sufficient to introduce a single
pair of field variables E and Q. The corresponding stability
analysis for the splay state has been analytically carried out
in Ref. [11], finding that the spectrum of Floquet exponents
is composed of a band of values of order 1/N?, which be-
come of order O(1) at one band extreme, plus two isolated
eigenvalues associated with the field dynamics. Therefore, it
is convenient to start the numerical analysis by testing the
effect of attaching a pair of field variables to each neuron.
The results plotted in Fig. 5(a) refer to the Lyapunov spec-
trum of the splay state for =3 and g=0.4: one can observe
two bands and two isolated exponents. The first band, com-
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posed of N—1 nearly vanishing exponents, and the two iso-
lated exponents coincide with the eigenvalues analytically
obtained in [11]. The second band, composed of 2(N—1)
exponents quantifies the transversal stability of the synchro-
nization manifold E;=E|, Q;=0Q, Vi, where, without loss of
generality, we consider the field of the 1st neuron as the
reference variable. In fact, if one introduces the suitable dif-
ference variables,

Wl'=Ei—E1 Zi=Q[—Q1 i=2,...,N. (12)

the corresponding tangent dynamics is ruled by the equations

owin+1)= 5w,-(n)e_a7(”) + 51,-(n)7'(n)e_0”(”), (13)

&z(n+1) = &;(n)e ™ =2, ... N. (14)

This shows that the linearized dynamics of each pair of twin
variables (Sw;, &z;) is decoupled from the rest of the network.
Its stability can be evaluated by solving the corresponding
two-dimensional eigenvalue problem. Accordingly, we ex-
pect two bands of N—1 eigenvalues each. However, since the
two eigenvalues of Eq. (13) are both equal to —a, we do have
a single band, as indeed observed in Fig. 5(a). As a last
check, we have verified the 1/N? scaling of the first band of
the splay state. The nice overlap of the three sets of expo-
nents corresponding to N=100, 200, and 400 with the ana-
lytical estimate [12] reported in Fig. 5(c) confirms the reli-
ability of the numerical code.

The stability of CPOs arising when a> «,=8.34(1) [5] is
not known. However, the above arguments concerning the
presence of a single degenerate band still hold, as confirmed
by the spectrum plotted in Fig. 5(b), which corresponds to
g=0.4, and a=9. This adds to the first band that is again
located just below zero, with the exception of the first expo-
nent, which is exactly equal to zero, as a result of the quasi-
periodic dynamics of the single neurons (the second zero
Lyapunov exponent has been discarded while taking the
Poincaré section).

Finally, in Fig. 5(d) we have plotted the Lyapunov expo-
nents of the first band multiplied by N”. The tendency to
overlap of the spectra obtained for N=50, 100, 200, and 400
indicate that we are again in the presence of a 1/N? scaling
as for the splay states, although finite-size corrections are
more relevant in this case. Accordingly, we conjecture that
the 1/N? dependence is a general property, which depends on
the shape of the velocity field (see [12]), rather than on the
structure of the solution itself.

B. Diluted network

Since the collective solutions observed in the globally
coupled network are characterized by many weakly stable
directions, it is reasonable to expect that generic perturba-
tions of the network dynamics yield a chaotic evolution. On
the other hand, in the thermodynamic limit we expect the
inhomogeneities induced by a random dilution to vanish. In
fact, we have already seen (in the previous section) that a
macroscopically periodic dynamics is eventually recovered.

First of all we have verified that the network dynamics is
chaotic for finite N, as soon as f>0. In Fig. 6(a) one can
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FIG. 6. (Color online) (a) Maximal Lyapunov exponent \; as a function of the percentage f of broken links for N=800 and a=9. (b)
Lyapunov spectrum {\;} versus k/N for @=3 with networks of size N=50 (filled black circles) and N=100 (open red squares) and 20% of
broken links. The data has been obtained by following the evolution of the event-driven map and of the associated linearized equations ruling
the evolution of the Lyapunov vectors for 3—4 X 108 consecutive spikes, after discarding a transient composed of 300,000—600,000 spikes.

The data refers to quenched disorder.

appreciate the growth of the maximal (positive) Lyapunov
exponent with the fraction of missing links f (in the
quenched case).

For a=3, analogously to the globally coupled case, the
spectrum is composed of two bands and two isolated eigen-
values [see Fig. 6(b)]. On the one hand, the degeneracy
among the exponents lying in the second band is lifted (as a
consequence of the disordered network structure) and the
second band acquires a finite width. On the other hand, the
comparison between the spectrum obtained for N=50 and
N=100, reveals that the band width shrinks with N around
the value A=—a. This result again confirms that the inhomo-
geneities of the disordered network vanish in the thermody-
namic limit. A similar scenario occurs also in the CPO re-
gime, as well as for annealed disorder.

Furthermore, in Fig. 7 (where we plot the first band of the
Lyapunov spectrum for quenched and annealed disorder, in
both dynamical phases), we see a variable number of posi-
tive exponents, indicating that finite disordered networks are
typically chaotic. More precisely, panels a and b of Fig. 7,
refer to quenched disorder. In both cases, we present the
spectra resulting from three different realizations of the dis-
order. We see that sample-to-sample fluctuations are quite
relevant in the second part of the band, while they affect less
the largest exponents. Another qualitative observation con-
cerns the shape of the spectrum that seems to be smoother in
the presence of CPOs. Unfortunately, it is almost impossible
to perform a quantitative scaling analysis of the spectrum
(given the need to average over different realizations and to
consider yet larger network sizes). In the annealed case, Fig.
7(c) and 7(d), there is no need to average over different
realizations of the disorder and the Lyapunov spectra turn out
to be smooth. However a scaling analysis is still beyond our
computer capabilities: in both cases we report the spectra
obtained for N=50 and N=100, which are far from exhibit-
ing a clean scaling behavior (for this reason we do not even
dare to formulate a conjecture).

Given the difficulties of dealing with the whole Lyapunov
spectrum, we have concentrated our efforts on the maximum

exponent N\, since we are thereby able to study larger net-
works. We limited ourselves to studying the CPO regime. As
shown in Fig. 8, \; decreases with N as a power law: in the
annealed case \;~1/N, while in the quenched case A,
~1/4N. This is at variance with the Kuramoto model, where
in the “equivalent” quenched case, a 1/N behavior has been
observed [17]. Accordingly, although annealed networks are
more chaotic than the quenched ones over the numerically
accessible network sizes, we conclude that the opposite will
be true for yet larger networks.

V. CONCLUSIONS AND PERSPECTIVES

Our numerical analysis suggests that in the thermody-
namic limit, a random, uncorrelated network behaves like a

[ (a) (b)0.03
0
. 0
<
0,005
0,03
0.001 0.05
0
0
X
<
0.05

-0.001

FIG. 7. (Color online) First band of the Lyapunov spectra {\;}
versus k/N for g=0.4 with 20% of broken links for quenched dis-
order with @=3 (a) and 9 (b) and for annealed disorder with a=3
(c) and 9 (d). For the quenched disorder only spectra corresponding
to system size N=50 are shown but for three different random-
network configurations, while in the annealed case spectra for net-
work sizes N=50 (filled black circles) and N=100 (open red
squares) are reported. The data has been obtained by following the
evolution of the system and of its linearized copies for time lags
similar to those reported in the caption of Fig. 6.
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FIG. 8. Maximal Lyapunov exponent \; versus N: (a) annealed case; (b) quenched case. In the quenched case also a power-law fit is
reported (red dashed line) with decay exponent 8=0.51%0.01. The data has been obtained by following the evolution in the tangent space
of the event-driven map for 108—10° consecutive spikes, after discarding a transient of 200,000 spikes. Both figures refer to 20% of dilution,

with parameters =9, g=0.4 and a=1.3.

homogeneous globally coupled system with a rescaled value
of the coupling constant to account for the different fraction
of active links. This is because each neuron receives a ran-
dom series of spikes: when the number of neurons increases,
the number of spikes per unit time increases as well, while
the relative fluctuations decrease and all neurons are affected
by increasingly similar forcing fields (for a discussion on the
thermodynamic limit in neural networks see also [13,18]).
While there are little doubts that the collective motion is
independent of the presence of disorder, less compelling is
the evidence that the same is true for the stability properties.
This is because numerical simulations are computationally
expensive and it is not possible (at least for us) to study the
scaling behavior of the entire Lyapunov spectrum in disor-
dered systems. This is doable in homogeneous networks,
thanks also to a faster convergence to the thermodynamic
limit, and we have indeed observed that the first band of the
Lyapunov spectrum scales as 1/N?, exactly as in the splay
state, a case that is analytically known [12]. In disordered
networks we have nevertheless been able to study the scaling

behavior of the maximal Lyapunov exponent, finding that it
is positive and scales as 1/NP, with 8 close to 1/2 (respec-
tively, 1) in the quenched (respectively, annealed) case. This
means that deterministic chaos disappears in the thermody-
namic limit. This observation is consistent with the fact that
the collective motion is periodic: a periodically forced phase
oscillator (such as a LIF neuron) cannot be chaotic. How-
ever, nothing seems to prevent the collective motion itself to
be chaotic. Whether different connection topologies have to
be invoked or yet unidentified constraints forbid this to oc-
cur, remains as an open question.
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