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Sisyphus effect in pulse-coupled excitatory neural networks with spike-timing-dependent plasticity
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The collective dynamics of excitatory pulse-coupled neural networks with spike-timing-dependent plasticity
(STDP) is studied. Depending on the model parameters stationary states characterized by high or low
synchronization can be observed. In particular, at the transition between these two regimes, persistent irregular low
frequency oscillations between strongly and weakly synchronized states are observable, which can be identified
as infraslow oscillations with frequencies �0.02–0.03 Hz. Their emergence can be explained in terms of the
Sisyphus effect, a mechanism caused by a continuous feedback between the evolution of the coherent population
activity and of the average synaptic weight. Due to this effect, the synaptic weights have oscillating equilibrium
values, which prevents the neuronal population from relaxing into a stationary macroscopic state.
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I. INTRODUCTION

Fluctuating spontaneous neural activity has been observed
in several areas of the brain:, ranging from the cortex to the
hippocampus, and from the thalamus to the basal ganglia
and cerebellum [1,2]. In particular, low-frequency fluctuations
(LFFs), in the range 0.5–1 Hz, have been observed in the
cortical local field potential PLF during sleep as well as during
quiet wakefulness [3,4]. In the hippocampus, this kind of
irregular oscillations between states, characterized by higher
and lower levels of synchrony, have been revealed during slow-
wave sleep and related to the process of memory consolidation
in the neocortex [5]. Infraslow oscillations, corresponding to
frequencies �0.02–0.2 Hz, have been identified in humans
using high-density full-band electroencephalography during
the execution of somatosensory detection tasks and during
sleep [2,6,7]. Furthermore, these infraslow oscillations have
been associated with a cyclic modulation of cortical excitabil-
ity, possibly related to the aggravation of epileptic activity
during sleep [7].

Synaptic plasticity is a fundamental ingredient of neuronal
activity, being involved in the transfer of information and in
its processing at the neuronal and population level. On the one
hand, during the sleep-wake cycle, distinct oscillatory patterns
organize the activity of neuronal populations, modulating
synaptic plasticity [8]. On the other hand, synaptic plasticity
has been identified as one of the fundamental mechanisms at
the origin of multistable states in neural circuits [9–13]. In par-
ticular, spike-timing-dependent plasticity (STDP) represents
an important, experimentally measured, mechanism control-
ling the strength of the synapse connecting a presynaptic to a
postsynaptic neuron. STDP is a temporally asymmetric form
of Hebbian learning, based on the causal relationship between
the spikes emitted at pre- and postsynaptic neurons [14–19].
A spike emitted in the presynaptic cell, within a certain time
interval (learning window), before an emission in the postsy-
naptic cell triggers long-term potentiation (LTP), whereas the
reversed temporal order in spike emission results in long-term
depression (LTD) [20]. Learning windows for LTD and LTP
are asymmetric, as clearly shown experimentally [18,21,22].

On one hand, it has been shown, both experimentally [23]
and theoretically [24,25], that STDP influences the collective
behavior of a neural population, generally leading to an
increase in the degree of synchronization. On the other
hand, STDP seems to favor the emergence of coexisting
states with different degrees of synchronization [9,10,26,27].
Furthermore, in the presence of propagation delays STDP can
provide a negative feedback mechanism contrasting highly
synchronized network activity [11]. The presence of noise
in this latter case can lead to the emergence of states at
the boundary between randomness and synchrony. On the
contrary, in oscillatory neural networks the desynchronizing
effect due to noise is counteracted by the STDP action [28–30].

In this paper, we study the Sisyphus effect (SE), a
deterministic mechanism recently introduced to explain the
spontaneous emergence of irregular oscillations in the neural
population activity in the presence of STDP [31]. In particular,
we include STDP in the renowned neural network model
developed in [32] by Abbott and van Vreeswijk. This model
is composed of leaky integrate-and-fire (LIF) neurons and
the synaptic interactions are purely excitatory and mediated
by α pulses [33]. In the absence of plasticity, the network
activity is asynchronous for slow synapses (and/or large
synaptic weights) and partially synchronized for sufficiently
fast synapses (and/or weak coupling) [34–36]. STDP leads
the asynchronous system towards a synchronized state by
modifying the synaptic weights. However, as soon as the
synchronous regime is achieved the weights are attracted back
towards their starting values and the system desynchronizes.
Thus STDP should repeat its action again and again, and this
leads to endless oscillations in the synchronization level of
the population activity. This resembles the vain efforts of
Sisyphus, who was bound in Tartarus for the eternity to roll a
boulder uphill just to watch it rolling back down again.

The paper is organized as follows: Sec. II is devoted
to the introduction of the model, of the integration scheme
as well as of the indicators employed to characterize the
degree of synchronization of the neural population and its
collective activity. The collective dynamics in plastic and
nonplastic neural networks is described in Sec. III with
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particular emphasis on the emergence of LFFs. Section IV
reports a characterization of the synchronization oscillations
in the neural activity in terms of the evolution of an order
parameter on an effective free energy landscape. The results
of simulations, performed by maintaining a constant average
synaptic weight, are analyzed in Sec. V, while Sec. VI is
devoted to the mean-field analysis of the synaptic weight
evolution. The SE is illustrated in Sec. VII for different
synaptic parameters. Finally a brief summary and a synthetic
discussion of the reported results can be found in Sec. VIII. In
Appendix A the stationary distributions of the synaptic weights
are displayed for different parameters, while Appendix B
reports the transformations required to convert the variables
and parameters entering in the model from adimensional units
to physical ones.

II. MODEL AND INDICATORS

A. Neural network model

We study a fully coupled network composed of N leaky
integrate-and-fire (LIF) neurons, whose membrane potentials
Vi(t) ∈ [Vr : Vth] are ruled by the following equation:

V̇i(t) = a − Vi(t) + Ii(t) i = 1, . . . ,N. (1)

In the above equation Ii is the synaptic current, due to the
inputs received from the rest of the network, a is the intrinsic
excitability of the neuron, which can be due to nonspecific
background currents arising from distant brain areas or to
external dc current terms. In particular, we assume that the
neuron is suprathreshold, i.e., a > 1. Whenever the neuron i

reaches the threshold Vth ≡ 1, a pulse qα(t) is instantaneously
transmitted to all the other neurons and its membrane potential
is reset to Vr ≡ 0. The synaptic current can be written as Ii(t) =
gEi(t), with g > 0 representing the excitatory homogeneous
synaptic strength, while the field Ei(t) is given by the linear
superposition of all the pulses qα(t) received by neuron i in
the past. The formal expression of Ei(t) reads as

Ei(t) = 1

N − 1

∑
n|tn<t

wij (tn)�(t − tn)qα(t − tn), (2)

where N − 1 is the number of presynaptic neurons, since
autapses have been avoided, �(t) is the Heaviside function,
and wij represents the synaptic weight associated with a
directional link connecting the presynaptic neuron j to the
postsynaptic one i at the time of spike emission tn. The scaling
of the field Ei with the number of synaptic inputs reported
in (2) is intended to mimic the homeostatic synaptic scaling
experimentally observed for excitatory neurons [37].

Following van Vreeswijk [36], we assume the α-function
shape for the pulses, i.e., qα(t) = α2t exp(−αt). The time
evolution of the field Ei(t) is thus ruled by the following
second-order differential equation:

Ëi(t) + 2αĖi(t) + α2Ei(t) = α2

N − 1

∑
n|tn<t

wij (tn)δ(t − tn).

(3)

For a fully coupled network, in the absence of plasticity,
the weights wij appearing in Eqs. (2) and (3) are all equal to

one (apart from the autaptic terms which are set to zero) and
the fields Ei are all identical, therefore the neurons are driven
by a common field E. In the presence of plasticity we assume
that the synaptic weights evolve in time according to the STDP
rule with soft bounds, namely

ẇij (t) = p[wmax − wij (t)]AjSi − dwij (t)BiSj , (4)

where d (p) is the potentiation (depression) amplitude, and
Sk = ∑

n|tn<t δ(t − tn) represents the time series of spikes
emitted by neuron k until time t . The presence of the bound
implies that 0 � wij � wmax.

The variables Aj can be thought of as concentrations
of glutamate bound to the postsynaptic receptors, or as the
fraction of open N-methyl-D-aspartate (NMDA) receptors,
while Bi is usually associated with the concentration of
calcium entering the cell due to a back-propagating action
potential [20].

In particular, we have implemented the nearest neighbor
version of the STDP rule [20,28], where the synapses have
memory just of the last emitted spike. In this case the time
evolution of the Aj and Bi variables is given by

τ+Ȧj = −Aj + (1 − Aj )Sj , τ−Ḃi = −Bi + (1 − Bi)Si,

(5)

where τ+ (τ−) are the time scales at which post- (pre)
synaptic spikes will cause potentiation (depression) of the
synapse. As pointed out by Izhikevich and Desai [38] the
nearest neighbor implementation of the STDP rule is consistent
with the classical long-term potentiation and depression as
represented in the form of the Bienenstock-Cooper-Munro
synapse [39].

Therefore, in the case of a postsynaptic (presynaptic) spike,
emitted by neuron i (j ) at time t , the weight wij is potentiated
(depressed) as

wij (t+) = wij (t−) + �ij (t−), (6)

with

�ij (t−) =
⎧⎨
⎩

p[wM − wij (t−)]e− δij

τ+ if δij > 0

−d wij (t−)e+ δij

τ− if δij < 0,

(7)

where δij = t − t (j ) > 0 (δij = t (i) − t < 0) is the firing time
difference and t (k) the last firing time of neuron k, while t−
(t+) refers to the instant just before (after) the spike emission.
The resulting distributions of the synaptic weights and their
properties of stationarity are discussed in Appendix A.

In this paper, we assume that τ− > τ+, as suggested
by the experimental data [15,18], and in particular we fix
τ− = 3τ+ = 0.3. Furthermore, despite that the main part of the
reported results refer to d = p = 0.01 [symmetric case (SC)],
we have also examined a more realistic situation where p > d

(as suggested by the experiments reported in [15,18]), namely
by considering p = 2d = 0.02 [asymmetric case (AC)]. If not
explicitly stated the SC will be studied for α = 9 and the
AC for α = 11. The studied model is adimensional, however,
it can easily be transformed to physical units as shown in
Appendix B.
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B. Simulation method

Since the plasticity rule depends critically on the precision
of the spiking events, it is necessary to employ an accurate
integration scheme to update the evolution equations. This
makes an event-driven algorithm an optimal choice, because it
conjugates high accuracy in the determination of the spike
times with a fast implementation [29]. In particular, by
following Olmi et al. [40] the event-driven map can be written
as

Ei(n + 1) = Ei(n)e−ατ (n) + Pi(n)τ (n)e−ατ (n),

Pi(n + 1) = Pi(n)e−ατ (n) + wim

α2

N − 1
,

(8)
Vi(n + 1) = Vi(n)e−τ (n) + a(1 − e−τ (n))

+ gHi(n)i = 1, . . . ,N ; Vm(n + 1) ≡ 0,

where Pi ≡ αEi + Ėi is an auxiliary variable, m is the index
of the neuron emitting the n + 1th spike, and τ (n) = tn+1 − tn
is the network interspike interval. The explicit expression for
the nonlinear function Hi(n) appearing in (8) is

Hi(n) = e−τ (n) − e−ατ (n)

α − 1

(
Ei(n) + Pi(n)

α − 1

)

− τ (n)e−ατ (n)

(α − 1)
Pi(n), (9)

for the parameter values considered in this paper (g > 0 and
a > 1), Hi(n) > 0.

The event driven map reported in (8) gives the explicit
evolution of the fields Ei,Pi and membrane potentials Vi from
the time t+n immediately following the nth spike emission
to time tn+1. However, the evolution equation depends on
the interspike interval τ (n), which can be determined only
implicitly by solving the following equation:

τ (n) = ln

[
a − Vm(n)

a + gHm(n) − 1

]
. (10)

Together with the evolution of the fields and membrane
potentials, also the weights of the afferent and efferent
synapses associated with the firing neuron m should be updated
as follows:

wmj (n + 1) = wmj (n) + p[wmax − wmj (n)]e−�tj /τ+

wjm(n + 1) = wjm(n) − dwjm(n)e−�tj /τ− (11)

j = 1, . . . ,N wjj ≡ 0,

where �tj = tn+1 − t (j ) and t (j ) is the last firing time of
neuron j . Please notice that the synapses evolution (11) is
performed after the map evolution (8), because we assume
that the plasticity is a slower process than spike generation.

The implementation of the event-driven map (8) involves
3N − 1 variables, since the membrane potential of the firing
neuron is exactly zero at each firing event, thus it does not take
part in the dynamics. The evolution of the synaptic weights
involves N2 − N variables, since autapses have been excluded.
All together, our dynamical systems have N2 + 2N − 1
degrees of freedom. Our implementation of the dynamical
evolution of the network assumes that only one neuron at
a time will reach the threshold, therefore in the case of exact

clustering, without any source of disorder, our method will fail.
However, we have always verified our assumption to be true.

In the following we report two kinds of simulations:
constrained (CS) and unconstrained (US). The results of CSs
are discussed in Sec. V; during CSs the synaptic weights are
constrained to have an average value:

W (t) ≡ 1

N (N − 1)

∑
i,j

wij (t), (12)

which remains equal to W0. To achieve this result the weights
wij are allowed to evolve following their dynamics, as
expressed in Eq. (11), however, at regular time intervals the
weights are rescaled as (wij/W (t)) × W0 in order to maintain
their average value constant.1 All the other results discussed
in the article refer to USs, where no constraint was imposed
on the dynamics.

C. Synchronization indicator and local field potential

The degree of synchronization of the neuronal population
can be characterized in terms of the order parameter [41,42]:

R(t) =
∣∣∣∣∣

1

N

∑
k

eiθk (t)

∣∣∣∣∣ , (13)

where

θk(t) = 2π

(
t − t (k)

m

)
(
t

(k)
m+1 − t

(k)
m

) (14)

is the phase of the kth neuron at time t between its mth and
(m + 1)th spike emission, occurring at times t (k)

m and t
(k)
m+1,

respectively. A nonzero R value is an indication of partial
synchronization; perfect synchronization is achieved for R =
1, while a vanishingly small R ∼ 1/

√
N is observable for

asynchronous states in finite systems.
To better reveal the dynamics on long time scales, we have

low-pass filtered R(t) by performing the following convolution
integral:

Rf (t) = 1

τF

∫ TM

0
R(t − ξ )e−ξ/τF , (15)

where τ−1
F represents the cutoff frequency, and TM � τF is

the integration window.
The local field potential PLF can be defined by follow-

ing [43–45] as

PLF(t) ≡ −If (t) = 1

τF

∫ TM

0

1

N

N∑
i=1

Ii(t − ξ )e−ξ/τF , (16)

where If (t) represents the filtered input synaptic current
averaged over the ensemble of all neurons. We can consider
PLF(t) as the local field potential generated by our ensemble
of neurons if they would be all located at the same spatial
distance from the recording electrode; the low-pass filtering
action of dendrites and of the extracellular medium are taken

1For N = 200 we renormalized the synaptic weights each 0.2 time
units to avoid drifts in the synaptic average value.
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into account by performing the convolution integral reported
in (16) [46]. To compare with experimental measurements
where high (low) activity correspond to a minimum (maxi-
mum) in the PLF, we reversed the sign of the filtered synaptic
current in (16) [1]. In the following, we have usually employed
τF = 40 and TM = 300 and we considered R(t) and Ii(t)
sampled at equal time intervals δT = 1.

III. NONPLASTIC VERSUS PLASTIC
COLLECTIVE DYNAMICS

In this section we compare the possible collective dynamics
observable at the macroscopic level in the nonplastic and
plastic networks by characterizing the different macroscopic
attractors in terms of their degree of synchronization, described
by R.

A. Nonplastic network

In the absence of plasticity the dynamics of the model is
controlled by three parameters: namely, the neuronal intrinsic
excitability a, the synaptic strength g, and the inverse pulse
width α. As shown in Fig. 1, where the phase diagrams in
the plane (g,a) and (g,α) are reported, only two collective
behaviors can be observed for the nonplastic fully connected
network: an asynchronous and a partially synchronous regime.

In this case the asynchronous regime corresponds to a
so-called splay state [32,47]: This is an exact solution for the
system which is perfectly asynchronous (R ≡ 0). Furthermore,
this solution is characterized by a constant field E (where
the neuron dependence has been dropped since in this case
the fields are all identical) and a periodic evolution of the
membrane potentials. For this solution we are able to perform
an exact analytic linear stability analysis [47], and therefore to
determine the stability boundaries of the solution, reported
as a solid line plus symbols in Fig. 1. It is known that
whenever the splay state loses its stability it gives rise to
a partially synchronized regime via a Hopf supercritical
bifurcation [32]. This regime is characterized, beside a finite
value of R, by a periodically oscillating macroscopic field E

and by a quasiperiodic motion of the membrane potentials at
a microscopic level. This regime has been mainly observed
in pulse-coupled neural networks [36], but recently partial
synchronization has been discovered also in networks of phase
oscillators [48,49] and electronic Wien-bridge devices [50]
coupled via mean-field nonlinear coupling. In this state the
single neuron dynamics are quasiperiodic and the field E

periodic with a period which is incommensurate with respect
to the single neuron interspike interval (ISI) [51].

The transition may be intuitively understood as an interplay
between the two time scales present in the model: the ISI
TI and the pulse width 1/α. We observe from Figs. 1(a)
and 1(b) that the asynchronous regime is stable for small α

values and for large a and g values. The intrinsic excitability
and the (excitatory) synaptic coupling determines the ISI;
in particular, the ISI duration is a decreasing function of
the values of a and g. At sufficiently low α, the synaptic
current seen by each neuron is essentially constant, and
it induces a stable regular network activity corresponding
to a periodic firing of successive neurons with a constant
population spiking rate. Whenever the pulse duration drops
below a certain value the synaptic input cannot be anymore
regarded as constant and the state corresponding to a time-
invariant network activity becomes unstable. For α values very
large with respect to the ISI, an “almost” fully synchronized
state with R � 1 is observed, as expected for excitatory
networks where the transmitted pulses have extremely short
rise times, like exponential or δ spikes [34,35,52]. With
reference to the parameter values considered in this paper,
partial synchronization emerges for a � ac � 1.35 for fixed
coupling g = 0.4, and for g � gc � 0.4676 for fixed pulse
width α = 9 (see Fig. 1).

In order to characterize the network dynamics it is tempting
to introduce a unique parameter encompassing the two time
scales, similarly to what was done in [47] to analyze the linear
stability of the splay state. This adimensional parameter is the
ratio of the two relevant time scales, namely

Q = 〈TI 〉
1/α

= α〈TI 〉, (17)
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FIG. 1. (Color online) Phase diagram for the homogeneous model without plasticity; in (a) we report the phase plane (g,a), while in (b)
the phases are shown in the (g,α) plane. The blue solid squares indicate the critical values for which the asynchronous state (namely, the splay
state) becomes unstable; the dotted line indicates g = 0.4 in (a) and α = 9 in (b). The other parameters are fixed to α = 9 in (a) and a = 1.3
in (b) and the system size is N = 100.
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FIG. 2. (Color online) Time-averaged R̄ as a function of Q: (a) nonplastic network; (b) plastic network with p = d = 0.01,τ− = 3τ+ = 0.3.
Each plot consists of 1575 different sets of parameters (a,g,α), with 1.1 � a � 2.5, 0.1 � g � 0.9, 8 � α � 12, N = 300. In the nonplastic
(plastic) case each set of parameters has been simulated for two (four) different initial conditions and the average performed over a time span
of 105 time units. The measured differences among the various realizations are smaller than the dimension of the dots.

where 〈·〉 denotes an average over the neuronal population
and over the sequence of spikes. In Fig. 2(a) we report the
average level of synchronization R̄ for a large variety of
states corresponding to different (a,g,α) triples as a function
of Q: As one can notice the data almost collapse onto a
universal curve. This indicates that, to a certain extent, the
nonplastic network three-dimensional phase space (a,g,α)
can be described by the single parameter Q. Furthermore,
we observe states with R̄ = 0 for low Q values, namely
smaller than Q � 8.15, while a partially synchronized state
is observable at large Q > 6. Therefore there is a limited
interval Q � 6 − 8, where to the same Q value can corre-
spond either asynchronous or partially synchronized states.
However, this does not necessarily imply a coexistence of the
possible attractors, but simply that the parametrization of the
dynamical behaviors in terms of a unique parameter Q is not
perfect.

B. Plastic network

Upon the addition of STDP, the data do not collapse
anymore onto a universal curve, as we would expect since new
time scales now enter in the model microscopic dynamics:
namely, the learning time windows. The data reported in
Fig. 2(b) indicate that at large Q > 15 the presence of plasticity
essentially does not modify the collective behavior already
observed in the nonplastic network: The system remains
almost fully synchronized R̄ � 1 [high synchronization (HS)].
However, the introduction of plasticity influences the dy-
namical evolution at smaller Q; for Q < 2 the completely
asynchronous state disappears and it is substituted by a regime
of low synchronization (LS), where R̄ � 0.3. Furthermore, in
the intermediate Q range the neuronal population exhibits a
large variability in the level of synchronization, as measured
by the R̄ parameter and this regime will be the main
subject of our investigation. All in all these results suggest
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(c)

FIG. 3. (Color online) (a) Average order parameter R̄ as a function of the intrinsic excitability a for the nonplastic network (black solid
line) and in the presence of STDP for the SC, namely α = 9 and d = p = 0.01 (the green triangles refer to N = 200 and the red dashed lime
to N = 500). The inset reports the data for α = 11 and N = 300 for the nonplastic network (black solid curve) and with STDP for the AC with
p = 2d = 0.02 (blue dots). (b) and (c) Time evolution of R(t) for the SC with N = 500 for a = 1.09 and a = 1.70, respectively. The data refer
to g = 0.4, τ− = 3τ+ = 0.3, and wmax = 2 and the averages have been performed over a time span �104, after discarding a transient �105.
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FIG. 4. (Color online) Power spectra of the order parameter for different excitability, namely a = 1.10 (a) and a = 1.90 (b). The (black)
solid line refers to N = 100, the (red) dashed line to N = 200 and the (green) dot-dashed line to N = 400 neurons. The data refer to SC for
g = 0.4, α = 9, d = p = 0.01, τ− = 3τ+ = 0.3, and wmax = 2 and are obtained after discarding a transient �105. The power spectra have
been obtained by the time trace of the parameter R sampled at regular intervals δT = 1 and for a time window Ttot = 65 536, the spectra are
averaged over 300–600 different time windows at N = 100 and 200, and over 5–10 windows for N = 400.

that the introduction of STDP favors synchronization in the
system.

In particular, we will focus on the dependence of the
macroscopic dynamics on the intrinsic excitability a. The
time-averaged order parameter R̄ is reported as a function
of a in Fig. 3(a) for the nonplastic situation as well as for the
plastic case.

As already stressed, the introduction of STDP destabilizes
the asynchronous state that is now substituted by a low
synchronization state with R̄ � 0.32–0.35 for the set of
parameters considered in the figure. Furthermore, at low
excitability a � 1–1.2 the system is almost fully synchronized
R̄ � 1, but the macroscopic evolution reveals high frequency
fluctuations (HFFs) [see Fig. 3(b)]. For high excitability
a � 1.5, R(t) oscillates quite rapidly around a finite nonzero
value as shown in Fig. 3(c). For the most part the reported
results refer to equal potentiation and depression amplitudes
(SC), however, these findings are essentially confirmed also
for the more realistic AC, as shown in the inset of Fig. 3(a).

To better characterize the regimes observable in the SC,
we have estimated the power spectra SR associated with
R(t) reported in Fig. 4; the spectrum for a = 1.1 resembles
a Lorentzian with subsidiary peaks at low periods (namely
T < 35). The Lorentzian part of the spectrum can be fitted
as �1/(λ2 + T −2), thus indicating that it originates from a
Poissonian point process with a relaxation time λ−1 � 1400–
2000. Furthermore, the SR corresponding to a = 1.9 reveals
two nearby HFF peaks at T � 70 and 150.

However, the most interesting dynamical behavior can be
observed for intermediate values of the intrinsic excitability,
namely we will focus on a = 1.3. As shown in Fig. 5, for
this value of the excitability the order parameter R widely
fluctuates in time from R � 0 to R � 1, thus indicating that the
system jumps irregularly between desynchronized and highly
synchronized phases. This behavior is also observable for the
AC as shown in Fig. 5(b). The evolution of R reveals LFFs
on time scales of the order of 1300 ± 400 for the SC (�700
for the AC; data not shown), as can be clearly appreciated
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FIG. 5. (Color online) Time evolution of R (black solid line) and of W (red dashed line) for N = 2000 neurons. The dotted (blue) line is the
mean-field prediction obtained by employing the map W (t + �t) = W (t) + �(t), with � given by Eq. (18). The data refer to a = 1.3,g = 0.4,
d = 0.01, (a) p = 0.01,α = 9; (b) p = 0.02,α = 11, and are measured after a transient �104. The mean-field predictions have been evaluated
with �t = 1; tests performed with 0.5 � �t � 40 did not lead to any peculiar difference.
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FIG. 6. (Color online) (a) Power spectrum of the order parameter SR versus the inverse of the period for a = 1.30. The (black) solid line
refers to N = 100, the (blue) dashed line to N = 200, and the (red) dots to N = 400. The power spectra have been obtained by the time trace
of the parameter R sampled at regular intervals δT = 1 and for a time window Ttot = 65 536, the spectra are averaged over 200–400 different
time windows at N = 100 and 200, and over 10 windows for N = 400. (b) Time evolution of the filtered order parameter Rf (t) (red dotted
line), of the average synaptic current If (t) (black solid line) and of the average synaptic weight W (t) (blue dashed line) for N = 500. Rf (t)
and If (t) have been arbitrarily shifted and rescaled to enhance the similarities with W (t). (c) Local field potential PLF as defined in (16) as a
function of time. The reported results refer to g = 0.4, α = 9, d = p = 0.01, τ− = 3τ+ = 0.3, and wmax = 2 and all the data are obtained after
discarding a transient �105.

by the corresponding power spectrum reported in Fig. 6(a). In
addition SR exhibits also a small subsidiary peak at T � 50–60
for the SC (�45 for the AC) indicating that the HFFs are
still present. It is remarkable that low frequency oscillations
are associated with the relaxation period �λ−1 previously
identified for a = 1.1. This seems to suggest that by increasing
the neuronal excitability the relaxation process becomes an
oscillatory one. Somehow the increased excitability is now
capable of sustaining slow collective oscillations, which,
however, for larger a disappears [as shown in Fig. 4(b)].
Furthermore, the LFFs for the AC occur definitely on a faster
time scale.

Let us now estimate the physical time scales over which
the observed LFFs take place, by assuming a membrane time
constant τ � 30–40 ms (see Appendix B for the conversion
units); the frequencies of the slow oscillations are �0.02–
0.03 Hz, therefore they correspond to infraslow rhythms as
reported in Ref. [6]. On the other hand, the observed HFFs
occur in a range of frequencies at the border between slow and
infraslow waves, namely 0.16–1 Hz [2].

To better characterize this regime we report in Fig. 5 also
the time evolution of the average synaptic weight W (t), as
defined in Eq. (12). This quantity also reveals low frequency
oscillations similar to those of R(t), but occurring with some
time delay. This suggests that W (t) is somehow following the
dynamics of R(t), but the absence of HFFs in the dynamics
of W (t) reveals that the average synaptic weight has a sort of
inertia, since it does not respond on short time scales to the
modifications of the level of synchronization in the network.

To better analyze these similarities let us consider the
low-pass filtered order parameter Rf (t) defined in (15) for
the SC. The comparison with W (t) reported in Fig. 6(b)
clearly suggests that these two quantities are correlated in
time. However, an almost perfect correlation is observable
by considering the filtered synaptic current If (t) as defined
in (16). In this case If (t) and W (t) display an almost

identical time evolution [see Fig. 6(b)] thus revealing a strong
correlation among the synaptic weights and the synaptic
currents, at least by considering the corresponding (ensemble)
averaged quantities.

In Fig. 6(c) we reported also the corresponding PLF

[see (16)]. This exhibits minima with superimposed high
frequency oscillations in the high activity phase, corre-
sponding to the high synchronization, and maxima in the
low synchronized phase. Despite that this trace resembles
strongly the spontaneous fluctuations observed in cortical
activity of mammals during slow-wave sleep or during quiet
wakefulness [1,53], we should remark that our up-states and
down-states are characterized by a tonic firing of neurons with
similar average ISIs.2 In our case, the difference among these
two states is mainly in the degree of synchronization of the
population activity which is high (low) in the up-phase (down-
phase). At variance with the experimentally observed activity
in synchronized cortical states, typical of slow-wave sleep
and quite wakefulness, which is characterized by up-phases
(down-phases) associated with a high level (absence) of firing
activity [1].

IV. EFFECTIVE FREE ENERGY LANDSCAPE

A further characterization of this regime can be achieved
by considering the probability density distribution P (R) of
the order parameter obtained by measuring R at regular time
intervals δT during a long simulation, after discarding an initial
transient time. In particular, we prefer to visualize the obtained
results in terms of the corresponding effective free energy
landscape, as defined by F (R) = − log P (R),3 as plotted in
Fig. 7(a). F (R) reveals two minima at RL � 0.3 and RH � 0.9

2We observe a variation of less than 10% of the ISI in the two states.
3Here and in the following we assume a unitary scale for the energy.
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FIG. 7. (Color online) (a) Free energy landscape F (R) = − log P (R) as obtained from the PDF of the order parameter P (R) for N = 50
(orange) dots, N = 100 (black) dashed line, N = 200 (red) dot-dashed line, and N = 500 (blue) solid line. The data are obtained by considering
trajectories of duration �2.7 × 106 − 5.3 × 106 sampled at regular interval δT = 1, after discarding a transient �107 spikes. (b) Free energy
barriers �F as a function of the intrinsic excitability a: the solid black circles (solid blue squares) denote the barrier �FH (�FL) separating
the minimum RH (RL) from the maximum RS for a network of N = 500 neurons. The reported results refer to g = 0.4, τ− = 3τ+ = 0.3,
wmax = 2, α = 9, and d = p = 0.01, apart from the inset of panel (b) where we considered p = 2d = 0.02 and α = 11.

corresponding to the LS and the HS regime, respectively. These
two states are separated by a maximum located at RS � 0.6.
The HS minimum is more pronounced and separated by a
higher barrier �F from the saddle at RS ; this indicates that the
system spends more time in the HS regime and that this state is
characterized by a quite well-defined level of synchronization.
On the other hand the LS state corresponds to a broader
minimum, reflecting the fact that the system in the LS regime
visits states with levels of synchronization distributed over a
broader range than in the HS state. From Fig. 7(a) it is also
evident that the large oscillations between LS and HS measured
by R(t) do not vanish in the thermodynamic limit, since F (R)
tends to an asymptotic profile already for N > 100.

The level of stability of the HS (LS) state can be measured
in terms of the free energy barrier �FH ≡ F (RS) − F (RH )
[�FL ≡ F (RS) − F (RL)] separating RH (RL) from the saddle
RS . These data are reported in Fig. 7(b) for d = p = 0.01
and α = 9 (and for p = 2d = 0.02 and α = 11 in the inset)
for a wide range of intrinsic excitability. We observe for the
symmetric (asymmetric) case that finite barriers for both states
exist only for a ∈ [1.19; 1.46] (a ∈ [1.22; 1.45]), therefore
in this interval HS and LS regimes coexist. For a → 1.18
(a → 1.21) the HS barrier appears to diverge thus indicating
that for smaller a values the system is fully synchronized,
while for a � 1.48 (a � 1.47) the two minima merge (the
associated barriers vanish) in a unique LS state. These results
are consistent with the analysis reported in Fig. 3(a).

To determine if the observed oscillations between HS
and LS persist by varying the relevant time scales (i.e., the
synaptic time scale α−1 and the learning time windows),
we have analyzed a large interval in the (α,τ+) plane. In
particular, as suggested by the experimental evidences we fixed
τ− = 3τ+ and we examined both the cases d = p = 0.01 and
p = 2d = 0.02, with the other parameters held constant to
g = 0.4 and a = 1.3. For each parameter set we have estimated
the minimal value �Fmin between the free energy barriers
�FH and �FL; whenever �Fmin is nonzero this means that
the neuronal dynamics oscillates between high synchronous

and low synchronous states, and therefore LFF oscillations
are present. As shown in Fig. 8, the barriers are finite only
in a limited stripe of the (α,τ+) plane; for smaller (larger)
α values the system is in the LS (HS) regime. In particular,
for 0.02 � τ+ � 0.15 one has �Fmin > 0 within the interval
α ∈ [8; 10] (α ∈ [10; 12]) for d = p = 0.01 (p = 2d = 0.02).
Thus suggesting that the observation of LFFs is limited to
synaptic rise and decay time 1/α � 0.1 and it depends only
slightly on τ+, at least in the examined range: by increasing
τ+ by a factor 5 the corresponding synaptic time needed to
observe a finite �Fmin grows only by 20%.

V. CONSTRAINED SIMULATIONS

As previously noticed it seems that, at least at a mean-
field level, the dynamics of the synaptic weights and the
synchronization of the firing events are somehow related. In
order to clarify this relationship, if any, we will examine the
neuronal population dynamics decoupled from the evolution of
the average synaptic strength by performing CSs. During this
kind of simulation the average synaptic weight is maintained
constant and equal to a fixed value W0. In particular, we set
initially W0 = 0 and follow the evolution of the system for a
time span TS . Then, we perform a new simulation of duration
TS , starting from the last configuration of the previous run,
with an increased synaptic weight W0 = �W0. We repeat this
procedure by increasing W0 at regular steps �W0 until W0

reaches the maximal allowed value, namely wM . By applying
the reverse protocol, W0 is successively decreased (always at
steps of �W0) until it returns to zero. During each single simu-
lation we measure the average order parameter R̄ only over the
second half of the run (therefore on a time interval TS/2); this
is in order to allow the system to relax after each modification
of W0. The corresponding results are shown in Fig. 9(a) for
TS = 200 and TS = 10 000. In this manner, W is held fixed,
while the individual wij are essentially free to evolve.

At low W0 the system is fully synchronized R̄ � 1; by
increasing the average synaptic weight the order parameter
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FIG. 8. (Color online) Minimal free energy barriers �Fmin, as defined in the text, as a function of α and τ+ for p = d = 0.01 (a) and
p = 2d = 0.02. The barrier heights are color coded; the scale is reported next to the corresponding figure. The reported results refer to g = 0.4,
a = 1.3, N = 200, τ− = 3τ+, and wmax = 2.

drops to an LS state above a critical value W
(1)
0 . Furthermore,

the system resynchronizes, by decreasing W0, at a lower
synaptic weight value, namely W

(2)
0 < W

(1)
0 . This seems to

indicate that the transition is discontinuous and hysteretic.
However, the width of the hysteretic loop �H = W

(1)
0 − W

(2)
0

shrinks noticeably by increasing the single simulation duration
TS from 200 to 10 000 [as shown in Fig. 9(a)]. To better
investigate this point, we report �H as a function of TS in
Fig. 9(b); these data seem to suggest that �H will vanish for
adiabatic transformations of W0, corresponding to TS → ∞.

However, since we are interested in characterizing the
transition between HS and LS observed during LFFs and since
each oscillation in R(t) [W (t)] takes place on a finite time the
limit TS → ∞ is not of interest for this analysis. However, it
is not trivial to estimate which is a meaningful TS value to
employ in the CSs to compare the obtained results with those
of the corresponding USs. A first constraint on TS is that it
should be sufficiently long with respect to the period of the
HFF; this in order to get rid of the fast oscillations of R(t)
during CSs. On the other hand, the variation of W0, performed

during CSs, should be done on time scales of the order of the
period of the LFFs. To be more specific, let us focus on the
SC. For these parameter values, HFFs occur on time scales
THFF � 50−60, therefore the first request is that TS � THFF.
Furthermore, the period of the LFFs is TLFF � 1000−2000.
For the AC, the time scales associated with LFFs and HFFs
are faster. As a matter of fact, to be on the safe side we have
employed TS � 200−1000.

VI. MEAN-FIELD PREDICTION OF SYNAPTIC
WEIGHT DYNAMICS

We now address the influence of the level of synchrony of
the neuronal population, as measured by the order parameter R,
on the synaptic weight dynamics, using a mean-field analysis
for W . In particular, we examine the dynamics of W in the
two extreme cases of fully synchronized and asynchronous
evolution of the network.

From Eqs. (6) and (7) and by following the approach
described in [38], one can obtain the average synaptic weight
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FIG. 9. (Color online) (a) Plots of R̄ vs W0 as obtained during constrained simulations of duration TS for increasing (solid blue circle
and dashed blue line) and decreasing (solid red square and red dot-dashed line) W0. The symbols correspond to TS = 200 and the lines
to TS = 10 000. The magenta dotted vertical lines indicate the fixed point values WA and WS for the mean-field evolution of the synaptic
weights as defined in Eqs. (20) and (22), respectively. Results averaged over 100 different initial conditions and �W0 = 0.02. The data refer
to p = 0.01 and α = 9. (b) Width of the hysteretic loop �H as a function of TS for p = 0.01, α = 9 (black circle) and p = 0.02, α = 11
(red squares); the error bars have been estimated by measuring �H for 250 (33) different initial conditions, respectively. All the data are for
d = 0.01,τ− = 3τ+ = 0.3,g = 0.4,a = 1.3,N = 200.

062701-9



MIKKELSEN, IMPARATO, AND TORCINI PHYSICAL REVIEW E 89, 062701 (2014)

0

8

16

24
P(δ)

0

1

P(δ)

0 0.5 1
δ

0

1

2

0 0.5 1
δ

0

4

8

(a) (b)

(c) (d)

0 0.5 1 1.5 2
W

-0.02

-0.01

0

0.01

0.02

Γ

WS
WA

(e)

FIG. 10. (Color online) Probability distribution functions P (δ̄) as a function of the renormalized time differences δ̄ij = δij /〈TI 〉, where
〈TI 〉 is the average interspike interval measured for the considered state. The reported PDF refer to a = 1.09 (a), a = 1.7 (b), and a = 1.3
(c) and (d). For the latter case, the distributions have been obtained during an unconstrained simulation by considering the N × (N − 1) δij

values associated with the last N spikes preceding a strongly (weakly) synchronized state corresponding to an order parameter value R � 0.11
(c) [R � 0.98 (d)]. The dashed blue lines refer to PS in (a) and (d), while the dashed red lines refer to PA in (b) and (d). (e) � vs W for
the asynchronous and the synchronized case: namely �A (red dashed line) and �S (blue dashed line). The arrows denote the direction of the
evolution of W (t+) due to the modifications induced by �[W (t−)]. The solid red circle (solid blue circle) indicates WA � 0.51 (WS � 0.985).
The other parameters of the simulations are α = 9, τ− = 3τ+ = 0.30, d = p = 0.01, g = 0.4, and the network size is N = 500.

modification �, associated with each presynaptic spike,

�(t) = p(wM − W )
∫ ∞

0
dδP (δ)e

−δ
τ+

− dW

∫ 0

−∞
dδP (−δ)e

δ
τ− , (18)

where P (δ) is the PDF of the time differences δ between
postsynaptic and presynaptic firing times. To test the predictive
value of Eq. (18), we have estimated the evolution of the
average synaptic weight at regular time intervals, as W (t +
�t) = W (t) + �(t). In order to perform such estimation we
have employed the P (δ) measured at regular time intervals �t

from USs. This reconstruction gives a quite good estimation of
the true evolution for SC [see the dotted blue line in Fig. 5(a)].
However, the agreement declines for the AC, in this case the
mean-field evolution still catches the oscillations of W (t) with
the correct periods, but it overestimates the minimal values
reached by the synaptic weights, as shown in Fig. 5(b). We
have verified that the mean-field prediction remains good in
the symmetric case p = d, even by doubling the value of p, and
also by considering a situation with depression prevailing on
potentiation, namely d = 2p. The origin of the partial failure
of the mean-field prediction (18) could be related to the fact
that the collective dynamics becomes faster in the AC, as
discussed in Sec. III. Despite this, the overall picture seems
still to work also when potentiation is larger than depression,
and the mechanism at work for the generation of LFF seems
the same in the SC and AC, as detailed in Sec. VII.

By assuming that the postsynaptic neuron is firing with
period T0, we are able to derive the time difference distribution
P (δ) for the two limiting cases: fully synchronized and asyn-
chronous dynamics. In the fully synchronized (asynchronous)
situations we expect a distribution of the form PS(δ) = D(δ) +
D(δ − T0) (PA(δ) = 1/T0) defined in the interval [0,T0]. Here
D denotes a Dirac delta function. These guesses are essentially

confirmed by direct USs as shown in Fig. 10. In particular, the
data reported in Fig. 10(a) [Fig. 10(b)] refer to a high (low)
synchronized state corresponding to a = 1.09 (a = 1.7). On
the other hand the results shown in Figs. 10(c) and 10(d)
refer to the same state, corresponding a = 1.3, where P (δ) is
measured by considering the δij values associated with the last
N spikes preceding a strongly (weakly) synchronized phase
with associated order parameter value R � 0.11 (c) [R � 0.98
(d)]. Therefore, at least in these two cases, we can derive an
analytic estimation of �. By assuming that the postsynaptic
neuron fires with constant period T0 we can perform the
integrals appearing in (18) obtaining the following results.

A. Asynchronous dynamics

In this situation P (δ) = PA(δ) and we can rewrite (18) as
follows:

�A = 1

T0
[pτ+(2 − W )(1 − e−T0/τ+) − dWτ−(1 − e−T0/τ−)].

(19)

As shown in Fig. 10(e), �A vanishes for W = WA and it is
positive (negative) for W < WA (W > WA), therefore for the
dynamics of W (t),

WA = 2P

D + P
, P = τ+(1 − e−T0/τ+),

(20)
D = τ−(1 − e−T0/τ−),

is a stable fixed point. The value of WA only depends on
the STDP parameters and T0, by assuming that the period T0

is equal to the average interspike interval, we can estimate
the value of this fixed point. As shown in Fig. 12 this
prediction gives a good estimation of the W values in the
low synchronized regime (corresponding to a > 1.6) both for
p = d as well as for p = 2d.
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B. Fully synchronized dynamics

For the fully synchronized situation P (δ) = PS(δ) and (18)
becomes

�S = p(2 − W )(1 + e−T0/τ+) − dW (1 + e−T0/τ−). (21)

As reported in Fig. 10(e), �S vanishes for W = WS and it
is positive (negative) for W < WS (W > WS), therefore the
solution,

WS = 2P̃

P̃ + D̃
, P̃ = 1 + e−T0/τ+ , D̃ = 1 + e−T0/τ− , (22)

represents a stable fixed point. Also in this situation by setting
T0 = 〈TI 〉 we can obtain a numerical estimation of WS , as
clearly shown in Fig. 12. This represents an upper bound for
W for any studied regime, while W → WS only for a → 1,
corresponding to the state of maximal synchronization.

To summarize, in both cases � vanishes for a finite
value of the average synaptic weight, namely WS (WA) for
the synchronized (asynchronous) situation. Additionally, for
W < WS (W > WA) the synapses are on average potentiated
(depressed), while a similar mechanism rules for the asyn-
chronous case. This implies that WS (WA) is a stable attractive
point for the dynamics of W in the synchronized (asyn-
chronous) regime. All these results apply in the symmetric
(asymmetric) case p = d = 0.01 (p = 2d = 0.02), whenever
τ− = 3τ+ = 0.30. However, in general the system will not be
completely synchronized or asynchronous and the distribution
P (δ) will lie in between the extreme cases represented by
PS and PA, therefore we expect that the values of W will
be bounded within the interval [WA,WS]. This expectation is
fully confirmed for p = d = 0.01, as shown in Fig. 12(a),
while for p = 2d = 0.02 W < WS for any value of the
intrinsic excitability a, but in the intermediate regime (namely,
1.25 < a < 1.50) W can attain values somehow lower than
WA. This result is due to the not perfectly good predictive
power of the mean-field approach in this specific case, as
already stated previously.

VII. SISYPHUS EFFECT

We have now all the ingredients needed to explain the
LFFs reported previously and to single out the mechanism
responsible for such behavior. Let us suppose that initially
the system is in the HS phase with an associated average
low coupling value W < W

(1)
0 . In this regime the attractive

fixed point WS is larger than the the transition point W
(1)
0 [see

Fig. 9(a)]. Therefore W increases and tends towards WS , until
W > W

(1)
0 , at which point the system starts to desynchronize

and to approach the LS state, the value of R dropping. In this
desynchronizing stage the distribution P (δ) becomes almost
flat [see Fig. 10(c)] and the attractive point for the synaptic
evolution will now be WA, which is located below W

(2)
0 [as

shown in Fig. 9(a)]. The synaptic plasticity decreases W in
order to reach WA, but when the average synaptic weight
crosses W

(2)
0 the neurons begin to resynchronize. This brings

the system back to the HS state from where it started and the
cycle can now be repeated. The cycle will continue indefinitely,
and is the essence of the Sisyphus effect.
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FIG. 11. (Color online) Conditional free energy profiles for R:
The solid blue line refers to FD(R), while the red dashed line refers
to FI (R). The PDF has been obtained during USs by averaging
over measurements of R obtained at regular time intervals �T = 1.
The data correspond to N = 2000,α = 9,g = 0.4,a = 1.3,p = d =
0.01,τ− = 3τ+ = 0.3.

One should remark that the above arguments are approxi-
mate, because the system is never exactly fully synchronized
or desynchronized. Instead the network visits a continuum of
states, each associated with a different fixed point in W space
and we can distinguish such fixed points in two families: one
associated with the HS phase and one with the LS phase. The
crucial ingredient for the emergence of the SE is that the fixed
points corresponding to the HS (LS) phase are larger than the
transition point W

(1)
0 (smaller than W

(2)
0 ). As we have verified

that this is indeed the case, the described mechanism can be
considered as still effective.

To perform a further test of the validity of our analysis,
we measure the probability distribution function (PDF) of
the order parameter R conditioned to the fact that W was
increasing (decreasing) during a US. From the PDFs we
can derive the corresponding free energy profiles FI (R) and
FD(R), which are reported in Fig. 11. From the figure FI has a
principal minimum at RH , while FD has an absolute minimum
at RL. Both profiles reveal a shoulder at intermediate R values.
These results confirm that the equilibrium attractive values for
W are located opposite the transition points, because when the
system is in the HS (LS) regime the synaptic weights increase
(decrease) continuously trying to reach the corresponding fixed
points.

As a final analysis, we have verified the validity of the SE
over a wide range of intrinsic excitabilities for the symmetric
and asymmetric case. We expect that the SE appears whenever
the transition values W

(1)
0 and W

(2)
0 lie within the interval

[WA,WS]. Therefore, we have measured the transition values
W

(1)
0 and W

(2)
0 and the corresponding fixed points for a

large interval of intrinsic excitabilities, namely 1 < a � 2 for
p = d = 0.01 and p = 2d = 0.02 (see Fig. 12). For p = d

(p = 2d) the transition is hysteretic in the interval a ∈ ]1,1.40]
(a ∈ ]1,1.45]) while for larger a values W

(1)
0 and W

(2)
0 are

essentially coincident. Furthermore, for a � 1.18 (a � 1.17)
W

(1)
0 � WS , while for a � 1.50 (a � 1.51) WA � W

(1)
0 ,W

(2)
0 .

Furthermore, the W distributions measured during USs are
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FIG. 12. (Color online) Average synaptic plasticity W vs intrinsic excitability a. The shaded area indicates the distribution of the W values
measured during USs. The upper blue (lower red) line represents W

(1)
0 (W (2)

0 ). The error bars have been evaluated over five different realizations
of the CSs. The upper (lower) dashed black line represents the fixed point values WS (WA). The data refer to (a) p = d and α = 9 and
(b) p = 2d and α = 11, while the other parameters are set to N = 200, g = 0.4, T = 1000, d = 0.01,τ− = 3τ+ = 0.3.

reported in Fig. 12 as shaded areas and they include the
transition interval [W (1)

0 ,W
(2)
0 ] for 1.20 � a � 1.48 (1.20 �

a � 1.51). In the AC one observes that, in the range of
parameters where the Sisyphus mechanism is at work, the
measured W can be smaller than WA; instead outside this
region WA always represents a lower bound for the distribution
of the W . This is in line with what was previously reported in
Sec. VI concerning the predictive value of Eq. (18) and it points
out that one should go beyond the mean-field approximation
to get a better reproduction of the W dynamics, at least in the
AC.

As previously shown in Fig. 7(b) the free energy F (R)
reveals the coexistence of two minima, corresponding to the
competing HS and LS states, within the interval a ∈ [1.19 :
1.46] (a ∈ [1.22 : 1.45]) for the symmetric (asymmetric) case.
These results clearly indicate that the Sisyphus effect is
responsible for the LFFs observed in the dynamics of our
network.

VIII. CONCLUSIONS

In this paper we have reported a simple deterministic
mechanism, the Sisyphus effect, responsible for the onset
of irregular collective oscillations between asynchronous and
synchronous states in excitatory neural networks with STDP.
The transition between the two states are driven by STDP:
The synaptic weights tend to relax towards their equilibrium
values, which in turn are determined by the synchrony in the
neural population.

For intermediate values of the synaptic characteristic
time, the system is fully synchronized for sufficiently small
synaptic weights, while it becomes asynchronous above a
critical coupling. However, for synchronized (desynchronized)
neural activities the synaptic weights tend towards large
(small) equilibrium values corresponding to asynchronous
(synchronous) evolution. The activity of the network can be
schematized as that of a one-dimensional order parameter
evolving on a free energy landscape displaying two coexisting
equilibria. Depending on the small (large) values of the

synaptic weights the landscape is tilted towards the strongly
(weakly) synchronized state, thus becoming the attractive
equilibrium for the dynamics. On the other hand, the synchro-
nized (desynchronized) neural activity increases (reduces) the
weights until their values force the landscape to tilt in the
opposite direction. This drives both of the observables into a
never-ending cyclic behavior.

The SE should be observable in pulse-coupled neural
networks for usual STDP whenever excitation has a desyn-
chronizing effect. On one hand, this is, in general, verified for
any kind of neuronal response (type I or type II) for suffi-
ciently slow synaptic interactions [34,35]. On the other hand,
for fast excitatory synapses, we expect that for temporally
inverted STDP rules [54] the Sisyphus effect should be active.
Furthermore, we have shown that this effect is present also
for biologically relevant choices of the STDP parameters and
the collective oscillations occur on time scales corresponding
to infraslow oscillations observed in the brain dynamics. In
relation to this, it is very interesting to note that the authors of
Refs. [6,7] described infraslow fluctuations in the excitability
of real neural networks. Such fluctuations could be explained
by the slow oscillations of the synaptic couplings as caused by
the Sisyphus effect.

Ultraslow rhythms have been previously reproduced in an
excitatory network composed of fully coupled conductance-
based neurons [55]. In particular, the authors proposed a
mechanism, based on retrograde endocannabinoid signaling,
which was quite similar to the Sisyphus effect. Also in Ref. [55]
a high level of synchrony induced a feedback mechanism based
on the evolution of a mean-field variable which leads to a
decoupling of the neurons. Furthermore, whenever the neurons
desynchronize the suppression mechanism is removed and the
populations can evolve towards their synchronous activity.
However, at variance with the SE the evolution time scale
of the mean-field control parameter was phenomenologically
set to be �10–100 s.

The reported deterministic collective dynamics is abso-
lutely not trivial and it is clearly chaotic from a microscopic
point of view. However, further analysis is required to
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understand if the Sisyphus effect can be considered as a
further example of collective chaos, similar to the one recently
reported for two coupled subpopulations of neurons [56].
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APPENDIX A: SYNAPTIC WEIGHT DISTRIBUTIONS

In this appendix we investigate the shape and the stationarity
of the probability density distributions of the synaptic weights
P (wij ) for various regimes. The distributions are stationary
in the regimes of high and low synchronization, namely
when the Sisyphus effect is absent. In these cases, they do
not depend on the initial conditions and converge to the
distribution reported in Figs. 13(a) and 13(b), corresponding
to high and low synchronization, respectively. However, these
distributions have some different features: In the HS regime
P (wij ) is essentially symmetric and peaked around wij = 1;
in the LS regime P (wij ) is a skewed distribution peaked at
wij � 0.5 and with a tail extending towards larger values.
These results are consistent with the findings reported in [57],
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FIG. 13. (Color online) Probability density distributions P (wij )
for a = 1.09 (a), a = 1.7 (b), and for a = 1.3 measured for small
(large) synchronization values R � 0.1 (R � 0.9) corresponding to
panels (c) and (d), respectively. These latter distributions have been
obtained by averaging over 20 different configurations of similar
R value (the 20 highest and lowest during a long run, respectively),
while the other two are single snapshots. The vertical magenta dashed
(green dot-dashed) lines indicate the mean-field equilibrium points
WA (WS) in the considered cases. The parameters are N = 500,α =
9,g = 0.4,a = 1.3,p = d = 0.01,τ− = 3τ+ = 0.3.

where the authors have shown that uncorrelated inputs lead
to a unimodal distribution with a positive skew [similar to
the one reported in Fig. 13(b)], consistently with experimental
findings [58,59]. Furthermore, in [57] it also has been shown
that correlation among the inputs leads to a potentiation of
the synapses and to a more symmetric distribution. This is
also the case for our model: The distribution becomes more
symmetric and peaked at a larger wij value when passing from
the LS regime to the HS, characterized by a larger degree of
correlation among the neurons [see Figs. 13(a) and 13(b)].

The situation changes completely in the presence of the
Sisyphus effect, since in this case the level of synchronization
(of correlation) changes continuously in time leading to a
nonstationary distribution P (wij ). In particular, in Figs. 13(c)
and 13(d) we reported the distributions estimated when the
system is almost completely desynchronized (synchronized)
corresponding to R � 0.1 (R � 0.9) shown in Fig. 13(c)
[Fig. 13(d)]. These distributions have been obtained by
averaging over 20 different configurations of the system
characterized by the desired level of synchronization. It is
evident that also in this case the synchronization favors the
potentiation of the synapses leading to the emergence of a
positive tail extending towards wM [see Fig. 13(d)]. However,
in both situations two peaks are present in the distributions
at wij � 1 and wij < 0.5, indicating the coexistence of two
subpopulations in the system resembling the ones found in the
HS and LS regime shown in Figs. 13(a) and 13(b). This result
suggests that the Sisyphus effect occurs on time scales which
are short with respect to the ones required by the synapses
to relax towards a unimodal distribution. The distribution of
the weights evolve in time recursively switching from the
distribution reported in Fig. 13(d) to the one in Fig. 13(c)
and so on, forever. It is important to stress that P (wij ) does not
tend to split in two groups peaked at wij = 0 and wij = wM ,
as it would occur in the models of STDP where potentiation
and depression modify the synaptic weights by a fixed amount,
irrespective of the actual value of wij [57].

Furthermore, as mentioned in the main text the STDP
rule here implemented and reported in (4) corresponds to
soft bounds [20]. We have verified that this aspect is crucial,
indeed by passing to hard bounds [20] the situation modifies
completely. In particular, for the parameter employed in
Figs. 13(a) and 13(b) P (wij ) reveals a single peak around
wij � 0. This means that the Sisyphus effect cannot in
principle occur for hard bounds, furthermore that for our set
of parameters the system tends to remain synchronized for the
whole range of intrinsic excitability.

APPENDIX B: PHYSICAL UNITS

The model introduced in the paper contained only adi-
mensional units, since these are more convenient to perform
numerical simulations. However, the evolution equation for the
membrane potential (1) can be easily re-expressed in terms of
dimensional variables as follows:

τmV̇j (t̃) = RinIb − Vj (t̃) + τmGEj (t̃) j = 1, . . . ,N ; (B1)

where τm = 40 ms is the membrane time constant (as reported
in [60] for pyramidal cells in brain area CA1 of the hyp-
pocampus), Rin is the membrane resistance, Ib represents the
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neural excitability, due to contributions from neurons lying
outside the local network and projecting on them. Furthermore,
t̃ = t · τm, the inverse pulse width is α̃ = α/τm, and the field
Ej = Ej/τm has the dimensionality of a frequency and G of a
potential.

For the other parameters and variables the transformation
to physical units is simply given by

Vj = Vr + (Vth − Vr )Vj , (B2)

RinIb = Vr + (Vth − Vr )a, (B3)

G = (Vth − Vr )g, (B4)

where Vr = −60 mV, Vth = −50 mV [61,62]. Typical values
of the parameters employed in this paper were a = 1.3, g =
0.4, α = 9 and they correspond to RinIb = −47 mV, G =
4 mV, α̃ = 225 Hz. For these choices of parameters the average

firing rate of the single neurons in the nonplastic network was
�29 Hz, while it decreased to �23 Hz in the presence of STDP
plasticity.

As far as the STDP parameters are concerned, from
the data reported by Bi and Poo [15] it emerges that the
synaptic strengths of hippocampal glutamatergic neurons are
potentiated (depressed) of �110% (�40%) by considering
60 consecutive pairs of pre- and postsynaptic spikes. This
amounts to having potentiation (depression) amplitude p �
0.016 (d � 0.0066) in the model employed to mimic STDP
[see Eq. (7)], therefore we can safely affirm that our choices
were consistent with the experimental data. The widths of
the learning time windows are τ̃+ = 4 ms and τ̃− = 12 ms.
These values are comparable with the rise and decay time
of the excitatory postsynaptic potentials 1/α̃ = 4.44 ms, but
definitely smaller than those measured in the experiments,
namely τ̃+ � 13 − 19 ms and τ̃− � 34 ms [15,18].
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