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Order Parameter for the Transition from Phase to Amplitude Turbulence
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The maximal conserved phase gradient is introduced as an order parameter to characterize the
transition from phase to defect turbulence in the complex Ginzburg-Landau equation. It has a finite
value in the phase-turbulent regime and decreases to zero when the transition to defect turbulence
is approached. Solutions with a nonzero phase gradient are studied via a Lyapunov analysis. The
degree of “chaoticity” decreases for increasing values of the phase gradient and finally leads to stable
traveling wave solutions. A modified Kuramoto-Sivashinsky equation for the phase dynamics is able to
reproduce the main features of the stable waves and to explain their origin. [S0031-9007(96)00860-5]

PACS numbers: 47.27.Cn, 05.45.+b, 47.27.Eq

Spatially extended chaotic systems have been recentjyghase dynamics [2,7,8]. In particular, large amplitude
the subject of several theoretical and experimental inescillations are observed, occasionally drivingx, ¢) to
vestigations [1]. In spite of remarkable progress, a stillzero, in which case the phase is no longer well defined
unresolved problem concerns the possibility to describ@nd v is not conserved. The vanishing of the amplitude
nonequilibrium phase transitions with concepts borrowedletermines a so-called space-time defect. The density of
from statistical mechanics [1—4]. The complex Ginzburg-defectsép is a good order parameter to characterize the
Landau equation (CGLE) is one of the most appro-ransition from the DT to the PT phase; in fact, its value
priate models to study such transitions, because it iss >0 in the DT regime, while it vanishes approaching the
universal [1,5] and experimentally relevant [6]: the dy-PT phase [2,4]. Conversely, none of the other parameters
namics of extended systems undergoing a Hopf bifurcaintroduced so far (e.g., phase and amplitude correlations
tion from a stationary to an oscillatory state is describedengths, or the Kaplan-Yorke dimension density) reveals a
by the CGLE [7]. Moreover, several physical, chemical,clear signature of the transition [3,4].
and biological phenomena can be well reproduced through In the PT regime, a relevant parameter to characterize a
the CGLE [1]. Even in one dimension the CGLE displaysstate of the CGLE is the value ef, which is a conserved
a variety of dynamical regimes and phase transitions [2-quantity in the absence of defects. For each value of
4,7-9]. Among them much attention has been devoted < 1 there exists a plane-wave solution of the CGLE
to the transition between two different types of chaotic _ 1 _ 2 .
phases [2-4,7,8]: namely, the phase-turbulent (PT) and Al 1) L= viexi(vx + Qon, )
defect-turbulent (DT) regimes. However, this transitionwhere Qo = c3 — (¢ + ¢3)»>. Below the BFL, these
has been mainly studied from the DT side [2—4]. solutlons are stable against Iong—wavelength instabilities

This Letter focuses on the PT regime and in particulafor »> < (I — c¢jc3)/[2(1 + ¢3) + 1 — cje3] [5], while
on the introduction of an order parameter for the abovdhey turn out to be all unstable in the PT regime. How-
mentioned transition. To be more specific, let me writeeVer, it is reasonable to expect that differentalues will
the one-dimensional CGLE as characterize distinct classes of chaotic or quasiperiodic so-

_ . . ) lutions also in the PT phase. Nevertheless, the majority

A= +ic)Au + A= (0 —ic)|AFA, (1) of analyses reported in literature has been devoted to so-
where the parameters andc; are real positive numbers, |utions withy = 0.
and A(x, 1) = p(x,r)exdiy(x,1)] is a complex field of In this Letter, | determine the maximal valug, of the
amplitude p and phasey. Of particular interest in  conserved phase gradient in statistically stationary states,
the (c1,c3) plane is the so-called Benjamin-Feir line j.e., in the limit L — » andt — . | shall argue that
(BFL) defined byc; = 1/¢;, which identifies the linear this can be used as an order parameter, wjth= 0 in
stability limit for the plane-wave solutions of (1) [5]. the DT regime, withvy, > 0 in the PT state, and with
The PT regime is encountered just above the BFL (i.e.a smooth change at the transition lihg. Moreover, a
for c3 > 1/cy) [7]. In this state the chaotic behavior Lyapunov analysis reveals that for increasingvalues
of the field is essentially ruled by the dynamics ofthe solutions are less and less chaotic. This behavior can
the phase. Moreover, the amplitude is always boundegle explained assuming that the phase dynamics is ruled
away from zero, accordingly; the average phase gradiemdy a modified Kuramoto-Sivashinsky equation (MKSE)
v=r1 fo dx 0,(x, 1) is conserved for periodic boundary [7,10-12]. For reasonably highvalues traveling pulse-
conditions [7]. Another important line () separates the train solutions are found to be stable. The main parame-
PT state from a more chaotic phase: the DT regime. Iners characterizing such solutions can be derived from the
this state, amplitude dynamics becomes predominant ovebove mentioned MKSE.
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The analysis reported here is limited to a parameter rerom the defect density reported in literature [2,4], as
gion where it is known that the CGLE shows a continu-well as with our own measurements 6§, which give
ous transition from the PT to the DT regime [2,4], namely,c3 = 0.755 *+ 0.002 [13,15].
¢y = 3.5andc; = 1/c;. The integration scheme adopted As a further characterization of these solutions, |
here is a time splitting code where the integration of thehave evaluated the maximal Lyapunov expongpt for
spatial derivatives is not performed, as usual, in Fourieseveral values ofc; and v. | noticed multistability
space, but instead is computedirspace through a con- for » > 0, i.e., several coexisting attractors for each
volution integral [13,14]. The adopted integration param-value, different attractors being characterized by different
eters are spatial resolutielx = 0.5, integration time step Lyapunov exponents. However, a characteristic common
dt = 0.05, number of grid point&y = L/dx rangingfrom to all these initial conditions considered is thaj,
2048 up to 8192, and periodic boundary conditions. tends to decrease with increasing except for small

In order to study solutions with a nonzero value offluctuations (see Fig. 2). In particular, fos =< 0.5 and
v, an initial state withv # 0 has been prepared and its for sufficiently high values ofv, nonchaotic states are
evolution followed. Because of the absence of defectéound. Two different kinds of nonchaotic states have
in the PT regime,» should be conserved, at least for been observed: the former (type is spatially periodic
small initial values. | have numerically verified that with spatial wave vectorg = v, formed of identical
is indeed conserved for all values below an upper limit‘pulselike” structure of lengthLp, = 27 /v; the latter
vy. Forv > py defects eventually arise leading, after (type 8) shows essentially periodic regions separated by
a readjusting time, to & value smaller than,,. This domains in whichp is constant and the phase decreases
behavior can be understood by observing that the minimdinearly (see Fig. 3). The selection of these patterns
p value decreases continuously for increasingintil, for  depends on the initial conditions. Numerically | found
v > vy, the amplitude can eventually vanish with the that all nonchaotic solutions are of the form
consequent emergence of defects. In order to evaluate . i(vxt ot
the maximal phase gradient accurately, the conservation Alx,1) = hx = wr)e!t*7e0, 3
of eachvy value reported in Fig. 1 has been checkedwhere h(£) = p(&)exdigo(£)] is in general complex.
considering from 50 to 70 different initial conditions. Amplitude and phase can be written as
In particular, each configuration has been followed for
a timer = 10000, after a reasonably long transient had ple,t) = p&), P, 1) = (&) + ot + vx, (4)
been discarded. Moreover, for each examinedialue,  with ¢ = x — vr.

some trajectories have been followed for longer times, For spatially periodic patterns, the elementary pulses of

typically of the order oft = 150000. No dependence of |ength L, are a stable solution of the CGLE for a short
vy on L has been observed, considering chain lengths

from L = 1024 up to L = 4096. Figure 1 shows a
roughly linear decrease afy, for increasing values of

c3. Alinear fit of the data givesy = —0.74c3 + 0.57. 1.0
Assuming that the linear behavior extends up to fhe ) Ay [1 0‘2]
line, a critical valuec; = 0.76 * 0.03 is obtained. This M
result is in reasonable agreement with the values obtaine®® |
0.6
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FIG. 2. Maximal Lyapunov exponents versus the phase gradi-
ent v for two different sets of initial conditions for; = 0.5.

0'00_3 0.4 0.5 0.6 0.7 0.8 The two initial conditions correspond to states with phase gra-
dient » and with noise added only on the amplitude (circle) or
FIG. 1. Maximal phase gradient,, as a function of the added on both amplitude and phase (asterisks). The data have
parameterc; (circle). The values foryy, are also shown been obtained for system siZe = 1024 and for integration
(squares). The solid line represents a linear fit for#fedata.  timest: = 130000—250 000.
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As a final point, | explain whyA,, decreases with

o r ' ' ' " p 20 : . . .
increasingv. This can be done by recalling that just
I ~40  above BFL the dynamics is essentially ruled by the
: : : : -6.0 phase behavior, since the amplitude can be considered

as a “slaved” variable of the phase [7,8,12]. A phase

L b__| 0.95 modulation ¢(x,7) = ¢(x,1) — vx = o(£) + wt on
the plane-wave solution (2) satisfies a MKSE [11],
. ; . . (1) (2

0 ¢ = Q0+ 00d + 00+ Q5 (0:4)

o ' l I a +Q38i¢ + le)ai(ﬁ + Q£2)3x¢a;¢ =0, (5)
\/\/\/V\/\j 25 where Q; = 2v(c; + c3), Qél) = cic3 — 1, ng) =
: : : 3.5 c1 + ¢35, Q3 = 2ve1(1 + ¢3), Qf;l) =31 + ¢3)/2,and
o ' ' ' " ,a, 105 Qf = 2¢1(1 + ¢3). In order to check the validity of
W\M\/\M\/L\MW 0.95 Eq. (5) for the dynamics of the phase for the CGLE in
the PT regime, | derive from Eq. (5) an expression for the

0 100 200 x 300 200 508  velocity v and the frequencw of the traveling solutions
d(3). Following [11], | obtain

FIG. 3. Phase and amplitude for the two kinds of observe 2) ) @, 9, o
nonchaotic solutions: (a) solution of type with c¢; = 0.5 0 = Qo — Q3 ((Ieh0)™) + Qq {(9gh0)") (6)
and » = 0.184; (b) solution of typeB with ¢; = 0.35 and )

v = 0.307. ! v =0 + [Q ((0g0)) — Q3((0340))

+ PPt ) e, (7)

where(-) is the average along the chain and over several
chain of lengthL. = L and with a phase gradiem{ =  consecutive realizations. The two expressions can eas-
2w /Lp, i.e., the minimal nonvanishing phase gradient forily be obtained by noticing that for a solution of type
such a periodic system. These traveling pulses originatét) the temporal derivative of the phase can be written
through a bifurcation from the plane-wave solutions (2).as¢ = w — vdgo(£), while 9, ¢ (x) = dgpo(£). Sub-
Moreover, they are stabilized in short systems, because afituting the temporal derivative into Eq. (5) and aver-
the long-wavelength instability cutoff. A more extensive aging both sides of the equation leads to Eq. (6). To
and detailed study of these short-chain solutions will beobtain Eq. (7) both sides of Eq. (5) should be multi-
reported elsewhere. Here, | want just to point out thaplied by d:¢0(£) before averaging. Several quantities
solutions with a conservedyr are no longer observable appearing in Eq. (5) have zero average due to the peri-
below a minimal lengthL,,;,. The corresponding phase odic boundary conditions. Therefore the final expressions
gradientvy = 27 /Ly, is an upper bound fow,, as for o andv are drastically simplified. By inserting the
shown in Fig. 1. For increasing;, the valuer,, is better  phase values obtained from simulations of the CGLE into
and better approximated byy,. A naive explanation of Eqgs. (6) and (7), a very good agreement with the mea-
this fact can be given by assuming that, in the proximitysured quantities is indeed achieved (see Table I). Never-
of vy, only stable solutions of typer are observed. theless, | expect that the phase description (5) will become
For these solutions the minimal value of the spatialless and less accurate approachingithdine and will fi-
period is obviouslyL,;, and the maximal possible phase nally break down when the amplitude dynamics becomes
gradientvy. However, in the limity — vy, forc; = 0.5 predominant. However, | have verified that in the whole
solutions of typex coexist with those of typ@, while for ~ examined parameter interval the amplitude dynamics is
¢z > 0.5 slightly chaotic solutions, formed by an array essentially ruled by the phase, except when defects arise.
of elementary pulses of different lengths = L,, are Assuming that Eq. (5) describes sufficiently well the
observed. All these facts imply that = vy,. dynamics of the CGLE phase, let me now explain

TABLE I. The parameters characterizing the stable solutions (3), namely, the propagation velecity the frequency, are
reported for variousy values. The values are estimated using expressions (6) and (7). In parentheses are the values measured
directly from the traveling waves solutions. All data refercto= 0.5, except where noted.

14 w v 14 w v
0.123 0.428 (0.427) 1.26 (1.24) 0.123 0.428 (0.424) 1.06 (1.09)
0.184 0.355 (0.341) 1.59 (1.65) 0.184 0.344 (0.338) 1.58 (1.63)
0.245 0.229 (0.223) 1.93 (1.98) 0.282 0.074 (0.070) 2.37 (2.34)

aSolutions corresponding to different initial conditions, but with the same
bData wherec; = 0.4.
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