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Abstract

The transition from phase chaos to defect chaos in the complex Ginzburg–Landau equation (CGLE) is related to saddle-node
bifurcations of modulated amplitude waves (MAWs). First, the spatial periodP of MAWs is shown to be limited by a maximum
PSN which depends on the CGLE coefficients; MAW-like structures with period larger thanPSN evolve to defects. Second,
slowly evolving near-MAWs with average phase gradientsν ≈ 0 and various periods occur naturally in phase chaotic states
of the CGLE. As a measure for these periods, we study the distributions of spacingsp between neighbouring peaks of the
phase gradient. A systematic comparison ofp andPSN as a function of coefficients of the CGLE shows that defects are
generated at locations wherep becomes larger thanPSN. In other words, MAWs with periodPSN represent “critical nuclei”
for the formation of defects in phase chaos and may trigger the transition to defect chaos. Since rare events wherep becomes
sufficiently large to lead to defect formation may only occur after a long transient, the coefficients where the transition to
defect chaos seems to occur depend on system size and integration time. We conjecture that in the regime where the maximum
periodPSN has diverged, phase chaos persists in the thermodynamic limit. © 2001 Published by Elsevier Science B.V.

PACS:05.45.Jn; 03.40.Kf; 05.45.−a

Keywords:Phase chaos; Defect chaos; Complex Ginzburg–Landau equation; Coherent structures

1. Introduction

The transition fromphaseto defect chaosfor the
one-dimensional complex Ginzburg–Landau equation
(CGLE) was recently related to the bifurcation prop-
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erties of a family of coherent structures called modu-
lated amplitude waves (MAWs) [1]. In this paper, the
relationship between MAWs and large scale chaos is
studied in detail, providing a comprehensive descrip-
tion of various aspects of the CGLE chaotic dynamics.

When a spatially extended system is driven suffi-
ciently far away from equilibrium, patterns can eventu-
ally form [2,3]. In many cases, these patterns show an
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erratic behaviour in space and time: such behaviour is
commonly referred to asspatiotemporal chaos[2–5].
Examples of extended systems displaying such chaotic
dynamics in one spatial dimension include: heated
wire convection [6], printers instability and film drag
experiments [7], eutectic growth [8], binary convec-
tion [9], sidewall convection [10] , the far field of spi-
ral waves in the Belousov–Zhabotinsky reaction [11],
the Taylor–Dean system [12], hydrothermal [13] and
internal [14] waves excited by the Marangoni effect
and the oscillatory instability of a Rayleigh–Bénard
convection pattern [15].

Near the pattern forming threshold, the dynamics
of such systems can often be described by so-called
amplitude equations. When the pattern forming bifur-
cation from the homogeneous state is a forward Hopf
bifurcation, the appropriate amplitude equation is the
CGLE [2,3], which in one spatial dimension reads as

∂tA = A + (1 + ic1)∂
2
xA − (1 − ic3)|A|2A, (1)

wherec1 andc3 are real coefficients and the fieldA =
A(x, t) has complex values.

For different choices of the coefficients numerical
investigations of the CGLE have revealed the existence
of various steady and spatiotemporally chaotic states
[1–5,15–26]. Many of these states appear to consist
of individual structures with well defined propagation
and interaction properties. It is, thus, tempting to use
these structures as building blocks for a better under-
standing of spatiotemporal chaos. In this paper, we
will essentially follow such an approach.

As a function of the coefficientsc1 and c3, the
one-dimensional CGLE (1) can exhibit two qualita-
tively different spatiotemporal chaotic states known
as phase chaos (when the modulus|A| is at any time
bounded away from zero) and defect chaos (when|A|
can vanish leading to phase singularities). It is under
dispute whether the transition from phase to defect
chaos is sharp or not, and if a pure phase-chaotic, (i.e.
defect-free) state can persist in the thermodynamic
limit [21,27]. We will address these issues by suggest-
ing a mechanismfor the formation of defects related
to the range of existence of MAWs.

The main points of this paper are outlined in the
following and illustrated in Figs. 1 and 2. (i) Our in-

vestigation starts with the study of MAWs, which are
uniformly propagating, spatially periodic solutions of
the CGLE. These MAWs are parameterised by the av-
erage phase gradientν and their spatial periodP . Our
study is confined to the caseν = 0 for reasons speci-
fied below. Spatial profiles and the stable propagation
of a particular MAW are presented in Fig. 1(a)–(c).
Isolated MAW structures consisting of just one spa-
tial period P play an important role in defect for-
mation. In particular, for fixed CGLE coefficients the
range of existence of coherent MAWs is limited by
a saddle-node (SN) bifurcation which occurs whenP

reaches a maximal periodPSN. (ii) If the MAWs are
driven into conditions withP > PSN a dynamical
instability occurs leading to the formation of defects
(Fig. 1(d)). (iii) Slowly evolving structures reminiscent
of MAWs (“near-MAWs”) are observed in the phase
chaotic regime (Fig. 1(e) and (f)). In order to charac-
terise such states, we have examined the distribution
D(p) of spacingsp between neighbouring peaks of
the phase-gradient profile. In particular, for sufficiently
long spacingp, the observed phase chaos structures
are often very similar to a single period of a coherent
MAW (Fig. 1(f)). (iv) When a phase chaotic state dis-
plays spacingsp larger thanPSN, phase chaos breaks
down and defects are formed (e.g. att = 400,x = 360
in Fig. 1(i)). Thus, the MAW withP = PSN may be
viewed as a “critical nucleus” for the creation of de-
fects. In phase chaos defect formation is similar to the
dynamical process by which isolated MAW structures
generate defects (Fig. 1(d)). Therefore, purely phase
chaotic states are those for whichp remains bounded
belowPSN (Fig. 1(g)), while defect chaos can occur
when p becomes larger thanPSN (Fig. 1(i)). (v) A
more detailed study of the probability distribution of
thep shows that for largep the probability decays ex-
ponentially (Fig. 1(h) and (j)). As long asPSN has a
finite value, we expect that, possibly after a very long
transient time, defects will be generated. (vi) How-
ever, in a finite domain of the phase chaotic region,
MAWs of arbitrarily largeP exist: we expect that in
this region, even in the thermodynamic limit, phase
chaos will persist. Fig. 2 shows the main quadrant of
the CGLE coefficient space. The region of persistent
phase chaos is bounded by the Benjamin–Feir–Newell
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Fig. 1. Summary of our main results which constitute a picture for the formation of defects from phase chaotic states. (a and b) Example
of a coherent structure: phase gradient and modulus of a periodP = 30 MAW at c1 = 0.6, c3 = 2. (c) Space time plot showing the stable
propagation of the MAW from (a and b) in a small system of sizeP with periodic boundary conditions. Subsequent space time plots
also show the phase gradient encoded in grey-scale (minima appear dark, maxima bright). (d) The same MAW as initial condition creates
defects atc1 = 0.7, c3 = 2 whereP > PSN = 26.8. Black bars above thex-axis denote the size ofPSN specific to the parameters of the
panel. (e, g and h) Large scale chaos atc1 = 0.63, c3 = 2, L = 512. (e) Snapshot of the phase gradient profile with individual inter-peak
spacingsp. (g) Space time evolution of phase chaos and (h) distributionD(p) showingp � PSN and no defects. A transient oft ≈ 104

is not shown. (f, i and j) Large scale chaos atc1 = 0.65, c3 = 2, L = 512. (f) Snapshot of the phase gradient profilet = 120 before
the first defect forms and the MAW (dotted,P = PSN) overlaid onto the long structure. (i) Transient phase chaos with a fast and long
structure travelling through the system which eventually nucleates defect chaos att = 400, x = 360 (a transient oft ≈ 104 is not shown).
A snapshot of this structure was shown in (f). (j) The tail of the distribution ofp reachesp > PSN due to the long structure; this leads
to the break down of phase chaos. The distributionD(p) shown in (h) is also reported (dashed line). From the comparison of the two it
is evident that the distributions do not modify dramatically whenc1 is increased, whilePSN decreases noticeably.

curve (thin dot-dashed) and the curve along which
PSN → ∞ (full curve in Fig. 2).

The outline of this paper is as follows: Section 2 is
devoted to the study of the coherent MAW structures.
In Section 2.2, we study the bifurcation diagram of
the MAWs, starting from the homogeneous oscil-
lation. In Section 2.3, the incoherent dynamics of
near-MAW structures is presented. We show that for
p > PSN, i.e. beyond the saddle-node bifurcation,

near-MAWs evolve to defects. To illustrate the ori-
gin of the saddle-node bifurcations in Section 2.4,
we compare bifurcation diagrams of coherent struc-
tures for different phase gradient expansions of the
CGLE. For the lowest order expansion (known as the
Kuramoto–Sivashinsky equation [2]) the saddle-node
bifurcation is absent while it is captured by expan-
sions of higher order. This explains why the diver-
gence of the phase gradient was exclusively observed
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Fig. 2. Phase diagram of the CGLE, showing the Benjamin–Feir–Newell curve (thin dot-dashed) where the transition from stable
homogeneous oscillations to phase chaos takes place. The curvesL1 (long dashed),L2 (thin dashed) andL3 (dashed) as obtained in [17,19]
separate the various chaotic states. The filled circles correspond to our estimates of theL1 andL3 transitions based on direct simulations of
the CGLE along the 17 cuts in coefficient space that we studied. The open circles correspond to the location in coefficient space where the
maximal inter-peak spacingpmax is equal to the maximal MAW periodPSN. Only small discrepancies between these two can be observed.
Finally, the full curve shows thePSN → ∞ limit which we conjecture to be a lower boundary for the transition from phase to defect chaos.

in simulations [20] of higher order expansions. In
Section 3, we study various aspects of spatiotemporal
chaos in the CGLE, and relate the observed contin-
uous (L1) and discontinuous (L3) transitions (see
Fig. 2) to properties of the MAWs.The transition to
defect chaos takes place when near-MAWs with peri-
ods larger thanPSN occur in a phase chaotic state.
In Section 3.4, the typical values ofp in the phase
chaotic regime are related to the competition of two
instabilities of the MAWs, and it is possible to give a
good estimate for the numerically measured transition
from phase to defect chaos from these considerations.
A discussion of the presented results and some final
remarks are reported in Section 4.

2. Modulated amplitude waves

In this section, we study the main properties of
MAWs [1]. First, in Section 2.1, the coherent struc-
ture framework that we use to describe the MAWs is
introduced. The bifurcation diagram of MAWs is ex-
plored in Section 2.2, with a particular focus on the

saddle-node bifurcations that limit the range of exis-
tence of MAWs. In Section 2.3, we study the nonlin-
ear evolution of near-MAWs that are “pushed” beyond
their saddle-node bifurcation and show that this leads
to the formation of defects. Finally, in Section 2.4,
a bifurcation analysis of MAW-like coherent struc-
tures is performed in variousphase equationsthat
have been proposed as approximated models for the
phase chaotic dynamics of the CGLE, and we show
that only higher order phase equations reproduce the
saddle-node bifurcation.

2.1. Coherent structures

Coherent structures in the CGLE are uniformly
propagating structures of the form

A(x, t) = a(x − vt)eiφ(x−vt) eiωt , (2)

wherea andφ are real-valued functions ofz := x −
vt. Coherent structures have been studied extensively
[23–25] and play an important role in various regimes
of the CGLE [16,22–25].
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Fig. 3. Examples of ODE solutions and corresponding amplitude and phase gradient profiles of MAWs. (a) Homoclinic orbit forc1 = 0.55
andc3 = 2. (b and c) Corresponding profiles. (d) Periodic orbit forc1 = 0.60, c3 = 2 andP = 30. (e and f) Corresponding profiles. Dots
in (a and d) denote the unstable fixed point (1, 0, 0) from which these orbits emerged.

The restriction to uniformly propagating structures
reduces the CGLE to a set of three coupled ordinary
differential equations (ODEs).1 These ODEs are read-
ily found by substitution of Ansatz (2) into the CGLE
(1) and read as:

az = b,

bz =ψ2a − γ−1[(1 − c1ω)a + v(b + c1ψa)

− (1 − c1c3)a
3],

ψz = −2bψ/a + γ−1[c1 + ω + v(c1b/a − ψ)

− (c1 + c3)a
2], (3)

whereb := az, ψ := φz, andγ := 1 + c2
1. Solutions

of the ODEs (3) correspond to coherent structures of
the CGLE.

The simplest relevant solutions of these ODEs are
the fixed points given by(a, b, ψ) = (

√
1 − q2,0, q);

these correspond to plane wave solutions of the CGLE
whereA(x, t) =

√
1 − q2 expi(qx + ωt) and ω =

1 By substitutingκ := az/a one reproduces the form of the ODEs
used in [24] which is more appropriate for studies of fronts.

c3 − q2(c1 + c3). An example of more complex so-
lutions of the ODEs (3) are heteroclinic orbits which
correspond to coherent structures that asymptotically
connect different states. Examples of such structures
are fronts that connect nonlinear plane waves to the ho-
mogeneous stateA = 0 [24] and Nozaki–Bekki holes
that connect plane waves of different wave numberq

[24,28].
Here we present an extensive study of the struc-

tures that are associated with theperiodic orbitsof
the ODEs (3).2 These periodic orbits correspond to
spatially periodic solutions of the CGLE that we have
already referred to as MAWs (Fig. 3). For appropri-
ate choices ofc1 andc3, the periodP of these MAWs
can be made arbitrarily large, and in this limit the
periodic orbits approach a homoclinic orbit connect-
ing the stable and unstable manifold of one of the
plane wave fixed points (Fig. 3(a)). Some of these

2 For completeness, we point out that the ODEs (3) also contain
complicated multi-loop orbits that correspond to more complex
coherent structures which have a small basin of attraction and
little relevance for the dynamics of the CGLE.
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infinite period MAWs have also been referred to as
“homoclinic” holes, and have been studied extensively
recently [25,29]; they are qualitatively different from
the well-known Nozaki–Bekki holes [28].

Even if the coefficientsc1 andc3 are fixed, MAWs
are not uniquely determined. Counting arguments,
similar to those developed in [24], yield that in general
we may expect a two-parameter family of solutions.
Let us first perform the counting for the homoclinic
orbits. As shown in [25], these orbits connect the
one-dimensional unstable manifold of a fixed point
with its two-dimensional stable manifold. In general,
one needs to satisfy one condition to make such a
connection, in other words, such a homoclinic orbit
is of codimension one. Since the coherent structure
Ansatz (2) has two freely adjustable parameters (ω

andv), we therefore, expect a one parameter family
of homoclinic orbits.

The situation for the periodic orbits of the ODEs is
even simpler. Periodic orbits are of codimension zero
in parameter space, and so we expect a two parameter
family of periodic orbits. In other words, if we have
found a periodic orbit for certain values ofv andω,
then we expect this periodic orbit to persist for nearby
values of the parametersv andω.

Obviously, we can parameterise this family of co-
herent structures byv andω, but this is not very in-
sightful. Instead, we will use the following two quan-
tities that are more directly accessible in studies of the
CGLE: the spatial periodP of the MAWs, and their
average phase gradientν := (

∫ P

0 φx dx)/P . Note that
for homoclinic holes,P simply goes to infinity; thus,
homoclinic and periodic orbits are members of a sin-
gle family.

The multiplicity of the MAWs can also be obtained
by considering the instability of the plane wave so-
lutions from which the MAWs emerge [30] (see Sec-
tion 2.2). The plane waves form a one-parameter (q)
family and undergo the well-known Eckhaus instabil-
ity when the coefficientsc1, c3 are increased beyond
certain critical values which depend onq. In the un-
stable regime, a plane wave with wave numberq is
unstable to a whole band of perturbations with wave
numbersk ∈ [0, kmax(q)] [4]. For finite systems of
sizeL, this instability, thus, only appears whenL >

Lmin = 2π/kmax. Therefore, for eachq there is a
unique one-parameter (L) family of perturbations that
can render the plane wave unstable and at each of
the corresponding bifurcations a new MAW solution
emerges. Hence also by this line of reasoning MAWs
form a two-parameter family.

2.2. Bifurcation scenario for MAWs

The general counting arguments given in the previ-
ous section do not provide information on the range
of existence of MAWs as a function of the coefficients
c1 andc3 and the parametersν andP . Here we will
focus our analysis on theν = 0 case since this is most
relevant for the transition to defect chaos;3 theν �= 0
case will be treated elsewhere [31].

All bifurcation computations have been performed
with the aid of the software package AUTO94 [32].
AUTO94 can trace MAW solutions through parameter
space, and when it detects bifurcations it can follow
the newly emerging branches. AUTO94 discretises
the ODEs (3) on a periodic domain of lengthL, and
L will play the role of the periodP of the MAWs.
Control of the average phase gradientν = ν0 is im-
plemented via the integral constraint

∫ L

0 ψ dz = Lν0.
Since periodic boundary conditions result in transla-
tional invariance, we introduce an additional “pinning”
condition az(0) = 0 in order to obtain unique
solutions.

Under these conditions, the continuation procedure
works as follows. First of all,ν andP are set to fixed
values, and throughout this paper we will setν =
0. Starting from a known solution such as a plane
wave or a coherent structure obtained by other means,
AUTO94 is set up to trace the MAWs along trajectories
in c1, c3 space, while calculating the parametersω and
v of these MAWs.

3 The maximal “conserved” (during time evolution) average
phase gradient vanishes approaching the transition to defect chaos
[22,23]. This result is rigorous only on scales of the system size
but for smaller portionsν can fluctuate around 0. Typically, we ob-
serve quasi-coherent structures (near-MAWs) in the phase chaotic
regime with associateν-values in the interval [−0.01,+0.01].
MAWs with such smallν do not deviate much from theν = 0
MAWs [31], therefore, the comparison of the observed structures
with the ν = 0 MAWs is satisfactory.
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Fig. 4. Bifurcation diagrams for fixedc3 = 2 andP = 30, showing Hopf (filled square), drift pitchfork (open diamond) and saddle-node
(triangle) bifurcations. The dot-dashed line represents the homogeneously oscillating solution of the CGLE, while lower and upper branch
MAWs are represented by full and dashed curves, respectively. (a) Overview of the maximum phase gradient of the MAWs as function
of c1, (b) close-up, (c) the minimum of|A|, and (d) the velocityv. For details see text.

The results of our bifurcation analysis are sum-
marised in Fig. 4. Whenc1 or c3 is increased, the uni-
formly oscillating state of the CGLE (A(x, t) = eic3t )
becomes unstable via a Hopf bifurcation, from which
stationary MAWs emerge (Section 2.2.1). These sta-
tionary, left–right symmetric solutions undergo a drift
pitchfork bifurcation, which leads to left and right

Fig. 5. (a) Phase gradient, and (b) amplitude profiles of a lower branch (full curve) and upper branch (dashed curve) MAW, obtained for
c1 = 0.6, c3 = 2, P = 30.

travelling MAWs (Section 2.2.2, see also Fig. 4(b));
as discussed later, these are the solutions relevant
for the dynamics in the phase chaotic regime. Fol-
lowing these branches of travelling MAWs, we en-
counter a saddle-node bifurcation where an “upper”
and “lower” branch of MAWs merge (Section 2.2.3,
see also Fig. 5); this bifurcation limits the range of
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existence of MAWs and is closely related to the for-
mation of defects. The upper branch MAWs can be
continued back to negative values ofc1, where they
terminate in a solution consisting of a periodic array of
shocks and stationary Nozaki–Bekki holes [28]. Up-
per branch MAWs withP → ∞ have been studied
under the name homoclinic holes [25,29].

It should be noted that, without loss of generality,
we focus here on solutions withv > 0, for which
the main peak of the phase gradient profile is positive
(see Fig. 5). Solutions withv < 0 can be obtained
from right moving MAWs by applying the mapping
x → −x, z → −z, v → −v, az → −az, φz → −φz.

2.2.1. Benjamin–Feir instability—Hopf bifurcation
Since the average phase gradientν is conserved

across bifurcations, we start the continuation proce-
dure from the uniformly oscillating solutionA(x, t) =
eic3t that hasν = 0. On an infinite domain this uni-
formly oscillating solution becomes unstable via the
so-called Benjamin–Feir instability whenc1c3 ≥ 1
[3]. In a finite domain of sizeL, the onset of this insta-
bility is shifted to higher values of the productc1c3; 4

this finite size effect is relevant for our studies since
the spatial periodL = P is fixed in the continuation
procedure.

In the ODEs (3), the fixed point(a, b, ψ) =
(1,0,0) corresponds to the homogeneously oscillat-
ing solution. For given values of the periodP , this
fixed point undergoes a Hopf bifurcation at values of
c1 andc3 where in the CGLE (1) the mode with wave
number 2π/P becomes unstable (see footnote 4).

4 The linear stability analysis of the uniformly oscillating solu-
tions A0(x, t) = eic3t , can be performed by considering the fol-
lowing perturbed solutionA(x, t) = (1 + a(x, t))eic3t [4]. Where
a(x, t) = ∑

k ak eikx+λk t with λk = σk + iΩk . It is straightforward
to show that the real part of the growth-rateσk is, up to fourth
order in k, given by

σk ∼ −(1 − c1c3)k
2 − 1

2(1 + c2
3)c

2
1k

4.

From this expression it is clear thatσk > 0 only if c1c3 > 1 (this
is nothing else than the Newell criterion). Moreover, there exists
a critical valuek2

0 = [2(c1c3 − 1)]/[c2
1(1 + c2

3)] above whichσk
is always negative. For finite size systems, the smallest allowed
wave vector iskmin = 2π/L, therefore, the uniform oscillation
becomes unstable forkmin ≤ k0 and this condition allows to derive
the corresponding critical values of the parametersc1 and c3.

This Hopf bifurcation was analytically shown to be
supercritical for sufficiently smallν and largeP in
earlier studies [15,30]; our numerical results are con-
sistent with this. For finiteP , the solution bifurcating
from the fixed point is a periodic orbit which ap-
proaches a homoclinic orbit in the limitP → ∞.
The solutions of the CGLE that correspond to these
orbits are stationary, reflection symmetric MAWs; an
example of these is shown in Fig. 9(a).

2.2.2. Drift pitchfork bifurcation
When the CGLE coefficientsc1 and/orc3 are in-

creased further, the stationary MAW undergoes a
drift pitchfork bifurcation [33] from which two new
branches of asymmetric (v �= 0) MAWs emerge
(see Fig. 4(b)); one of these moves to the left,
one to the right. The locations of both the Hopf
and the drift pitchfork bifurcation approach the
Benjamin–Feir–Newell curve for largeP (Fig. 6(a)),
while for smallerP the drift pitchfork occurs for
increasingly larger coefficientsc1 and c3. However,
only when these coefficient lie in the range shown as
the shaded area in Fig. 6(b), the pitchfork bifurca-
tion can occur. Otherwise, only stationary MAWs are
found. For increasingc1 andc3 these MAWs become
pulse-like and finally approach the solitonic solutions
of the nonlinear Schrödinger equation [24] (Fig. 6(c)
and (d)).

For the caseν �= 0 [31], the initial plane wave al-
ready breaks the reflection symmetry, the initial MAW
has nonzero velocity and the drift pitchfork bifurca-
tion is replaced by its typical unfolding [34].

2.2.3. Saddle-node bifurcation
Along the branch of right travelling MAWs that we

described above, the maximum of the phase gradient
grows with increasingc1 and c3 until a SN bifurca-
tion is reached, where these MAWs merge with an-
other branch of MAW-like solutions. To distinguish
these branches we refer to them as the “lower” and
the “upper” branch; e.g. see Figs. 4 and 8. The lower
branch MAWs are the key to understand more of the
phenomenology of phase chaos. The upper branch
MAWs can, similarly to the lower branch MAWs, be
parameterised byν andP , but for the same parame-
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Fig. 6. (a) Location of Hopf (dashed curve) and drift pitchfork bifurcation (dotted curve) inc1, P space forc3 = 2.0. (b) The shaded area
reported in thec1, c3 coefficient space indicates where the drift pitchfork bifurcation does occur. The thick full curve in (a and b) indicates
the Benjamin–Feir–Newell instability for infinite domains. (c) Example of a bifurcation diagram for large values of the coefficientsc1 = 10,
c3 = 5 where the drift pitchfork bifurcation does not occur. For increasingP the MAW solutions approach regular arrays of stationary
pulses; an example of such a pulse is shown in (d) forP = 30.

ters, they present more pronounced modulations (see
Fig. 5).

The most important aspect of the saddle-node bi-
furcation is that it limits the range of existence of
MAWs, since we will show that this limit is respon-
sible for the transition from phase to defect chaos.
Fixing ν = 0, the locations of these bifurcations form

Fig. 7. Locations of the saddle-node bifurcations in thec1, c3 plane (a) and theP , c1 plane (b). BFN denotes the Benjamin–Feir–Newell
curve.

a two-dimensional manifold in the three-dimensional
space spanned byc1, c3 and P . In Fig. 7(a) the
saddle-node curves are shown in thec1, c3 coefficient
plane for a number of fixed periodsP ; for largerP ,
the values ofc1, c3 where the bifurcation takes place
decrease. In Fig. 7(b) the saddle-node curves for a
number of fixed values ofc3 are shown in theP ,
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Fig. 8. Illustration of the relation between MAW structures and phase chaos forc1 = 0.65, c3 = 2. Both for MAWs and for an extended
profile obtained from a phase chaotic state one can extract the values of subsequent phase gradient peaks (vertical axis) and their inter-peak
spacing (horizontal axis). The curves show the bifurcation diagram for the lower branch (LB) MAWs and upper branch (UB) MAWs
while the shaded area indicates the typical values for near-MAW structures that occur in phase chaos. Full (dashed) curves denote stable
(unstable) solutions for system sizeL = p. Arrows show the typical evolutions of near-MAWs. The coefficients here are equal to those
in Fig. 1(f), (i) and (j) and for this case we have found that phase chaos is only a long lived transient: the shaded area reachesPSN just
before defects appear.

c1 plane; for largerc3 (c1), the saddle-node occurs
for smaller values ofP and c1 (c3). 5 Once the co-
efficientsc1 and c3 are fixed, we definePSN as the
period for which the saddle-node bifurcation occurs.
Note that there is also a range of coefficientsc1 and
c3 (between theP → ∞ andc1c3 = 1 curve where
the saddle-node bifurcation doesnot occur.

2.3. Evolution of perturbed MAWs

In this section, we will show that many basic as-
pects of the phenomenology of the CGLE can be un-
derstood from a typical bifurcation diagram of MAWs
such as shown in Fig. 8. We have chosen fixed co-
efficientsc1 = 0.65 andc3 = 2 and varied the spa-
tial periodP of MAWs that exist at these coefficients.
Three families of solutions are represented: the ho-
mogeneous oscillation, the lower branch (LB) and the
upper branch (UB) MAWs. The shaded area schemat-
ically indicates the near-MAW structures observed in

5 An exception on this rule occurs for largec1, where the de-
pendence ofc3 on P at the saddle-node becomes non-monotonic.

phase chaotic states such as shown in Fig. 1(f), (i) and
(j). The arrows in Fig. 8 represent the dynamical evo-
lution of perturbed MAWs, and their direction can be
obtained by performing a linear stability analysis.

Linear stability: As discussed in Section 2.2, the
homogeneous solution is stable against short wave-
length perturbations (arrow 1), and turns unstable via
the Hopf bifurcation that also generates the lower
branch MAWs (arrows 2). As discussed in [25,29],
upper branch MAWs have at least one unstable eigen-
value, and the dynamical evolution of perturbations
is directed away from upper branch MAWs (arrows 3
and 4).

The linear stability of lower branch MAWs will be
discussed in more detail in Section 3.4. It turns out
that perturbations of lower branch MAWs can evolve
in many ways, but in almost all cases the ensuing
dynamics remains close to the lower MAW branch
(shaded area in Fig. 8). The only exception we have
found to this rule is when a MAW is pushed beyond
the saddle-node bifurcation (arrow 5).

Nonlinear evolution: Here we want to go beyond
the linear analysis and study the nonlinear evolution



L. Brusch et al. / Physica D 160 (2001) 127–148 137

Fig. 9. The evolution of an unstable homogeneous state towards lower branch MAW dynamics, forc1 = 3 andc3 = 0.6. The coefficients
c1 andc3 are chosen such that no saddle-node bifurcation occurs for anyP . (a) Evolution towards a stable stationary lower branch MAW
for system sizeL = 25 and (b) towards a stable drifting lower branch MAW for system sizeL = 30. Note that for the coefficients chosen,
the drift pitchfork bifurcation occurs atP = 27.7. (c) Evolution towards phase chaos for system sizeL = 100. Incoherent evolution of
structures characterised by local concentrations of phase gradients can be clearly observed. We think of these structures as “near” MAWs.

of MAWs along the arrows of Fig. 8. The examples (at
different choices of the coefficients) of the dynamics
shown here are not exhaustive, but should serve to
illustrate typical behaviour which appears to be very
robust.

Arrow 2: When the uniform oscillation becomes
linearly unstable perturbations grow. To the left of the
saddle-node, perturbations evolve to dynamics dom-
inated by lower branch MAWs (Fig. 9). For small
system sizes, stable MAWs may occur (Fig. 9(a) and
(b)), while for larger systems periodic sequences of
MAWs are unstable with respect to the so-calledin-
teraction or splitting instabilities [1,35] that will be
discussed in Section 3.4. Hence a perturbed unsta-
ble homogeneous state typically does not converge
to a train of coherent MAWs, but instead evolves
to phase chaos (Fig. 9(c)). In the context of the

Fig. 10. Evolution of perturbations of the upper branch MAWs. The coefficientsc1 andc3 are chosen such that no saddle-node bifurcation
occurs for any value ofP . (a) A slowing down and spreading of the phase gradient characterises the decay to a lower branch MAW for
c1 = 0.55 andc3 = 2. (b) For the same coefficients, another perturbation leads to an increase in velocity and divergence of the phase
gradient. A defect occurs, from which hole-defect dynamics spreads for these coefficients. (c) Forc1 = 3 andc3 = 0.6 a perturbed upper
branch MAW leads to a defect, but defects do not percolate through the system.

bifurcation diagram, note that the disordered struc-
tures observed in the phase chaotic evolution are quite
similar to lower branch MAWs. The shaded area in
Fig. 8 represents this “near-MAW” behaviour.

Arrows 3 and 4: Upper branch MAWs are always
unstable due to the positive eigenvalue associated
with the saddle-node bifurcation. The resulting inco-
herent dynamics has been studied quite extensively in
the context of hole-defect dynamics [25,29]. (i) When
a perturbation has pushed an upper branch MAW to-
wards the “lower” part of the bifurcation diagram, the
structure decays towards lower branch MAWs (arrow
3). An example of a space time plot for the decay to-
wards a lower branch MAW is shown in Fig. 10(a). (ii)
When the perturbation pushes the MAW towards the
“upper” side of the diagram, the phase gradient peak
that characterises MAWs grows without bound, and at
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the same time the minimum of|A| approaches zero: a
defect is formed (arrow 4). The dynamicsafter such a
defect has formed depends on the values of the coef-
ficientsc1 andc3. Two different examples are shown
in Fig. 10(b) and (c). For more details, see Section 3.

Arrow 5: So far we have encountered two scenar-
ios: if the phase gradient peak of a structure is “larger”
than that of an upper branch MAW, then it will grow
out to form defects. If it is “smaller”, it will decay
back in the direction of the lower branch MAWs. The
latter process frequently occurs in phase chaos, pre-
venting the formation of defects, while the former pro-
cess needs to be initiated by appropriate initial con-
ditions. However, when the upper and lower branches
approach each other and disappear in a saddle-node
bifurcation, there are no structures left to prevent arbi-
trary small perturbations to grow out to defects. This
dynamical process, which is represented by arrow 5 in
Fig. 8, is the core of our argument: defect formation
takes place beyond the saddle-node bifurcation.

2.4. Breakdown of phase description

An alternative approach to describe the creation of
defects from phase chaotic states is via blow-ups in
so-called phase-equations [20]. Phase equations are
based on the observation that close to the onset of
phase chaos (near the Benjamin–Feir–Newell curve)
the amplitude is “slaved” to the phase dynamics. In
this situation a phase equation can be obtained by a
gradient expansion [4]. The expansion including all
parity-symmetric terms up to fourth order [20] reads
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3). The lowest order descrip-
tion of phase chaos is obtained when the parameters

Ω
(2)
4 , Ω(3)

4 andΩ(4)
4 are set equal to zero; the result-

ing equation is known as the Kuramoto–Sivashinsky
equation [2].

The phase equations with higher order terms in-
cluded have been studied via direct integration by Sak-
aguchi [20]. For the full Eq. (4), Sakaguchi observed
finite time divergences of the phase gradient for coeffi-
cients close to the transition from phase to defect chaos
in the CGLE. He attributed such divergences to the
occurrence of defects in the CGLE. No blow-up of the
phase gradient is observed for Eq. (4) without the last
term, or for the simple Kuramoto–Sivashinsky equa-
tion. Recently, Abel et al. [36] quantified the increas-
ing discrepancies between the phase equations of dif-
ferent orders and the full dynamics in the CGLE with
increasing distance from the Benjamin–Feir–Newell
curve and identified the relative importance of the var-
ious terms in Eq. (4).

Since the essential ingredient of our theory is the
occurrence of a saddle-node bifurcation, we have in-
vestigated the bifurcation scenario for various trun-
cations of the phase Eq. (4). In the context of phase
dynamics, our Ansatz (2) becomes of the form

φ(x, t) = φ̃(x − vt) + (ω − c3)t. (5)

We have studied MAW-like structures occurring in the
phase equations by employing the same methodology
as for the CGLE; the average phase gradient valueν

is fixed to 0 andP parameterises the spatial period
of the MAW. In Fig. 11, we compare bifurcation di-
agrams and MAW profiles for different expansions at
the parametersc1 = 3.5, P = 50.

For all phase equations considered here, the coher-
ent structures are again born in a Hopf and undergo
a drift pitchfork bifurcation, beyond which the maxi-
mal phase gradients increase. This leads to increasing
discrepancies between different approximations. In
particular, the coherent structures for Eq. (4) ex-
hibit saddle-node bifurcations at parameter values
not far from those for corresponding MAWs in the
CGLE; nevertheless the MAWs of Eq. (4) deviate
substantially from the CGLE MAWs for the upper
branch of MAWs. The Kuramoto–Sivashinsky equa-
tion, and Eq. (4) without the last term, do not exhibit
a saddle-node bifurcation. Since these latter two
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Fig. 11. Comparison of different phase expansions: Eq. (4) (dotted), Eq. (4) without the last term (dot-dashed), Kuramoto–Sivashinsky
equation (dashed) and CGLE (full curve). Parameters arec1 = 3.5, ν = 0, P = 50. (a) Bifurcation diagrams, and (b) spatial profiles of
lower branch coherent structures atc3 = 0.7.

Fig. 12. Defect formation atc3 = 2, c1 = 0.7. (a) Defect formation. As initial condition we took a lower branch MAW withP < PSN = 26.8
which we embedded in a background of zero wave number. The system sizeL here is equal to 28.8, which is larger thanPSN and a defect
is formed; forL < PSN this defect formation does not take place. (b) Random initial conditions in general evolve to MAW like structures
with P < PSN which do not lead to defects; the “critical” nucleus that leads to defect formation has a rather small basin of attraction here.

models do not experience blow-up, we can safely
conclude that these observations confirm our picture,
and that the saddle-node bifurcations of coherent
structures play the same crucial role in both the full
CGLE and its phase equations.

3. Large scale chaos

In this section, we will study the dynamical evolu-
tion of the CGLE near the transitions from phase to
defect chaos. The transition between these two states
can either be hysteretic or continuous: in the former
case, the transition is referred to asL3, in the latter as
L1. 6

6 Another relevant line that appears in the parameter plane is
the so-calledL2-line which is the transition from defect to phase
chaos in the hysteretic regime.

How are defects generated from phase chaos? Let
us start to consider asmall system in which a stable
lower branch MAWs has been created. When we fix
the coefficientsc1 andc3 and steadily increase the size
of the system, and hence the periodP of the MAW, we
find that as soon as we pushP beyondPSN, the MAW
structure blows up to form defects. An example of this
is shown in Fig. 12(a). In a similar fashion, defects are
created when the system sizeL is fixed, and eitherc1

or c3 are increased untilPSN < L (Fig. 1(c) and (d)).
How is this related to phase chaos? As shown in

Fig. 12(b), typical phase chaotic states show much
more incoherent dynamics, containing many MAW
like structures but of much smaller period. Our cen-
tral conjecture is therefore, that the transitions from
phase to defect chaos are triggered by the occurrence
of near-MAW structures in a phase chaotic state with
ν = 0 (See footnote 3) and periods larger thanPSN,
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the spatial period of the critical nucleus for defect cre-
ation.

To test this conjecture, we have numerically inves-
tigated the distribution of inter-peak spacingsp of the
phase gradient profile (see Fig. 1(e) and (f)). In Sec-
tion 3.1, we discuss the definition ofp and the details
of our numerical analysis. In particular, we have ex-
amined in thec1, c3 plane 17 different “cuts” across
theL1 andL3 transition lines. In Section 3.2, the re-
sults of our numerics along a cut through theL1 tran-
sition line are presented, while Section 3.3 is devoted
to theL3 transition. We will show that the presence of
inter-peak spacingsp larger thanPSN accurately pre-
dicts the transition from phase to defect chaos (Fig. 2).
In the last Section 3.4, we will show that a reasonable,
parameter-free estimate of the numerically observed
transitions can be obtained via a linear stability anal-
ysis of the MAWs.

3.1. Identification of MAWs in the phase-chaotic
regime

To verify our main conjecture, we have to char-
acterise the MAW structures occurring in the
phase-chaotic regime. In general this is a complicated
task, since the phase gradient profile of a typical
phase chaotic state (see Fig. 1(e) and (f) and Fig. 13)
consists of many peaks of different size, spacing and
shape; a priori it is unclear how to compare these
to MAW profiles. However, a close inspection of
the defect forming process reveals that while closely
spaced phase gradient peaks evolve in a quite erratic
way, well spaced peaks appear to have a more regular
dynamics and frequently their overall shape resem-
bles that of MAWs (see Fig. 13). These large period
near-MAWs modify their shape quite slowly with
respect to the other structures present in the chaotic
field, and propagate over a disordered background.
Therefore, we study the distribution of inter-peak
distancesp, keeping in mind that the tail of this
distribution is relevant for defect generation.

The phase gradient profile of a coherent MAW (see
Fig. 1(a) and Fig. 5(a)) shows a secondary maximum.
To obtain the correct periodP of a near-MAW, such
small extrema should be neglected when the inter-peak

Fig. 13. Local phase gradient of the chaotic field just before defect
formation forc1 = 0.65 andc3 = 2. Panel (a) is a snapshot of the
field at a timet = 120 before the occurrence of the defect, (b–d)
are successive snapshots taken at time intervalsδt = 30. In (a)
also the shape of the MAW at the saddle-node is superimposed
(thick dashed line) on the profile.

spacingp is measured. We introduce a cut-off for the
size of the phase gradient peak equal to the size of
the secondary extremum of the MAW with the largest
P . As an additional result of this cut-off, small fluc-
tuations are not considered as MAW peaks. It should
be noted that the tail of the distribution ofp is rather
insensitive to the precise value of this cut-off.

In order to estimate the probability densityD(p),
for every time intervalτ = 0.5, the inter-peak periods
p of the spatial profile of the phase gradient are deter-
mined. In addition, for every snapshot the largest value
pmax of the inter-peak spacingp is stored separately,
and this leads to the distributionD(pmax). From the
spatial profile of|A| the distributionD(|A|) and the
minimal amplitude value|A|min can be derived. This
latter quantity is used to detect defects: when|A|min

falls below a value of 0.1, we take this as an indication
of a defect.

Extensive simulations have been made possible
thanks to an innovative time-splitting code which
ensures precision and stability comparable with
pseudo-spectral codes, but is noticeably faster [23].
The spatial resolution$x has been set to 0.5 and
the integration time step to 0.05. Simulations have
been carried out for integration times ranging from
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t = 5 × 105 to 3× 107 and for a typical system size
L = 512; occasionally, runs have been performed
with L = 100, 200 and 5000. Typically, our runs start
from random initial conditions of the typeAk(t =
0) = |A|k(t = 0)eiφk(t=0) (whereAk(t) = A(k$x, t)

andφk(t) = φ(k$x, t)) with

|A|k(0) = 1 + rk (6)

φk(0) = φk−1(0)0.8 + qk (7)

whererk andqk are random numbers uniformly dis-
tributed in [−0.05,+0.05] andφ1(0) = 0.0005. This
initial condition (7) leads to a smooth phase and the
formation of defects due to initial discontinuities is
avoided.

In Sections 3.2 and 3.3, we will consider in detail
two particular cuts in the(c1, c3) coefficient space,
one across theL1 and one across theL3 curve. In
particular, we will analyse the behaviour of the prob-
ability densitiesD(|A|), D(p) andD(pmax) for both
transitions.

3.2. L1 transition

In this section, we concentrate on theL1 transition
that is observed when the value ofc1 is fixed at 3.0
andc3 is varied.

Transition to defect chaos: Starting from random
initial conditions we have integrated the dynamics of
the CGLE for long durations. For a fixed system size
L we observe that, as a function of the total integration
time, the value ofc∗

3 for which defects are formed
appears to decrease. Similar behaviour occurs when
the system sizeL is increased for fixed integration
times. For example, for an integration time of 3× 107

andc1 = 3 we find for system size 100, 200 and 512
critical values 0.82,0.81 and 0.79, respectively. For a
sizeL = 5000 and integration times 3× 106 a critical
value of 0.79 is also found.

Note that even the lowest value ofc∗
3 for the numer-

ically measured transition obtained here is far above
the lower boundc∞

3 = 0.704 which is the value ofc3

where the size of the critical nucleus for defect for-
mation diverges (PSN → ∞). Below, we will give an
estimate of the critical valuêc3 for which the defect

density should vanish in the thermodynamic limit by
extrapolating finite time and finite size data.

Distribution of p: Let us now consider the distri-
bution of p for various coefficientsc3 near theL1

transition. It is clear from the data reported in Fig. 14
that the shape of these distributions is quite insensi-
tive to the presence or absence of defects. This can
be partly explained by the fact that just above theL1

transition defects arise in the system as rare isolated
events occurring during the spatio-temporal evolution,
as shown in Fig. 10(c). This is fully consistent with
earlier observations that theL1 transition is continu-
ous [17,19,21]. We focus on the tail of the probabil-
ity densityD(p), since this gives information on the
probability to observe defects. Our numerical results
suggest an exponential decay, i.e.D(p) ∝ exp(−αp)

with α = 0.6 for sufficiently largep.
Similarly to the apparent transition valuec∗

3, the
values associated to extremal events|A|min andpmax

depend on integration times and system sizes. By as-
suming thatD(p) remains finite (but likely exponen-
tially small) for largep, we can expect that for long
enough times, rare events associated with large values
p will occur, and hence, defects can form after possi-
bly very long transients.

Crossover behaviour: A good order parameter to
identify the occurrence of the transition starting from
the defect chaos phase near theL1 transition is thede-
fect densityδD which measures the number of defects
occurring per space and time unity. In the defect chaos
regimeδD > 0, while it vanishes at theL1-transition.
Now we can relate this order parameter to the tail of
the distribution ofp. Our conjecture states that defects
should arise whenp > PSN, therefore, the defect den-
sity δD should be related to the probability to have
structures of periodp > PSN, i.e.

δD ∝
∫ ∞

PSN

dpD(p) ∝ e−αPSN; (8)

whereD(p) ∝ exp(−αp) has been used. If we now as-
sume that the distributionD(p) does not vary signifi-
cantly across the transition (as is evident from Fig. 14),
then the change in the probability to havep > PSN is
dominated by the changes inPSN with c3. A reason-
able fit of our bifurcation data forPSN (see Fig. 7) in
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Fig. 14. Probability densities (a)D(p) and (b)D(pmax) for c1 = 3 and various values ofc3 on a lin-log scale. The curves refer toc3

below c∗
3 = 0.79 (namely toc3 = 0.77 and 0.78), as well as to values corresponding to the defect chaotic regime:c3 = 0.79, 0.80 and

0.81. The system size wasL = 512 and the integration times wheret = 5×105 for c3 = 0.81, t = 5×106 for c3 = 0.80 andt = 25×106

for all other values.

the interval 30≤ PSN < 300 is

PSN ≈ β

c3 − c∞
3
, (9)

where β ≈ 4.38. Combining this result with the
Ansatz (8), we immediately obtain the following
expression for the defect density:

δD ∝ e−αβ/(c3−c∞
3 ). (10)

A similar expression was proposed in [17,21] for the
defect density near theL1 transition.

In order to verify if the expression (10) is reason-
able also for our choice of the parameters, we have
estimated the probability [23]

w(|Â|) =
∫ |Â|

0
d|A|D(|A|), (11)

to observe an amplitude less than|Â|. This quan-
tity gives a more precise characterisation of the
L1-transition thanδD, because it measures not only
the extreme events corresponding to true defects, but
also the tendency of the system to generate struc-
tures characterised by small|A|min. We estimated
the quantity (11) for several|Â| values and for vari-
ous c3 parameter values in the defect chaos regime.
Reporting ln [w(|Â|)] as a function of 1/(c3 − ĉ3)

a reasonable linear scaling is observed in the range
0.795 ≤ c3 ≤ 0.85, for 0.1 ≤ |Â| ≤ 0.5, with the
choice ĉ3 = 0.72. The valueĉ3 where the defect
density should asymptotically vanish is much smaller

thanc∗
3 obtained via direct numerical simulations but

still bigger thanc∞
3 = 0.704 wherePSN → ∞.

We can now easily estimate the integration time
needed to observe a tiny shift of the apparent value
c∗

3 towards the corresponding asymptotic valuec∞
3 ≈

0.704. Limiting our analysis to system sizeL = 512,
a typical time-scale to observe a defect atc3 = 0.79
is t ∼ 3× 107. At this value ofc3, PSN = 46.5, while
for c3 = 0.739,PSN = 105. Invoking the exponential
decay ofD(p), one immediately finds that the time
scale to observe a defect atc3 = 0.739 is of order
1017, which is completely outside the reach of present
day computers.

3.3. L3 transition

In order to characterise theL3 transition from phase
to defect chaos in more detailc3 = 2 has been fixed,
while the coefficientc1 is varied. TheL3 transition is
hysteretic [17,19]: to the left ofL3 one may have phase
or defect chaos depending on the initial conditions.
Beyond theL3 phase chaos breaks down and defects
occur spontaneously for any initial condition. In order
to study the dynamics across this transition we, there-
fore, initialised the simulations with initial conditions
(6) and (7) or used relaxed phase chaos configurations
corresponding to values ofc1 far below theL3 line.

The probability densitiesD(p) and D(pmax) are
shown in Fig. 15. Forc1 < c∗

1 = 0.65 all distribu-
tions collapse on a unique curve, but as soon as defects
arise the distributions change substantially. Whenever
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Fig. 15. Probability densities (a)D(p) and (b)D(pmax) for c3 = 2 and various values ofc1 reported in a lin-log scale. The data are for
a system sizeL = 512 and for integration times ranging fromt = 5 × 105 for c1 = 0.63, 0.64, 0.66 and 0.65 (PC)∗ to t = 2.5 × 106 for
c1 = 0.65 (DC). The labels DC and PC indicate that we are in presence or absence of defects, respectively. The label (PC)∗ refers to the
regime before defect formation atc1 = 0.65.

a defect is generated, hole-defect dynamics takes place
(see Fig. 10(b)). As a result phase chaos is replaced by
defect chaos. The noticeable modification of the dis-
tributions, thus, reflects the fact that theL3 transition
is discontinuous. Also the probability density for|A|
changes abruptly across theL3 transition.

3.4. Mechanism for the selection ofp

When approaching the transition to defect chaos
from the Benjamin–Feir–Newell curve, three param-
eter regions, corresponding to different dynamical
regimes, can be distinguished (Fig. 18). The first
encountered region corresponds to infinite values of
PSN: here we expect no defects to occur, irrespectively
of system size and integration time. The phase chaos
is the asymptotic regime in this first region. Then,
whenc1 and/orc3 are increased, a crossover regime is
reached where extreme events (large inter-peak spac-
ings) may lead to defect formation. Here phase chaos
can persist as a long lived transient, but eventually
we expect it to break down. Then, whenc1 and/orc3

are even further increased, we experience a dramatic
drop in transient times, and defect chaos sets in quite
rapidly. We understand this drop to occur when typi-
cal values ofp (and not rare extreme events) become
larger than the correspondingPSN values.

An approximate prediction for the location of the
apparent phase to defect chaos transition (numerically
obtained from the defect density) can be achieved in

terms of a simple linear stability analysis of the MAWs
(Figs. 16 and 17). A key element in our framework is
the “typical large value” ofp as a function of coeffi-
cientsc1 andc3; here we will identify two linear in-
stabilities that act to either increase or decreasep, and
their balance sets a scale for typicalp that will pre-
dict the location of the transition from phase to defect
chaos rather well.

Due to translational and phase symmetries both
MAW branches have neutral modes, i.e. Goldstone
modes. The eigenvalue associated with the saddle-node
bifurcation is positive for MAWs of the upper branch
and negative for the lower branch. In what follows
the lower branch MAWs are considered exclusively.

Splitting: The spatial structure of a MAW of large
period consists, roughly, of a homogeneous plane wave
part and a local peak part. For the parameter regime
we consider here, fully extended plane waves are lin-
early unstable, and so we may expect that the MAW
spectrum will be dominated by this instability for suf-
ficiently large values ofP . Our linear stability analysis
indeed shows that for appropriate parameters (L = P )
and small enoughP , all eigenvaluesλi < 0, but
when we increaseP , MAWs become linearly unsta-
ble (λsplit > 0, Fig. 16). The shape of the unstable
eigenmodes (Fig. 16(b)) suggests that this instability
leads to the growth of a new peak in the homogeneous
part of the MAW, and this is indeed the behaviour
observed in numerical simulations of the perturbed
MAW (Fig. 16(c) and (d)). As a result two (or more)
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Fig. 16. Results of the linear stability analysis: (a) leading part of the eigenvalue spectrum (continuous spectrum denoted by the full curve,
Goldstone modes by a filled square, saddle-node by filled triangle, interaction by open square and splitting modes inL = P by dots,
respectively). (b) Splitting eigenmodes (dot-dashed and dotted,λsplit = 0.018± 0.28i) of the phase inL = P compared with spatial MAW
profile of the phase gradient (full curve). (c and d) Space time plots showing the splitting of a MAW initially perturbed by small noise.
Parameters arec1 = 3, c3 = 0.72, P = 43 nearL1 for (a–c) andc1 = 0.65, c3 = 2, P = 35 nearL3 for (d).

short MAWs with smallerP will appear. We interpret
this process as thesplitting of a MAW in two or more
smaller MAWs and we call the eigenmodes associated
to such instability “splitting modes”.

Clearly, this instability tends to reduce the
peak-to-peak distancesp and prevents MAWs to
cross the SN boundary; in the phase chaotic regime
this instabilitytends to inhibit defect generation.

Interaction: By using a Bloch Ansatz [37], we ex-
tended the stability analysis to systems withn identical
pulses (L = nP). For n > 1, an additional instability
may appear [38] (see Fig. 17). Eigenvaluesλint > 0
are found mainly for smallP (typically P < 30). The
shape of the eigenmodes, i.e. an alternating sequence
of positive and negative translational Goldstone modes
(Fig. 17(b)), suggests that the instability is due to the
interactionbetween adjacent MAWs. This interaction

shifts adjacent peaks into opposite directions, thereby
creating occasional larger values ofp (Fig. 17(c) and
(d)). In phase chaos this process leads to an increase
of the spacingp between some peaks, thusenhancing
the generation of defects.

Competition of instabilities: Both the splitting and
interaction mechanisms are similar to instabilities ob-
served in the Kuramoto–Sivashinsky equation [4,35].
We believe that phase chaos is governed by the compe-
tition of these two mechanisms that tend to increase or
decrease the inter-peak spacingsp. Almost indepen-
dent of the coefficients the splitting instability domi-
nates for MAWs withP > 30. This can explain why
large inter-peak spacingsp > 30 become rare as re-
ported in Figs. 14 and 15.

We suggest a connection between the interchanging
dominance of these two different instabilities and the
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Fig. 17. Results of the linear stability analysis: (a) leading part of the eigenvalue spectrum (continuous spectrum denoted by the full curve,
Goldstone modes by a filled square, saddle-node by filled triangle and interaction by open square atλint = +0.0048, respectively), (b)
Goldstone mode (dot-dashed) and interaction eigenmode (dotted curve) for the phase compared with spatial MAW profile of the phase
gradient (full curve) inL = 2P . (c and d) Space time plots showing the attraction of two periods of the same MAW initially perturbed
by the interaction eigenmode. Parameters arec1 = 0.7, c3 = 2, P = 25 nearL3 for (a–c) andc1 = 3, c3 = 0.85, P = 21 nearL1 for (d).

sudden change ofδD (nearL1) or the transient times
before defect occurrence (nearL3). We calculated the
linear stability spectra for a variety of coefficients and
periodsP close toPSN. From these we obtain a curve
in coefficient space (Fig. 18) where the real parts of in-
teraction and splitting eigenvalues areequal. For larger
c1 or c3,PSN occurs in the range where interaction and
defect formation dominate, while for smallerc1 and
c3, splitting dominates and defect formation becomes
rare.

As shown in Fig. 18, the curve where the two in-
stabilities are equally strong near the saddle-node bi-
furcation gives a rather good estimate of where the
apparent transition from phase to defect chaos occurs.
Notice that in this “balance of instabilities” picture,
there is no tunable parameter: once we have calculated
PSN and the instabilities of the MAWs for a range of

coefficients, a precise prediction for the “transition”
from phase to defect chaos can be given.

4. Discussion and final remarks

In this section, we report some open questions re-
lated to defect formation, together with some final re-
marks and a brief outlook.

Further refinements: In order to accurately test our
results, we have measured for each of the 17 cuts
and for several values of the coefficients across the
L1- or L3-lines the amplitude distributionD(|A|) and
the phase gradient peak-to-peak spacing distribution
D(p). We conjectured that defects occur if and only
if p > PSN. Indeed, we observe that in 11 out of 17
points such conjecture is fulfilled. On the remaining
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Fig. 18. Space of(c1, c3)-coefficients for the CGLE with the Benjamin–Feir–Newell curve (dot-dashed), the lower boundPSN → ∞ (full)
and the stability-based estimate (dotted) for the transition from phase to defect chaos. The symbols refer to our numerical data for the
appearance of defects.

six points the theoretical conjecture leads to an esti-
mation of the transition lines within a maximal error
bar of 3%.The points determined following the con-
jecture are indicated as empty circles in Fig. 2. The
small deviations may have different reasons, that we
summarise below:

(i) If fluctuations occurring during the phase chaotic
dynamics are only moderate, such as happens
near theL3 transition line or for small system
sizes, more complex coherent structures can sur-
vive for a short time. Here we analysed only
the shortest coherent structures characterised by
a single hump. We believe that this is sufficient
to understand the main aspects of the dynam-
ics of large systems. However, longer combined
MAWs with more than one hump emerge from
periodic MAWs via period doubling bifurcations.
The existence of the long combined MAWs is
limited by saddle-node bifurcations analogously
to single MAWs, but these bifurcations occur at
slightly bigger values of the parametersc1 andc3.
Therefore, the appearance of these more compli-

cated structures can delay defect formation even
if one inter-peak spacing within the structure is
bigger thanPSN of the single MAW.

(ii) Near theL1 line the dynamical fluctuations in
the phase chaotic regime are stronger than in the
proximity of the L3 line. In this case and for
sufficiently high values of the parameterc1 we
observed situations where not only the structure
with the longest inter-peak spacing but also the
neighbouring structures were involved in the de-
fect formation.

(iii) The assumption to consider MAWs withν = 0
is only an approximation. If the average phase
gradient locally (on scalesP ) deviates from 0
then the saddle-node bifurcation slightly shifts
towards smaller coefficients [31].

As far as the numerically obtainedL1 and L3

lines are concerned, we observe that both these lines
lie to the left of the ones determined in earlier nu-
merical studies [19]. This is due to the fact that
our simulations are of longer duration then those
performed previously. This confirms the expecta-
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tion that such transition lines will shift towards the
Benjamin–Feir–Newell curve for increasing system
size and integration times [21]. Moreover, some au-
thors claim that indeed in the thermodynamic limitL1

andL3 will coincide with the Benjamin–Feir–Newell
curve and the phase chaos regime will disappear [27].
On the basis of our simulations we cannot exclude
such a possibility for higher space dimensions, but
based on the results presented in this paper we con-
jecture that the saddle-node line forP → ∞ provides
a lower boundary for the transition from phase to
defect chaos in the one-dimensional CGLE.

Final remarks: We have presented a systematic
study of MAWs in the CGLE. These periodic coher-
ent structures originate from supercritical bifurcations
from the homogeneous oscillation of the CGLE due to
the Benjamin–Feir instability. The range of existence
of MAWs is bounded by saddle-node bifurcations
occurring for values ofc1 andc3 that depend on the
periodP of the MAWs. Approaching the transition
from phase to defect chaos, near-MAWs with large
P occur in phase chaos, and defects are generated
when the period of these near-MAWs becomes larger
than the spatial periodPSN of the critical nucleus.
This scenario is valid for both theL1 andL3 tran-
sition. The divergence ofPSN for coefficients in the
phase-chaos regime led us to conjecture that there is
a lower bound for the transition from phase to defect
chaos. Considerations of the linear stability properties
of MAWs in light of their tendency to increase or de-
crease the typical periodp in phase chaos, has led us
to a fit-free estimate of the apparent transition from
phase to defect chaos that fits the numerical data well.

Altogether, our study leaves little space for doubt
that the transition from phase chaos to defect chaos in
the CGLE is governed by coherent structures and their
bifurcations. From a general viewpoint, our analysis
shows that there is no collective behaviour that drives
the transition. Instead, strictly local fluctuations drive
local structures beyond their saddle-node bifurcation
and create defects.

Outlook: We want to stress here that the extension
of the analysis to MAWs with nonzero average phase
gradients [31], will be of considerable interest for
experimentalists, because in some recent experiments

concerning Rayleigh–Bénard or Marangoni convec-
tion in quasi-one-dimensional geometries, supercriti-
cal Eckhaus instabilities of plane wave trains and the
corresponding emergence of stable saturated MAWs
have been observed [13–15]. These states are analo-
gous to what happens for the 1d CGLE when phase
chaotic solutions withν �= 0 are considered [22,23].

The relevance of MAWs for two-dimensional struc-
tures is suggested by recent experimental evidence of
MAWs observed in connection with superspiral and
spiral break-up occurring in a Belousov–Zhabotinsky
reaction [11]. Moreover, in the phase chaotic regime
of the 2d CGLE, the correspondence between long
inter-peak spacings (here diameter of cells) and the
strength of the local modulation has already been no-
ticed numerically [27]. In the 2d CGLE defects carry
a topological charge and are created in pairs. This will
significantly change the late stage of defect formation
and additional mechanisms present in 2d remain to be
explored. Thereby it might turn out that phase chaos
exists in the thermodynamic limit in 1d only but not
in 2d as previously conjectured [27].
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