

Clique of functional hubs in developmentally regulated neural networks

A. Torcini

Istituto Sistemi Complessi - CNR, Firenze, Italy

http://neuro.fi.isc.cnr.it/

Main Inspiration

Bonifazi et al, Science 2009

- Immature hyppocampal circuits exhibit
 - Rhytmic collective oscillations giant depolarizing potentials
 - Excitatory action of GABAergic transmission
 - Presence of functional and structural hub neurons
- Single neuron stimulation can silence the network activity - GABAergic hub interneurons

General questions

- To which extent a single neuron can influence brain circuits / network dynamics ?
- Why only few neurons displays such a strong power ?

Neural Network Model:

- Network of Leaky Integrate-and-Fire neurons with Short-Term Synaptic Plasticity
- Developing neuronal circuit Excitatory cells
- **Solution** Topology \rightarrow Random (Erdös-Reniy) network (no scale free topology)
- Key Ingredients:
 - Developmentally regulated constraints on single neuron excitability and connectivity (Correlations)
- Dynamics
 - Population Bursts Collective rhytmic oscillations

Results:

- Few critical neurons control the population activity Functional Hubs
- Critical neurons are arranged into a clique

The Model

Marseille, 2014 – p.

Leaky-integrate-and-fire neuron

Parameters: $\tau_{\rm m} = 30$ ms, $V_{\rm r} = 13.5$ mV, $\theta = 15$ mV

Leaky-integrate-and-fire neuron

Directed Erdös-Rényi network

 $K_i^I \text{ Input connectivity}$ $K_i^O \text{ Output connectivity}$ $K_i^T = K_i^I + K_i^O$ Total connectivity On average $K^I = K^0 = p \times N$

connection probability ---> p = 10 %connectivity matrix ---> ε_{ij}

Short-term synaptic plasticity

Tsodyks, Uziel, Markram (J. Neurosc. 2000) \rightarrow T.U.M. model

 $\boldsymbol{\epsilon}_{_{\text{ij}}}$ ---> connectivity matrix

Mongillo, Barak, Tsodyks, Synaptic Theory of working memory, Science (2008)

Marseille, 2014 – p

Short-term synaptic depression

Dynamics of the synaptic resources

$$X + Y + Z = 1$$

Network of N leaky integrate-and-fire neurons with short-term plasticity

$$\tau_{\rm m} \dot{V}_i = -V_i + I_i^{\rm b} + \frac{G_i}{K_i^I} \sum_{j \neq i} \epsilon_{ij} Y_{ij} \rightarrow \text{ synaptic strengths modulated by } Y_{ij}$$

$$\dot{Y}_{ij} = -\frac{Y_{ij}}{T_{ij}^{I}} + u_{ij}X_{ij}\sum_{m}\delta(t - t_j(m)) \quad \to \text{ spike train}$$

$$\dot{Z}_{ij} = \frac{Y_{ij}}{T_{ij}^{\rm I}} - \frac{Z_{ij}}{T_{ij}^{\rm R}} \qquad (X_{ij} + Y_{ij} + Z_{ij} = 1)$$

- **Excitatory** Neurons $-G_i > 0$
- $I_i^b = \text{intrinsic excitability} \rightarrow \text{if } I_i^b > \theta \text{ neurons can fire even if isolated } !$
- The currents are measured in mV, since they incorporate the membrane input resistance

Typical dynamics

Developmentally regulated network

Ge et al, Nature (2005); Doetsch and Hen, Curr Op Neurob. (2005) Karayannis at al, Frontiers neural circuits (2012)

Numerical Results

- Single Neuron Stimulation (SNS)
- Single Neuron Deletion (SND)

Single neuron stimulation

Single neuron stimulation

Neurons are ordered according to their firing rate ν under control conditions

Single neuron deletion

Marseille, 2014 – p. 7

Functional Connectivity analysis

Assignment of a functional degree to each cell of the network

 D_a^o =functional out-degree of cell $a \rightarrow$ number of cells activated after its firing

Marseille, 2014 – p. 7

Properties of critical neurons

The functional clique

Marseille, 2014 – p. 7

Population bursts are anticipated by the sequence $c_0 \rightarrow c_1 \rightarrow c_2 \rightarrow c_3$

 $\Delta T_{c_1,c_0} = 3.94 \pm 0.5$ ms $\Delta T_{c_2,c_1} = 9.6 \pm 3.3$ ms $\Delta T_{c_3,c_2} = 3.3 \pm 1.0$ ms

Failures and successes in PB build-up

*c*₁ fires almost always with a fixed time delay after c_0 , apart just after PB emission *c*₂ fires quite independently with respect to c_1 (c_2 has his own evolution)

Marseille, 2014 – p. 2

Marseille, 2014 - p. 2

The mechanism

- c_1 follows the firing of c_0 (also out of burst)
- c_3 follows the firing of c_2 (also out of burst)
- Solution No structural connections among the two "clocks" c_0 and c_2
- Only when the two "clocks" fire unsupervised in the correct order and in a precise time sequence the PB can occur ($\Delta T_{c_2c_0} \simeq 15ms$)

Marseille, 2014 - p. 2

Stimulating the clique leader c₀

Minima in the PB activity (antiresonances) correspond to mode locking

- The periods of the two "clocks" c_0 , c_2 are related $mT_0 = nT_2$
- The possibility that they fire with the required delay by chance goes almost to zero
- The number of PBs decreases with I^{stim}

The role of plasticity

$$X_i^{OUT} = \frac{1}{K_i^O} \sum_{k \neq i} \epsilon_{ki} X_{ki}$$

The afferent synapses are depressed by increasing the stimulation and this explains the decrease in the number of PBs with I^{stim} , but this does not explain antiresonances

Marseille, 2014 – p.

A simple model

We have developed a simple model to reproduce the stimulation experiment on c_0

- c₀ and c₂ are two independent LIF neurons suprathreshold
- The emission of a PB is probabilistic process controlled by the synaptic depression, $\mathcal{P}(I^{stim}) \propto \langle X_{c_0}^{OUT} \rangle$

A PB is emitted whenever the following 2 conditions are fulfilled

- c_2 fires after c_0 with a time delay $\Delta T_{c2,c0}$
- an extracted random number $r < \mathcal{P}(I^{stim})$

This extremely simplified model reproduces more than 70% of the antiresonances

Other correlation setups

- setup T1: positive correlation between the in-degree and out-degree of each neuron;
- setup T2: negative correlation between the intrinsic neuronal excitability and the total connectivity (in-degree plus out-degree);
- setup T3: positive correlation between the intrinsic neuronal excitability and the total connectivity (in-degree plus out-degree).

Correlated networks with all possible combinations of the setups T1-T3 have been examined, only the networks with correlations T1 + T2 show sensitivity to SNS and SND

Conclusions

We considered a developmentally regulated neural network

We have found that :

- single neuron stimulation/deletion of a few critical neurons is able to strongly impact the bursting activity
- critical neurons are functional hubs
- critical neurons are arranged in a clique controlling the neuronal activity
 - the clique is composed by "clocks" and "followers"
 - Itheir ordered activations is required for the generation of a burst
 - Ithe activation of the "clocks" is not mediated by structural connections
- the synaptic resources regulate the interburst period, but they are not the key element for PB occurrence

We have verified the validity of our findings for other 6 realizations of the neural network

```
S.Luccioli, E. Ben-Jacob, A. Barzilai, P. Bonifazi, AT, PLOS Computational Biology (2014)
```

Open problem & Future developments

- The grandient of the excitability can be explained by assuming a less depolarizing action of GABAergic transmission on mature cells with respect to younger ones ?
- Some of our findings can be experimentally tested ?
 Antiresonances Sequential Activation of Neurons
- What will change with scale-free topologies ?
- These results can be of interest for network controllability Liu, Slotine, Barabasi, Nature (2011); Menichetti, Dall'Asta Bianconi, PRL (2014)

Menichetti, Dell'Asta, Bianconi, Phys. Rev. Lett 113 (2014) 078701

- Driver nodes N_D can bring the network to any desidered dynamical state if a external signal is applied to them;
- In an uncorrelated directed random network $N_D \equiv 0$ if $K^{IN}, K^{OUT} > 2$
- Structural and Dynamical Correlations can change all the story

Role of structural hubs

SNS

Three neurons have $K^T > 60$ in the network

Network without correlations

Marseille, 2014 - p. 3

Extensive single neuron stimulation

SNS of the critical neurons

Windows of bursting activity

Marseille, 2014 – p. 3

Cross-correlation analysis of the out-of-burst and of the PB build up firing times

The role of plasticity

$$X_i^{OUT} = \frac{1}{K_i^O} \sum_{k \neq i} \epsilon_{ki} X_{ki} \quad ,$$

$$X_i^{IN} = \frac{1}{K_i^I} \sum_{j \neq i} \epsilon_{ij} X_{ij}$$

Comparison with TUM experiment

 $N_{\rm exc}$ =400, $N_{\rm inh}$ =100

Groups of 30 neurons taken out of the network (TUM, J. Neurosc. 2000)

Collective Effect

Functional Connectivity

Introduction of binary time series with one millisecond time resolution, where ones (zeros) marked the occurrence (absence) of the action potentials.

Given the binary time series of two neurons $\{a_t\}, \{b_t\}$, the cross correlation was:

$$C_{ab}(\tau) = \frac{\sum_{t=\tau}^{T-\tau} a_{t+\tau} b_t}{\min(\sum_{i=1}^{T} a_i, \sum_{k=1}^{T} b_k)}$$

where T was their total duration.

- Whenever $C_{ab}(\tau)$ presented a maximum at some finite time value τ_{max} a functional connection was assigned between the two neurons: for $\tau_{max} < 0$ $(\tau_{max} > 0)$ directed from *a* to *b* (from *b* to *a*).
- A directed functional connection cannot be defined for an uniform cross-correlation corresponding to uncorrelated neurons or for synchronous firing of the two neurons associated to a Gaussian $C_{ab}(\tau)$ centered at zero.
- To exclude the possibility that the cross correlation could be described by a Gaussian with zero mean or by a uniform distribution we employed both the Student's t-test and the Kolmogorov-Smirnov test with a level of confidence of 5%.
- The functional out-degree D_i^O (in-degree D_i^I) of a neuron *i* corresponds to the number of neurons which were reliably activated after (before) its firing.