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Doppler Effect of Nonlinear Waves and Superspirals in Oscillatory Media
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Nonlinear waves emitted from a moving source are studied. A meandering spiral in a reaction-
diffusion medium provides an example in which waves originate from a source exhibiting a back-and-
forth movement in a radial direction. The periodic motion of the source induces a Doppler effect that
causes a modulation in wavelength and amplitude of the waves (‘‘superspiral’’). Using direct simula-
tions as well as numerical nonlinear analysis within the complex Ginzburg-Landau equation, we show
that waves subject to a convective Eckhaus instability can exhibit monotonic growth or decay as well as
saturation of these modulations depending on the perturbation frequency. Our findings elucidate recent
experimental observations concerning superspirals and their decay to spatiotemporal chaos.
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FIG. 1. Simple spiral waves (a)–(c) and superspirals (d)–(f)
are observed in experiments (a),(d) of the BZ system [8] and in
numerical simulations of the CGLE (1). (b),(e) show Re�A� and
(c),(f) show jAj. (b),(c) � � 1 and (e),(f) inhomogeneous � �
1� 0:7 exp��r2=10�. Other parameters are c1 � 3:5, c3 �
behavior of superspirals and extends previous work lim- 0:34, system size is 512	 512.
Introduction.—Periodic nonlinear waves are a trade-
mark of nonequilibrium systems [1]. In one dimension
(1D), they can appear in systems with periodic boundary
conditions (BCs) as well as in open geometries, where
BCs select a unique pattern [2]. In two dimensions (2D),
rotating spiral waves are frequently observed. Therein,
periodic waves emerge from the region of the spiral tip
(core) and propagate in a radial direction. The aim of this
paper is to investigate the effects of perturbing sources of
nonlinear waves and their implications for the dynamics
of spiral waves. We employ the complex Ginzburg-
Landau equation (CGLE), which provides a universal
description of spatially extended oscillatory systems
near a supercritical Hopf bifurcation [3,4].

In this framework, we perturb a source of periodic
waves in 1D by moving its position back and forth in
space. This motion of the source leads to a modulation in
amplitude, wavelength, and frequency of the emitted
waves.We find that the modulation of the nonlinear waves
is uniquely determined by the temporal period of the
source motion in contrast to linear waves emitted by a
moving source, where the source velocity is the relevant
quantity. The richest scenario is found if the emitted
waves are convectively Eckhaus unstable. If we consider
a periodically moving source in the latter case, the modu-
lations in amplitude and period of the waves may (i) get
exponentially damped, (ii) saturate, or (iii) grow mono-
tonic far away from the source depending on the fre-
quency of the applied forcing.

Such a periodically moving source reproduces the ra-
dial dynamics of rotating spiral waves subject to external
forcing [5] or to the frequently observed oscillatory in-
stability termed ‘‘meandering’’ [6]. In 2D, the radial
modulations caused by meandering lead to a second spiral
superimposed on the simple rotating spiral; the resulting
structure is called superspiral (see Fig. 1). Our fully non-
linear numerical analysis of coherent structures emitted
by a moving source provides insight in the nonlinear
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ited to a linear approach [7]. Unbounded growth of the
modulation will lead to occurrence of space-time defects
in 1D and superspiral breakup in 2D, provided the system
is sufficiently large. Experimental evidence of such be-
havior was found in the Belousov-Zhabotinsky (BZ) re-
action [8]. Superspirals were first reported in experiments
with strong external forcing near the spiral core [9].

Complex Ginzburg-Landau equation.—Consider a spa-
tially extended oscillatory medium described by the com-
plex Ginzburg-Landau equation [1,4]

@tA � �A� �1� ic1��A� �1� ic3�jAj
2A (1)

with� � 1. The complex field A�r; t� gives the amplitude
and phase of local oscillations depending on real coeffi-
cients c1; c3 determined by the underlying specific model
at the onset of oscillations. Equation (1) exhibits plane
wave solutions A�r;t��

�������������
1�q2

p
ei�qr�!t� with !��c3�

q2�c1�c3� in an infinite or periodic 1D medium
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FIG. 2. Doppler effect of nonlinear waves due to periodic
oscillations of the source at the left boundary. Equation (1) was
integrated for increasing forcing periods (a) � � 8, (b) � � 13,
(c) � � 15 with Eq. (5) and c1 � 3:5, c3 � 0:4, RS � 1.
Dotted lines are guides to the eye that converge to jAjmin and
jAjmax in (b).
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with � � @2r . For fixed control parameters, these
waves become unstable if the wave number q is big-
ger than the Eckhaus wave number q2E � �1� c1c3�=
�2�1� c23� � 1� c1c3�. The plane waves represent a one-
parameter family that is parametrized by the wave num-
ber q. A source of periodic waves at r � 0 is easily
realized by applying the BCs

A�r � 0� � 0 and @rA�r � L� � 0: (2)

The specification of these BCs leads to the selection of a
unique wave number qS. In this case, the exact solution of
the CGLE is of the form

A�r; t� � F�r�ei�f�r��!t�; (3)

with the asymptotic behavior df�r�=dr! qS, F�r� !��������������
1� q2S

q
for r! 1 (far field) and df�r�=dr� r,

F�r� � r for r! 0 (near field). An analytic expression
for qS has been derived [2,10]

0��c1�c3�q2S�3��c1;c3�qS�c3�2c1��c1;c3�2; (4)

where � is a function of the control parameters c1; c3 [11].
In 2D, Eq. (1) with � � @2r � 1=r@r � 1=r2@2� pos-

sesses rotating spiral solutions with A � 0 in the spiral
core and in the far field a selected wave number qS, which
is similar to (4) as verified numerically [2,10].
Equation (4) allows one to discriminate if the source or
the spiral core emits stable (Eckhaus unstable) wave
trains with qS < qE (qS > qE). Further analysis showed
that the Eckhaus instability is of convective nature and
becomes absolute for sufficiently large values of c1 and c3
[12]. At given parameters, we may define a wave number
qA > qE that characterizes absolutely unstable waves
with q > qA. In finite systems, spirals were found to be
stable as long as qS < qA [12,13].

Simulation results.—Here, we analyze the effects of an
instability or of an external perturbation at the source or
at the spiral core (meandering). We choose to perturb the
source in Eq. (2) by varying its position rS.

A�r  rS� � 0

with

rS � RS cos�2�t=�� and @rA�r � L� � 0 (5)

is therefore used as a BC of Eq. (1) in 1D. The core motion
of a meandering spiral can be viewed as a source moving
along a circle in 2D. A projection onto a radial direction
for a fixed angle yields a periodic back-and-forth motion.
A sinusoidal motion as in Eq. (5) is expected near onset,
where the normal form of meandering [14] provides a
valid description. Hence, the BC in Eq. (5) also captures
the radial dynamics of a meandering spiral.

In the numerical simulations the moving source ini-
tially modulates the local wave number which subse-
quently leads to a modulation of the wave amplitude.
For large r (far field), we observe modulations with a
period T that is equal to the forcing period � and inde-
pendent from RS. First, we forced sources (respectively,
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‘‘spirals’’) in the parameter region where qS < qE; in this
case the perturbation is always damped out while the
waves move away from the source. A larger variety of
responses occurs in the convectively Eckhaus unstable
regime, where the unperturbed source selects a wave
number qS in the interval �qE; qA�. Figure 2 shows three
qualitatively different resulting profiles of the amplitude
jAj as a function of the radial coordinate. Figures 2(a)–
2(c) correspond to increasing values of the forcing period
�. For small � values, the result is similar to the case with
qS < qE, and the amplitude modulation is exponentially
damped and is barely visible at sufficiently large r
[Fig. 2(a)]. For intermediate �, the amplitude modulation
first grows and then reaches saturation [Fig. 2(b)]. The
profile of jAj is periodic and travels with a nonzero
velocity; in the far field, the radial dynamics resemble a
so-called modulated amplitude wave (see below). Finally
for large �, the amplitude modulation grows monotoni-
cally with r and space-time defects are formed at the
breakup radius r � RBU � 950 [Fig. 2(c)]. For simula-
tions with qS > qA, we always observe monotonic growth
of the modulation leading to space-time defects.

A drawback of the homogeneous CGLE in 2D is that it
does not support meandering spirals. A nonsaturating
meandering instability has been observed for large values
of c1 [15]. Alternatively, the addition of a heterogeneity
near the spiral core leads to meandering behavior similar
to the one typically seen in reaction-diffusion systems
[16]. Figures 1(e) and 1(f) show such a superspiral. The
corresponding quantities for a regular spiral are shown in
Figs. 1(b) and 1(c). As in Fig. 2(b) and in the recent
experiment by Zhou and Ouyang [see Fig. 1(d) and [8]]
the amplitude modulation shown in Fig. 1(f) saturates in
the far field. To summarize, periodically moving sources
emit modulated amplitude waves analogous to the way
stationary sources emit plane waves. In the following, the
study will be limited to the radial dynamics.

Modulated amplitude waves (MAWs) and super-
spirals.—MAWs are solutions of the CGLE and have
the form
108302-2
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A�r; t� � a�z�ei��z�ei�qr�!t�; (6)

with periodic functions a and � of the comoving coor-
dinate z � r� vt [17]. The analysis of MAWs has re-
vealed that they bifurcate from plane waves with
q > qE. MAWs form a two-parameter family of waves
described by the wavelength P of the modulation of the
amplitude a � jAj and by the spatially averaged phase
gradient ! � q� h@r�i. The velocity v and the period
T � P=v can be derived from these quantities. The aver-
age phase gradient is conserved as long as no space-time
defect is formed. For periodically perturbed sources, the
phase gradient value is fixed to ! � qS. Therefore, only
one free parameter is left. For the present purpose it is
most convenient to use the period T. The bifurcation
diagram has been computed via Newton’s method applied
to coherent structures that are exact solutions of the
system of ordinary differential equations resulting from
the insertion of the ansatz (6) into the CGLE (1) [17,18].
The results of this numerical bifurcation analysis are
denoted by solid and dashed curves in Fig. 3 for the
case qS > qE (Eckhaus unstable range). Stable MAWs
do not exist for qS < qE.

Figure 3 reveals that stable MAWs exist for periods T in
the interval �THB; TSN�. They are ‘‘born’’ in a Hopf bifur-
cation (HB) and ‘‘die’’ in a saddle-node bifurcation (SN).
For T < THB, the plane wave is stable and for T > TSN no
MAWs exist and the dynamics leads to the formation of
defects [17,19]. This clarifies our findings in Fig. 2: the
profiles in Figs. 2(a)–2(c) correspond to forcing within
the regions � < THB, THB < �< TSN, and TSN < �, re-
spectively. Figure 3(b) shows the breakup radius RBU

found in simulations for periods � > TSN. It is crucial
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FIG. 3. (a) Bifurcation diagram for MAWs with period T and
existence domains of spirals, superspirals, and spiral breakup
for various forcing periods �. Curves were numerically com-
puted by bifurcation analysis as in [17,18] and symbols denote
minima and maxima of jAj as measured in simulations; pa-
rameters are the same as in Fig. 2. Solid (dashed) curves
correspond to stable (unstable) solutions. Arrows (same for
jAjmax) indicate the evolution of initial perturbations as they
move away from the source. Their asymptotic values depend on
T � � but not on RS. (b) Breakup radius RBU at which defects
first occur in simulations. Smaller remaining spirals result from
larger RS (RS � 5 circles, RS � 1 squares).
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to realize that the properties of the saturated modulations,
observed in numerical simulations with a periodically
moving source, indeed correspond to the MAWs with
! � qS and T � � computed via a bifurcation analysis
(as shown in Fig. 3). Thus, a unique MAW character-
ized by two parameters is selected in 1D by the BC in
Eq. (6) or in 2D by the two intrinsic frequencies of a
meandering spiral. We conjecture that the bifurcation
diagram of superspirals in 2D can be predicted from
the corresponding bifurcation diagram of the far-field
MAWs provided the meandering period (that here corre-
sponds to �) is known. Hence, the superspirals with satu-
rated modulation should cease to exist in the saddle-node
bifurcation of the associated MAW. If � > TSN, the
modulations grow monotonic and form space-time de-
fects in 1D, respectively, topological defects in 2D (spi-
ral breakup). In explicit 2D simulations, such behavior
has already been observed in a homogeneous reaction-
diffusion model for calcium waves, where simultaneous
appearance of the Eckhaus instability and meandering
leads to a breakup far away from the spiral core [20].
Future studies may address the possibility of MAWs in
realistic reaction-diffusion systems which exhibit
Eckhaus instabilities [20,21].

A previous linear analysis of superspirals predicted that
the meandering instability of a spiral with an Eckhaus
unstable wave train in the far field may produce super-
spirals with exponentially growing modulation, while in
the standard case of a meandering spiral emitting a stable
wave train exponential damping of the modulation should
be observed [7]. Our numerical nonlinear analysis intro-
duces superspirals with a saturated modulation in the far
field as a third possibility, thus supporting the experimen-
tal observation of such structures in the BZ reaction (Fig. 1
FIG. 4. Phase diagram indicating the region (shaded) where
superspirals may occur in the CGLE for ‘‘rocking’’ sources.
Simple spirals with selected qS�c1; c3� are convectively un-
stable between the thick solid curves. Superspiral breakup is
only possible between the dashed and dash-dotted curves.
The Eckhaus instability for arbitrary q is supercritical above
the thin solid curve and the thin dotted curve indicates the
Benjamin-Feir-Newell line (BFN).

108302-3



P H Y S I C A L R E V I E W L E T T E R S week ending
5 SEPTEMBER 2003VOLUME 91, NUMBER 10
and [7]). We suggest an interpretation of the reported
scenario damped superspiral — saturated superspiral —
far-field breakup: the three phenomenologies simply
correspond to the three mentioned regions of the bifurca-
tion diagram for the MAWs. Notice, bifurcation diagrams
similar to Fig. 3(a) are found when c1 or c3 are varied at
fixed T [17–19].

Phase diagram.—Finally we determine the regions
of the c1-c3 phase diagram [12] where the discussed
phenomena may be found. The results of the fully non-
linear bifurcation analysis are summarized in Fig. 4
where ! is fixed equal to qS�c1; c3� as given by Eq. (4).
Saturated superspirals can appear only above the
Eckhaus line for qS > qE. For small values of c1, the
MAWs bifurcate subcritically and are always un-
stable [22]. Figure 4 also shows the line of absolute
instability (qS � qA) above which simple spirals break
up giving rise to spatiotemporal chaos. Stable MAWs
with ! � qS do exist in the shaded region (for an exten-
sive discussion on MAW stability see [18]). Below the
thick dashed line in Fig. 4 no saddle-node bifurca-
tion does occur and breakup is therefore prevented.
Between the thick dashed and the thick dash-dotted
lines in Fig. 4, bifurcation diagrams similar to Fig. 3(a)
are found. In this region, all the three behaviors re-
ported in Fig. 2 are possible, depending on the period
of the forcing or meandering. Altogether, the results
here presented link far-field breakup of meandering spi-
rals to a saddle-node bifurcation. Thus, this route to
spatiotemporal chaos can be distinguished from the pre-
viously reported scenario of far-field breakup caused
by an absolute Eckhaus instability of the asymptotic
far-field wave train [12,13,21,23].

Conclusions.—We have studied the Doppler effect
associated with the back-and-forth motion of a source
emitting periodic nonlinear waves. Usually, the result-
ing modulation dies out by exponential damping as the
waves move away from the source. If the emitted
wave train is convectively Eckhaus unstable, the wave
modulation can also saturate or grow exponentially far
away from the source depending on the period of the
back-and-forth motion. These scenarios are fully de-
termined by the bifurcation diagram of correspond-
ing MAWs. Our results offer a consistent explanation
of recent experimental results obtained in a chemi-
cal reaction [8]. Moreover, they may find application
in future studies of other experimental systems exhibit-
ing convective instabilities like hydrothermal waves
[24]. Periodic forcing of sources near the transition
to chaotic dynamics may be used to probe the existence
and properties of modulated structures.
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