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The escape process from the native valley for proteins subjected to a constant stretching force is examined
using a model for a � barrel. For a wide range of forces, the unfolding dynamics can be treated as one-
dimensional diffusion, parametrized in terms of the end-to-end distance. In particular, the escape times can be
evaluated as first passage times for a Brownian particle moving on the protein free-energy landscape, using the
Smoluchowski equation. At strong forces, the unfolding process can be viewed as a diffusive drift away from
the native state, while at weak forces thermal activation is the relevant mechanism. An escape-time analysis
within this approach reveals a crossover from an exponential to an inverse Gaussian escape-time distribution
upon passing from weak to strong forces. Moreover, a single expression valid at weak and strong forces can be
devised both for the average unfolding time as well as for the corresponding variance. The analysis offers a
possible explanation of recent experimental findings for the proteins ddFLN4 and ubiquitin.
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Single-molecule pulling experiments have become an im-
portant and widely used tool for examining mechanical prop-
erties of proteins �1�. These experiments have stimulated a
renewed interest in the escape processes from metastable po-
tential wells in the presence of a biasing force �2�. Tradition-
ally, the dependence of the escape rate k on the stretching
force F has often been modeled using the phenomenological
Bell formula k�F�=k0e�Fxu �3�, where xu is the distance from
the native to the transition state and assumed constant ��
=1 /kBT, with kB being the Boltzmann constant and T being
the temperature�. The zero-force rate k0 satisfies k0�e−��G0,
where �G0 is the escape free-energy barrier at zero force.
There are, however, uncertainties about how to extract the
zero-force properties k0, xu, and �G0 from observed escape
rates at nonzero force. One problem is the unknown constant
of proportionality in the expression for k0. Another difficulty
is that the distance xu between the native free-energy mini-
mum and the unfolding barrier, which is assumed constant in
the Bell formula, generally depends on the applied force.

To address these problems, several generalizations of the
Bell formula have recently been proposed �4–7�. Most of the
extensions are based on the same underlying picture as for
the Bell formula; the protein is viewed as a Brownian
particle moving in a tilted one-dimensional potential,
G�x�=G0�x�−Fx, where G0�x� is the zero force equilibrium
free-energy profile. Using different approximations and pa-
rametrizations of G0�x�, key properties of the escape process
have been analyzed, such as the mean and variance of the
rupture force at constant velocity pulling �4,6�. It was further
shown �7� that the approach of Dudko, Hummer, and Szabo
�DHS� �4� is able to describe experimentally observed devia-
tions from the Bell formula for the fourth domain of Dicty-
ostelium discoideum filamin �ddFLN4� �8�.

These extensions based on Kramers theory �9� assume
that the escape barrier is high compared to kBT, leading to
single-exponential kinetics. Very recently, Yew et al. ana-
lyzed deviations from single-exponential kinetics in unfold-

ing simulations based on a C� model �10�. By including the
next-to-leading term in an eigenfunction expansion, they ob-
tained an improved description of the unfolding dynamics at
strong force. However, a comprehensive picture describing
k�F� and the full escape-time distribution at both weak and
strong forces is still missing. A key parameter when describ-
ing the force dependence is the critical force Fc, at which the
escape barrier disappears. In the DHS approach �4,7�, one
has Fc=�G0 /�xu, where � is a model parameter ��=1 cor-
responds to the Bell formula�. The above-mentioned
ddFLN4 analysis �7� �with �=1 /2 or 2/3� suggests that
Fc�80–110 pN for this protein. For the titin module I27,
on the other hand, Fc appears to be significantly larger
��G0 /xu�640 pN �11��. Due to different Fc, when
analyzing experimental data, the strong-force regime F�Fc
may or may not be relevant, depending on the protein.

In this Rapid Communication we investigate the response
of a model protein to a wide range of constant pulling forces.
We show that, once the free-energy landscape is known with
sufficient accuracy, the usual Smoluchowski equation �9� in
one dimension is sufficient to obtain a good estimate of the
average escape time from the native valley and the associ-
ated variance. Two force regimes, separated by the critical
force Fc, are observed. For F�Fc, unfolding occurs through
a thermally activated escape process. For F�Fc, the unfold-
ing dynamics can instead be interpreted as pure diffusion
with an external bias. The transition from the weak- to the
strong-force regime is accompanied by a drastic change in
the shape of the escape-time distribution, from exponential to
inverse Gaussian. The applicability of this approach to real
proteins, at forces studied experimentally, is addressed using
recently reported data for ddFLN4 �7,8� and ubiquitin
�12,13�.

The protein model we consider is the three-dimensional
off-lattice hydrophobic-polar-neutral �BPN� model �14–16�,
where each residue is represented by a single point and is of
one of the following three types: hydrophobic �B�, polar �P�,
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or neutral �N�. We study a 46-residue sequence, which is
known to form a four-stranded � barrel in its native state.
The folding �14–17� and mechanical unfolding �18,19� of
this sequence have been extensively studied. We analyze via
Langevin dynamics the response of this model protein to
external forces acting on the chain ends in the proximity of
its folding temperature, namely, at T=0.3 �19�. Parameter
values are as in Ref. �19� and all model quantities are dimen-
sionless; for a comparison with physical units, see Ref. �16�.

A typical unfolding trajectory begins with a waiting
phase, where the end-to-end distance 	 stays close to its na-
tive value. This phase is followed by a sudden increase in 	.
A fundamental question is whether the escape from the na-
tive valley can be effectively described as one-dimensional
diffusion, parametrized in terms of 	. Based on this assump-
tion the unfolding process is commonly described as the mo-
tion of a pointlike Brownian particle in the potential
G�	�=G0�	�−F	, where G0�	� is the equilibrium free-energy
profile. The average first passage time 
�x� at a threshold 	s
for a particle with initial position x� �	0 ,	s� can be obtained
by solving the Smoluchowski equation. One finds that �9�


�x� = �M��
x

	s

dy e�G�y��
	0

y

dz e−�G�z�, �1�

where M is the particle mass and � is the damping constant.
The boundaries at 	0 and 	s are reflecting and absorbing,
respectively. When using Eq. �1� to calculate the escape time
from the native valley, 	0 is the native 	 and 	s is that of the
saddle, or the barrier, to be crossed. The escape time is ob-
tained as 
S�
�	0�. In our simulations, escape times are
measured using a threshold slightly larger than 	s to avoid
saddle recrossing �9�.

We begin by testing the escape-time prediction 
S directly
against simulation results for the BPN protein, without mak-
ing any further assumption on the form of G�	�. For this
purpose, we determine G�	� numerically, using methods de-
scribed in Ref. �19�. Figure 1 shows the calculated
free-energy profile at zero force, G0�	�, which exhibits a

pronounced native minimum at 	0�2.0 and a barrier at
	s�5.25. The height of the barrier is �G0=G0�	s�−G0�	0�
�5.62. The application of a stretching force F tilts the free-
energy landscape to G�	�=G0�	�−F	 and reduces the barrier
height �G. As shown in the inset of Fig. 1, �G decreases
almost linearly with F. The barrier finally disappears at
Fc�1.83.

Knowing G�	�, the escape-time prediction 
S can be ob-
tained by numerically evaluating the double integral in Eq.
�1�. In Fig. 2 we compare 
S with simulated escape times.
The agreement is very good for strong forces �F�3� as well
as at weak forces �F
1.2�. Due to computational limita-
tions, it was impossible to investigate forces �0.6. The re-
gime in which the simulated escape times are most difficult
to reproduce is around the critical force Fc, where there is no
clear free-energy gradient either toward or away from the
native state. In this regime, the details of the free-energy
profile matter. It is remarkable, however, that this simple
picture—without employing any fitting parameter—is able to
describe the behavior at both strong and weak forces, despite
escape-time differences of almost six orders of magnitude.

This analysis, based on the full profile G�	�, addresses in
a direct manner the question of whether or not the system
can be described in terms of one-dimensional diffusion. In
unfolding experiments, G�	� is unknown, and the challenge
is to extract the main features of the free-energy landscape
from measured escape times. This task is greatly facilitated if
the free energy can be linearly approximated in the interval
�	0 ,	s�, as G�	�= �Fc−F��	−	0� �up to an additive constant�.
With this approximation, the integrals in Eq. �1� can be
evaluated analytically. The resulting expression, for the av-
erage escape time of a diffusive particle in one dimension in
the presence of a bias �F in the present context�, is �20�


L =
M�a

F − Fc
−

M�kBT

�F − Fc�2 �1 − e−��F−Fc�a� , �2�

where a=	s−	0 is the distance between the reflecting and
absorbing boundaries. Unlike the result reported in Ref. �20�,
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FIG. 1. �Color online� Free energy G0�	� at zero force for the
BPN protein, calculated as a function of the end-to-end distance 	.
The positions of the native state, 	0�2.0, and the saddle,
	s�5.25, are indicated. The inset shows the escape barrier �G ver-
sus F. The vertical �blue� and horizontal �green� lines indicate Fc

and the zero-force barrier, �G0.
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FIG. 2. �Color online� Average escape time against force for the
BPN protein. Filled �red� circles are simulation results and the
�black� curve is the prediction 
S obtained from Eq. �1�, with
�=0.05 and M =46. The vertical �magenta� line indicates Fc. The
dotted �green� line is the estimate 
L in Eq. �2�, with M and � as
above and a=3.25. The inset shows the variance, V. Filled �red�
circles are simulation results, whereas the �black� curve and the
dotted �green� line represent the estimates VS and VL, respectively.
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Eq. �2� includes the effect of a zero-force barrier, represented
by the term Fca. The singular terms at F=Fc in Eq. �2�
cancel out, as they should.

The assumption that G�	� is linear between the native
state and the saddle is quite well satisfied for the BPN pro-
tein �see Fig. 1�. Actually, the escape times obtained using
this approximation, 
L, essentially coincide with the esti-
mated 
S obtained using the full G�	�, as can be seen from
Fig. 2. Note that Eq. �2�, like Eq. �1�, has no parameter that
needs to be fitted because we can use the value of Fc previ-
ously determined. While Eq. �2� well describes the escape
time down to the lowest forces that could be studied, one
should still be cautious in using this expression to extrapolate
to zero force, because a “turnover” to a force-independent
process is likely to occur at weak force �21�. The extent of
this weak-force regime might be non-negligible if the tem-
perature is high �21�.

The variance of the escape time is in the Smoluchowski
approach given by VS=
2,S−
S

2, where the second moment

2,S reads �22�


2,S = 2	M�

kBT

�

	0

	s

dy e�G�y��
	0

y

dx e−�G�x�
�x� . �3�

Like the mean, the variance can be obtained analytically if
G�	� depends linearly on 	. This estimate of the variance, VL,
can be found in Eq. �S1� �23�. The inset of Fig. 2 shows our
simulation results for the variance of the escape time for the
BPN protein, along with the estimates VS and VL. For
F�Fc, VS and VL are almost identical, while for F�Fc, VL
is slightly larger than both VS and the simulation results,
although the corresponding three average times are very
similar in this regime. Overall, both VS and VL agree well
with the simulation results.

It is informative to go beyond the first and second mo-
ments and also study the full probability distribution of the
escape time. For F
Fc, we find that the escape-time distri-
bution of the BPN protein to a very good approximation is
exponential, P�t�=
−1e−t/
, with 
 being the mean �see Fig.

3�a��. This observation confirms that at weak forces, where a
free-energy barrier is still present, the main escape mecha-
nism is thermal activation. At F�Fc, the escape process
changes in character, from a thermally activated process to a
diffusive process driven by an external bias �force�. In the
latter regime, it is known that first passage times follow a
so-called inverse Gaussian distribution �24�. This distribution
is given by

P�t� =



�2��t3
e−�t − 
�2/�2�t�, �4�

where 
 is the mean and �=V /
, with V being the variance.
This expression indeed provides a very good description of
our simulation results at strong forces, as illustrated in Fig.
3�b�. It should be noticed that this comparison does not in-
volve any parameter fitting because 
 and V are determined
directly from the simulations.

Previous studies have used a log-normal distribution,
rather than the inverse Gaussian, to describe the escape-time
distribution at strong forces �25,26�. While the log-normal
distribution is similar to the inverse Gaussian �see Fig. 3�b��,
there is no theoretical background to justify its use in the
present context. The inverse Gaussian distribution is, by con-
trast, known to arise from the biased Brownian motion �24�,
which provides a simple physical picture of the unfolding
dynamics at strong forces.

Having seen that our approach provides a good descrip-
tion of the unfolding dynamics of the BPN protein, we now
turn to two real proteins: ddFLN4 and ubiquitin. Two results
of the above analysis are particularly useful when comparing
with experimental data. The first is Eq. �2�, which provides
an approximate closed-form expression for the average es-
cape time 
�F� at both weak and strong forces. The second
result is that the onset of the nonexponential strong-force
behavior of 
�F� is accompanied by a change in the shape of
the escape-time distribution, from exponential to inverse
Gaussian.
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FIG. 3. �Color online� Escape-time distribution P�t� for the BPN
protein at two different forces. Large �black� dots are simulation
results. �a� F=0.6 ��Fc�. The �red� curve is an exponential
�
=7.02�105�. �b� F=2.2 ��Fc�. The �red� curve is an inverse
Gaussian �
=71.1, V=1.35�103�, whereas small �blue� dots repre-
sent a log-normal fit to data.
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FIG. 4. �Color online� Average unfolding time versus force for
ddFLN4. The symbols �explained in detail in Ref. �23�� represent
experimental data, originally obtained at constant velocity �8� and
transformed to constant-force conditions in Ref. �7�. The �black�
curve is a fit of Eq. �2� �M�=0.012 pN s /nm, a=1.1 nm, and
Fc=60 pN�. The inset shows ubiquitin data from force-clamp ex-
periments reported in Ref. �13�.
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Experimental unfolding times for ddFLN4 show, as men-
tioned earlier, clear deviations from the Bell formula �7,8�. It
has been demonstrated �7� that the DHS approach �4�
describes the data well. In Fig. 4, we show a fit of our
Eq. �2� to the same data. The fit is good, and the fitted
values a=1.1 nm �corresponding to xu� and �G0=Fca
=9.50 kcal /mol are consistent with the results of Ref. �7�.
Unlike the DHS approach, ours does not assume the escape
barrier to be high. For ddFLN4, our fit to the 
�F� data indi-
cates that the barrier disappears already at Fc�60 pN. It
would be very interesting to see whether the escape-time
distribution is inverse Gaussian at, say, 100 pN, but this dis-
tribution has not been evaluated, as far as we know.

For ubiquitin, the escape-time distribution has been mea-
sured experimentally at 110 pN �12�. The data were found to
be well described by a log-normal distribution �12�, which is
very similar to the inverse Gaussian one found above at
strong forces. Our approach thus offers an explanation of the
shape of the observed distribution. This explanation requires
that Fc�110 pN. Very recent experimental 
�F� data for
ubiquitin �13� show signs of deviations from the Bell for-
mula �see the inset of Fig. 4�. However, it was found that the
data could not discriminate between the Bell and DHS for-

mulas �13�. Neither are the data sufficient to permit a stable
fit of Eq. �2�, which would have given us an independent
estimate of Fc. The assumption that
Fc�110 pN seems, however, fully consistent with the ex-
perimental 
�F� data.

In this Rapid Communication we have shown for a model
protein that the unfolding process from the native valley un-
der force-clamp conditions can be modeled as a Brownian
motion in a tilted one-dimensional free-energy landscape.
Moreover, it turned out that this description could be further
simplified with a surprisingly small loss of accuracy, by
adopting a linear approximation for the free energy. This
analysis links deviations from the Bell formula for k�F� for
F�Fc to an altered shape of the escape-time distribution,
from exponential to inverse Gaussian. Comparison with ex-
periments indicates that the strong-force regime might set in
at relatively weak force �Fc
100 pN� for both ddFLN4 and
ubiquitin.

We acknowledge S. Lepri and A. T. Sanesi for useful
discussions.
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