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The equilibrium free-energy landscape of off-lattice model heteropolymers as a function of an internal
coordinate, namely the end-to-end distance, is reconstructed from out-of-equilibrium steered molecular dynam-
ics data. This task is accomplished via two independent methods: By employing an extended version of the
Jarzynski equality and the inherent structure formalism. A comparison of the free energies estimated with these
two schemes with equilibrium results obtained via the umbrella sampling technique reveals a good quantitative
agreement among all the approaches in a range of temperatures around the “folding transition” for the two
examined sequences. In particular, for the sequence with good foldability properties, the mechanically induced
structural transitions can be related to thermodynamical aspects of folding. Moreover, for the same sequence
the knowledge of the landscape profile allows for a good estimation of the lifetimes of the native configuration
for temperatures ranging from the folding to the collapse temperature. For the random sequence, mechanical

and thermal unfolding appear to follow different paths along the landscape.
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I. INTRODUCTION

Several states of matter are characterized by a nontrivial
free-energy landscape (FEL), which can be at the origin of
peculiar structural and dynamical features. Supercooled lig-
uids, glasses, atomic clusters, and biomolecules [1] are typi-
cal examples of systems whose thermodynamical behavior
can be traced back to the intricate topological properties of
the underlying FEL. The pioneering work by Stillinger and
Weber on inherent structures (ISs) of liquids [2] revealed the
importance of investigating the stationary points of the po-
tential energy surface (PES) for characterizing their dynami-
cal and thermodynamical properties. Similar approaches
have been proposed and successfully applied, in glasses [3]
and supercooled liquids [4], to the identification of the
structural-arrest temperature. This temperature marks a topo-
logical transition from a dynamics evolving in a landscape
dominated by minima to one where unstable saddles play a
major role [4,5].

More recently, this kind of analysis has been applied to
the study of protein models [1,6-12]. In particular, several
studies have been devoted to the reconstruction of the PES
and of the FEL topology in terms of graphs (at various levels
of coarse graining) connecting the folded states to the un-
folded structures [7-9]. The knowledge of the graph struc-
ture connecting the various metastable states and of the prob-
ability transitions among them allows for a reconstruction of
the folding dynamics in terms of a master equation [13].
Moreover, detailed analysis of the thermodynamical and dy-
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namical features, characteristics of proteins, have been quite
recently carried out in terms of ISs [10-12]. These analysis
suggest that the folding process of a protein towards its na-
tive configuration depends crucially on the structure and to-
pological properties of its (free-) energy landscape. Confirm-
ing somehow the conjecture that the FEL of a protein has a
funnel-like shape: The native configuration being located in-
side the so-called native valley at the bottom of the funnel
itself [14].

On the other hand, mechanical unfolding of single bio-
molecules represents a powerful technique to extract infor-
mation on their internal structure as well as on their unfold-
ing and refolding pathways [15-19]. However, mechanical
unfolding of biomolecules is an out-of-equilibrium process:
Unfolding events occur on time scales much shorter than the
typical relaxation time of the molecule towards equilibrium.
Nonetheless, by using the equality introduced by Jarzynski
[20], the free energy of mechanically manipulated biomol-
ecules can be recovered as a function of an externally con-
trolled parameter [21,22]. Moreover, an extended version of
the Jarzynski equality (EJE) has been proposed in order to
estimate the equilibrium free-energy landscape in absence of
applied forces as a function of an internal coordinate of the
system (usually, the end-to-end distance {) [23-26]. Quite
recently this approach has been successfully applied to data
obtained from nanomanipulation of titin 127 domain with
atomic force microscopy (AFM) [27,28] and from steered
molecular dynamics simulations of a mesoscopic off-lattice
protein model [29]. The analysis reported in [29] was de-
voted to a single sequence previously identified as a reason-
ably fast folder [30,31] and it was essentially performed at a
unique temperature.

As an extension of the analysis performed in Ref. [29], in
the present paper we reconstruct, for two different sequences
with bad and good folding properties, the equilibrium FEL as
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a function of the end-to-end distance { in two distinct ways:
Namely, by employing the EJE approach and the IS distribu-
tions. We will show that specific features of the landscapes
characteristic of a protein, i.e., a good folder, can be singled
out from a comparison of the two approaches. Furthermore,
the different unfolding structural transitions can be associ-
ated to the detachment of specific strands of the examined
heteropolymers. In particular, the investigation of the IS dis-
tributions allows us to give an estimate of the energetic and
entropic barriers separating the native state from the com-
pletely stretched configuration. Moreover, for the good folder
the temperature dependence of the free-energy barrier
heights and the unfolding times can be related.

An important aspect to clarify is the relationship between
the thermal and mechanical unfolding pathways of proteins:
Experimental [32] as well as numerical works [33,34] seem
to suggest that these paths are indeed different. However,
there are indications that the thermal paths can be recovered
also via the manipulation procedure in the limit of very low
pulling velocities [34]. This seems to be in agreement with
our findings for the good folder, which indicate that the ob-
served structural transitions, induced by mechanical unfold-
ing, can be put in direct relationship with the thermal transi-
tions usually identified for the folding-unfolding process.

The paper is organized as follows, Sec. II is devoted to the
introduction of the employed model and sequences, as well
as of the simulation protocols. In Sec. III it is explained how
to combine the umbrella sampling technique [35] with the
weighted histogram analysis method [36] in order to recover
the equilibrium free-energy profile as a function of an inter-
nal coordinate of the system. The inherent structure formal-
ism and the extended Jarzynski equality are briefly illustrated
in Sec. IV and Sec. V, respectively. The thermodynamical
properties of the studied sequences are reported in Sec. VI.
While Sec. VII (respectively, Sec. VIII) is devoted to the
free-energy landscape reconstruction in terms of the ex-
tended Jarzinsky equality (respectively, inherent structure ap-
proach). In Sec. VIII the two methods are also compared and
discussed. Finally, the results are summarized in Sec. IX.

II. MODEL AND SIMULATION PROTOCOL
A. Model

The model studied in this paper is a modified version of
the three-dimensional (3D) off-lattice model introduced by
Honeycutt-Thirumalai [37] and successively generalized by
Berry et al. to include a harmonic interaction between next-
neighboring beads instead of rigid bonds [38]. This model
has been widely studied in the context of thermally driven
folding and unfolding [9,11,30,31,37-40] and only more re-
cently for what concerns mechanical folding and refolding
[41,42]. The model consists of a chain of L pointlike mono-
mers mimicking the residues of a polypeptidic chain. For the
sake of simplicity, only three types of residues are consid-
ered: Hydrophobic (B), polar (P), and neutral (N) ones.

The intramolecular potential is composed of four terms: A
stiff nearest-neighbor harmonic potential, V|, intended to
maintain the bond distance almost constant, a three-body in-
teraction V,, which accounts for the energy associated to
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bond angles, a four-body interaction V3 corresponding to the
dihedral angle potential, and a long-range Lennard-Jones
(LJ) interaction, V,, acting on all pairs i, j such that |i—j]|
>2, namely

Vi(ri) = alrii — o), (1)
V,(6;) = A cos(6;) + B cos(26,) — V,, (2)

Va(@is 0, 0:41) = Ci[l - S(ai)S(aiH)COS(%)]
+D[1-5(6,)S(0;,1)cos(3¢,)], (3)

1 Cii
V4(ri,j)=8i,j<ﬁ__6l>~ 4)
ij Tij

Here, r;; is the distance between the ith and the jth mono-
mer, 6; and ¢; are the bond and dihedral angles at the ith
monomer, respectively. The parameters a=50 and ry=1
(both expressed in adimensional units) fix the strength of the
harmonic force and the equilibrium distance between subse-
quent monomers (which, in real proteins, is of the order of
a few A). The value of « is chosen to ensure a value for
V| much larger than the other terms of potential in order
to reproduce the stiffness of the protein backbone. The ex-
pression for the bond-angle potential term V,(6;) (2) corre-
sponds, up to the second order, to a harmonic interaction
term ~(6;— 6,)*/2, where

B cos(6p) B ky
%sin2(6,)° "~ 4sin%(6y)’
Vo=A cos(6y) + B cos(26,), (5)

with k,=20¢),, 6y=57/12 rad or 75° and where ¢, sets the
energy scale. This formulation in terms of cosines allows us
to speed up the simulation, since it is sufficient to evaluate
cos(6;) and the value of bond angle is not needed, and at the
same time to avoid spurious divergences in the force expres-
sion due to the vanishing of sin(6;) when three consecutive
atoms become aligned [43].

The dihedral angle potential is characterized by three
minima for ¢=0 (associated to a so-called frans state) and
¢==*27/3 (corresponding to gauche states), this potential is
mainly responsible for the formation of secondary structures.
In particular, large values of the parameters C;,D; favor the
formation of trans state and therefore of B sheets, while
when gauche states prevail « helices are formed. The param-
eters (C;,D;) have been chosen as in [39], i.e., if two or more
beads among the four defining ¢ are neutral (N) then C;=0
and D,;=0.2g, in all the other cases C;=D;=1.2¢; (see Fig.
1). The tapering function S(6;)=1-cos**(6,) has been intro-
duced in the expression of V3 in order to cure a well-known
problem in the dihedral potentials [43]. This problem is en-
countered whenever 6;,=0 or 7, i.e., when three consecutive
beads are in the same line, in these situations the associated
dihedral angle is no more defined and a discontinuity in V3
arises. In contrast to what was reported in [43] this situation
is not improbable for the present model. The quantity
S(6,)S(6;,,) entering in the definition of V3 has a limited
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FIG. 1. (Color online) Dihedral angle potential, V3, when two or
more beads among the four defining ¢ are neutral (red dashed
curve), and in all of the other cases (blue solid curve). We fixed
g,=1 and S(6,)=5(6;,,)=0.

influence on the dynamics apart in proximity of the above-
mentioned extreme cases. Moreover, S(6,)S(0,,,) is C*, its
value is essentially 1 almost for any 6, it does not introduce
any extra minima in the potential and it vanishes smoothly
for 6;—0 or 6,—  [44].

The last term V, has been introduced to mimic effectively
the interactions with the solvent, it is a Lennard-Jones poten-
tial and it depends on the type of interacting residues as
follows:
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(i) If any of the two monomers is neutral the potential is
repulsive ¢y x=0 and its scale of energy is fixed by ey
=48h.

(ii) For interactions between hydrophobic residues cp p
=1 and &5 g=4¢y,.

(iii) For any polar-polar or polar-hydrophobic interaction
cpp=cpp=—1and ep p=epp=(8/3)g,.

Accordingly, the Hamiltonian of the system reads as

L pz +p2 +p2 L-1 L-1
H=K+V=, = 2l Z’I+EV1(V1',1'+1)+EV2(01‘)
i=1 i=1 i=2
L-2 -3 L
+ 2 V(@i 0, 0;41) + 2 E Vi(ry), (6)
i=2 i=1 j=i+3

where, for the sake of simplicity, all monomers are assumed
to have the same unitary mass, the momenta are defined as
(px,i’py,i’pz,i) = (xi’yi’z.i) and we fix 8h=1'

In the present paper we consider the two following se-
quences of 46 monomers:

(i) [GF]=BgN;(PB),N;BoN5(PB)sP, a sequence that has
been widely analyzed in the past for spontaneous folding
[9,11,30,31,37-40] as well as for mechanical unfolding and
refolding [41,42].

(ii) [BF] = BNBPB;NPB,NBPB,NP,BsN,BPBNPB,NBP,BNB,PB,,

arandomly generated sequence, but with the same number of
B, P, and N monomers as the GF.

These two sequences have been chosen because GF has
been previously identified as a reasonably fast folder [30]
(see also [38] for a detailed and critical analysis of the basin-
bottom structures observed for this model), while we expect
that the sequence BF, being randomly chosen, cannot have
the characteristic of a good folder. From now on we refer to
the sequence GF (respectively, BF) as the good (respec-
tively, bad) folder.

The 46-mer sequence GF exhibits a four stranded
B-barrel native configuration (NC) with an associated poten-
tial energy Enxc=-49.878. Please note that the model is here
analyzed by employing the same potential and parameter set
reported in Ref. [39], but neglecting any diversity among the
hydrophobic residues. The NC, displayed in Fig. 6(a), is sta-
bilized by the attractive hydrophobic interactions among the
B residues, in particular the first and third By strands, form-
ing the core of the NC, are parallel to each other and anti-
parallel to the second and fourth strand, namely, (PB), and
(PB)sP. The latter strands are exposed towards the exterior
due to the presence of polar residues.

As shown in Fig. 10, the native structure of the BF is
quite different, it has a core constituted by the first three 3
strands and a very long “tail” (made of 18 residues) wrapped

around the core. In particular, the first and second g
strands (namely, BNBPB;NP and B4,NBPB,) are formed
by nine residues, and antiparallel to each other. For more
clarity, we will term 7r; as the plane containing the first
two strands. The third strand (namely, P,Bs) is made of
seven residues and it is located in a plane lying in-
between the first and second strand, which is almost per-
pendicular to 7. The chain rotates by almost 90° in corre-
spondence of the two consecutive neutral beads and
then exhibits a short strand of three beads PBP before turn-
ing back with a parallel strand of seven beads (PB,NBP,)
that passes below ;. Finally the chain turns once more
back by passing this time above the plane 7. In the final
part of the tail of the chain a short strand of five residues,
parallel to the fourth and fifth strands, can be identified as
B,PB,. The potential energy of the NC of the BF is quite
high with respect to the GF, namely, Vyc=-23.956.
Moreover, this difference, as reported in Table I, is essen-
tially due to the difference in the dihedral contributions,
that is much higher in the NC of the BF with respect to the
GF, while all of the other contributions, in particular the LJ
ones, have nearby values. The dihedral contribution that
arises in the BF is essentially due to the configuration of the
first three strands, since these are arranged over two almost
orthogonal planes.
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TABLE 1. Potential energy values associated to the NC of the
GF and BF, the different contributions to the total potential energy
Ve are also reported.

GF BF
Vae -49.878 -23.956
v, 0.787 0.777
v, 1.767 5.744
Vs 2.602 23.105
v, -55.035 -53.582

B. Simulation protocol: Equilibrium Langevin dynamics

Molecular dynamics (MD) canonical simulations at equi-
librium temperature 7" have been performed by integrating
the corresponding Langevin equation for each monomer of
unitary mass (characterized by the position vector r;),

i:i:F(ri)_ ’)/I"[+ 77(’), i: I»L’ (7)

where 7(7) is a zero average Gaussian noise term with cor-
relations given by (7,(1) ng(t')=2Tyd(t—1")5, 5 F=-VV,
being V the intramolecular potential introduced in Sec. II A,
v the friction coefficient associated to the solvent and by
assuming a unitary Boltzmann constant.

Numerical integrations have been implemented via a stan-
dard Euler scheme with a time step Ar=0.005 and with a low
friction coefficient y=0.05 [39]. Two different kinds of MD
have been performed, namely unfolding simulations (US)
and folding simulations (FS). In the first case the initial state
of the system is taken equal to the native configuration (NC),
that we assume to coincide with the minimal energy configu-
ration. In the latter one the initial state is a completely un-
folded configuration.

C. Simulation protocol: Out-of-equilibrium
mechanical unfolding

In order to mimic the mechanical pulling of the protein
attached to a AFM cantilever, or analogously when trapped
in an optical tweezer, one extremum of the chain was kept
fixed and the last bead is attached to a pulling apparatus with
a spring of elastic constant k. The external force is applied by
moving the “cantilever” along a fixed direction with a certain
protocol z(z). Before pulling the protein, the coordinate sys-
tem is always rigidly rotated, in order to have the z axis
aligned along the end-to-end direction connecting the first
and last bead. Therefore, by denoting with { the end-to-end
distance, the component of the external force along this di-
rection reads as

Fex = k(Z - g)’ (8)

where k=10 in order to suppress fast oscillations. As recently
pointed out it is extremely important to use a sample of
thermally equilibrated initial configurations to correctly re-
produce the equilibrium FEL via the JE. [22]. Therefore,
before pulling the protein, we have performed a thermaliza-
tion procedure in two steps. At a fixed temperature 7, ini-
tially the protein evolves freely starting from the NC for a
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time r=1000, then it is attached to the external apparatus,
with the first bead blocked, and it equilibrates for a further
time period r=500. The system (at sufficiently low tempera-
tures) quickly settles down to a “nativelike” configuration.
This configuration is then employed as the starting state for
the forced folding. The protocol that we have used is a linear
pulling protocol with a constant speed v, i.e., z(t)=2(0)
+v, X1, by assuming that the pulling starts at 7/=0. Usually
we have employed velocities vp e[5X1070:5X 1072] and
set z(0)=¢,, i.e., to the end-to-end distance associated to the
native configuration.

III. WEIGHTED HISTOGRAM ANALYSIS METHOD

A combination of the umbrella sampling technique [35]
with the weighted histogram analysis method (WHAM) [36]
allows us to obtain the equilibrium free-energy profile as a
function of the end-to-end distance.

The umbrella sampling technique [35] amounts to per-
form a series of biased molecular dynamics simulations of
the system constrained by an external potential, namely

wi({) = %kw(g— Zi)2~ 9)

The potential w; forces the heteropolymer to stay in configu-
rations characterized by a certain average end-to-end dis-

tance {;, even if at the considered temperature such ¢ value is
highly unfavored. These simulations allow us to obtain a
series of M biased end-to-end probability density distribu-
tions p?({){i=1,...,M}, which properly combined can per-
mit the reconstruction of the equilibrium unbiased p(¢). In
particular, in the case of identical statistics for each biased
run the WHAM formalism prescribes the following combi-
nation:

M
Pt
Q) =5
2 e—ﬁ[W;(g)—F[]

i=1

- e—ﬁfw(g,T) , (10)

where B8=1/T and the free-energy constants {F;} can be ob-
tained by the normalization condition

e Pli= f dgeP"9p(¢). (11)

Equations (10) and (11) should be solved self-consistently
via an iterative procedure, finally this allows us to obtain an
estimate of the equilibrium free energy fy(Z,T), apart from
an additive constant.

We have considered equally spaced {/;} values, with a

separation A;=0.2 among them, ranging from the native
configuration ¢, to the all trans-configuration §,mm.'

"This is an elongated (planar) equilibrium conformation of the
protein with all the dihedral angles at their frans values, corre-
sponding to {,,,s=35.70.
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For each of the M runs, after a quite long equilibration time
¢~ 120 000—200 000, we have estimated p?({) over 100 000
configurations taken at regular time intervals Ar=0.2. The
biased simulations have been performed with a hard and
weak spring, corresponding to ky,=10 and 0.5 in (9), respec-
tively. The results obtained essentially agree for the two ky,
values, apart when the free-energy landscape exhibits steep
increases as a function of £. In these cases the hard spring is
more appropriate, since the weak one allows the protein to
refold, thus rendering the { intervals, where fy,/({) is steeper,
not accessible to the WHAM reconstruction.

IV. INHERENT STRUCTURE FORMALISM

Inherent structures correspond to local minima of the po-
tential energy, in particular the phase space visited by the
protein during its dynamical evolution can be decomposed
into a set of disjoint attraction basins, each corresponding to
a specific IS. Therefore, the canonical partition function can
be expressed within the IS formalism as a sum over the non-
overlapping basins of attraction, each corresponding to a spe-
cific minimum (IS) « [1,10],

1
Zis(T) = WZ e PBVa f e PG = o BVatR(D],
. a r

a a

(12)

where N’ is the number of degrees of freedom of the system,
\ is the thermal wavelength, I" represents one of the possible
conformations of the protein within the basin of attraction of
a, V, is the potential energy associated to the minimum a,
AV, () =v(I')-V, and R,(T) the vibrational free energy due
to the fluctuations around the minimum.

The vibrational term R,(T) can be estimated by assuming
a harmonic basin of attraction,

3N-6

1 J T
—| ePVlar=1] =,  (13)
\3N-6 - o

a J=1 a

o PRAT) _

where w/ are the frequencies of the vibrational modes around
the IS a and a unitary reduced Planck constant has been
considered.

Therefore the probability to be in the basin of attraction of
the IS a is

- =BV +R,(D)]
pa(T) 2D’ . (14)
The free energy of the whole system at equilibrium is
simply given by fis(T)=-T In[Z;s(T)]. However if one is in-
terested to construct a free-energy landscape as a function of
a parameter characterizing the different IS, like, e.g., the
Kabsch distance Sy [45] or the end-to-end distance £, this is
possible by defining a partition function restricted to IS with
an end-to-end distance within the narrow interval [;{+d/{],

Zis(&T) = 2 e AVt RaD], (15)
a
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where the X’ indicates that the sum is not over the whole
ensemble of ISs {a} but restricted. The free-energy profile as
a function of { can be simply obtained by the relationship

flS(g’ T) == Tln[ZIS(g’ T)]’ (16)

while the average potential and free vibrational energy, cor-
responding to ISs characterized by a certain {, can be esti-
mated as follows:

Sy oAV
VIS(gs T) =

s

Zis(Z,T)

E ’Ra(T)e—ﬁ[Va+Ra(T)]

a

Ris(6.1) =~ (17)
In order to find the different ISs one can perform MC
samplings or molecular dynamics (MD) simulations. We
have chosen to examine MD trajectories at constant tempera-
ture via a Langevin integration scheme. In particular, we
have built up two data banks of ISs: The thermal data bank
(TDB) obtained by performing equilibrium canonical simu-
lations and the pulling data bank (PDB) by mechanically
unfolding the protein. In order to find the different ISs, the
equilibrium (respectively, out-of-equilibrium) Langevin tra-
jectory is sampled at constant time intervals or=5 (respec-
tively, at constant elongation increments 6£=0.1) to pinpoint
a series of configurations, which afterward are relaxed via a
steepest descent dynamics and finally refined by means of a
standard Newton’s method. In the case of the TDB, in order
to speed up the search of ISs we have employed a so-called
“quasi-Newton” method [46].> For mechanical unfolding, the
protein is unblocked and the pulling apparatus removed be-
fore the relaxation stage. Two local minima are identified as
distinct whenever their energies differ more than 1X 107>,
The TDB for the good (respectively, bad) folder contains
579 749 (respectively, 210 782) distinct ISs collected via
equilibrium simulations at various temperatures in the range
[0.3; 2.0]. The PDB contains 3000-50 000 ISs depending on

the examined temperature as detailed in Table II.

V. EXTENDED JARZYNSKI EQUALITY

In the present section, we discuss an extended version of
the Jarzynski equality, which allows one to obtain the free-
energy profile as a function of a collective coordinate. Let x
be the variable that identifies the system microscopic state,
e.g., the collection of the positions and momenta of all the

The comparison between the steepest descent and the quasi-
Newton methods has revealed that this second minimization scheme
is somehow faster (1.8 times faster at 7=0.5 for the good folder),
but while the steepest descent algorithm is able to identify the meta-
stable stationary states in the 99.8% of examined cases the quasi-
Newton scheme was successful in the 98.7% of situations. How-
ever, the distributions of the identified minima (by considering the
same trajectory) obtained with the two schemes are essentially
coincident.
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TABLE II. Number of distinct ISs contained in the PBD at
different temperatures. These have been obtained by sampling, dur-
ing out-of-equilibrium mechanical unfoldings, several Langevin tra-
jectories at constant elongation increments 6{=0.1. The total num-
ber of relaxations performed for each temperature amounts to
~60 000 corresponding to ~200 repetitions of the same pulling
experiment. The considered experiments have been performed at
vp=5X107* for the GF, while velocities in the range vp e[S
X 1073:5X 107#] have been employed for the BF. For the bad
folder not all temperatures have been examined.

T Good folder Bad folder
0.1 2843 456
0.2 5875 1763
0.3 12 359 6477
0.4 35 409 21 060
0.5 52 546 45950
0.6 51971

0.7 54736

particles in the system x={r;,p;}. The system Hamiltonian is
a function of x, and will be indicated as H(x) in the follow-
ing. Let X(x) be a macroscopic observable of the system,
e.g., the volume, and let us assume that the system is subject
to an external potential U,(X), which is a function of X, and
which depends on a parameter A whose value is externally
controlled. The parameter A changes according to a given
time protocol A(z), and thus the system is characterized by a
time-dependent Hamiltonian H(x,t)=H(x)+ Uy (X(x)). The
thermodynamic work done on the system, as the external
parameter \ changes, reads as

Wz=f di' N(") AUNX (1) her(r)- (18)
0

Due to thermal fluctuations, W, varies between a realization
and another one of the manipulation process.

We now introduce the function f(X,T), which is the free
energy of the constrained ensemble, in which the value X(x)
is fixed at X,

fX,T)==ksTIn f dx8(X — X(x))e P (19)

The extended Jarzynski equality, relates the work done on
the system, as an effect of the change in the external param-
eter A, with the free energy f(X,T) [23,47,48]

ZOeBU)\(t)(X)<6(X _ X(x))e‘BWf>, = B, )’ (20)

where Z,= [dx exp[—BH,(x)] is the partition function associ-
ated with the time-independent Hamiltonian H(x) and the
averages (--+), are taken over many realizations of the same
protocol at time 7. Equation (20) provides thus a method to
evaluate the unperturbed free energy f(X,T) as long as one
has a reliable estimate of the left-hand side (Ihs) of this equa-
tion. It is worth to note that one does not need to evaluate the
partition function Z; to evaluate f(X,T), as it appears only as
a multiplicative constant in Eq. (20).
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The optimal estimate of f(X,T) can be obtained by com-
bining Eq. (20) with the previously discussed method of
weighted histograms [23,47,48], namely

E (X = X(x))exp(= BW,)),
R e = )
fJ( > )__ pl 1N eXp(— U(X,t)) 4

. (exp(= W),

(21)

where the sums 2, are over successive time snapshots. For a
detailed derivation of Eq. (20) see [47].

VI. THERMODYNAMICAL PROPERTIES

The main thermodynamical features of the examined
model can be summarized by reporting three different tran-
sition temperatures [1,11,12,49,50]: Namely, the hydropho-
bic collapse temperature T, the folding temperature 7, and
the glassy temperature 7.

The collapse temperature discriminates between phases
dominated by random-coil configurations rather than col-
lapsed ones [51], T has been usually identified as the tem-
perature where the heat capacity C(T) reaches its maximal
value, namely (within the canonical formalism):

2 2

C(Ty) = C™, where C(T) = % (22)
and (---) represents a time average performed over an inter-
val t=10° by following a US trajectory. From Fig. 2, it is
evident that for both sequences C(T)~ 138 up to tempera-
tures 7'~ 0.25. This result can be understood by noticing that
at low temperatures the thermal features of heteropolymers
resemble that of a disordered 3D solid, with an associated
heat capacity C,,;=3L. Moreover, the high-temperature val-
ues are smaller than Cy, since in this limit we expect that a
one-dimensional chain in a three-dimensional space would
have a specific heat C=2L [49]. However, as shown in Fig.
2, these extreme temperatures have not yet been reached.
The comparison of the heat capacity curves for the GF and
BF reveals that C(T) obtained for the GF has a much broader
peak with respect to the BF. This indicates that the transition
from the NC to the random-coil state is definitely sharper for
the bad folder.

The folding temperature has been defined in many differ-
ent ways [31,39,49], however we have chosen to define the
folding temperature by employing the IS reconstruction of
the phase space. In practice, quite long USs have been per-
formed at various temperatures, up to duration =5 000 000.
During each of this US the visited ISs have been identified at
regular intervals ot=5, and from these data we have esti-
mated the probability P,.(T) to visit the NC at such tempera-
ture (Fig. 3). The folding temperature 7 is then defined as

P, (T)=0.5. (23)

Indeed, it should be noticed that for the GF P,,. is the prob-
ability to stay in the two lowest-lying energy minima (ISs)
and not in the NC only. These two minima can be associated
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TABLE III. Transition temperatures estimated for good and bad
folder with the corresponding error.

GF BF
T, 0.65(1) 0.46(2)
T, 0.255(5) 0.24(1)
T, 0.12(2) 0.27(2)

to a unique attraction basin, since their energy separation is
extremely small with respect to |Vic| (namely, 0.04) and also
the corresponding configurations are almost identical, being
separated by a Kabsch distance 5x=0.128. Moreover, at any
examined temperature we have always observed a rapid
switching between the two configurations, indicating that
there is an extremely low-energy barrier among these two
states.

The glassy temperature 7, indicates the temperature be-
low which freezing of large conformational rearrangements
occurs: Below such a temperature the system can be trapped
in local minima of the potential. By following [49], in order
to locate T, we have made a comparison among results ob-
tained from FS and US. In particular, we have examined, at
the same temperatures, the average total energy (E) of the
system evaluated over finite time intervals. As shown, in Fig.
4, these quantities, when obtained from USs and FSs, coin-
cide at temperatures larger than 7, below which the struc-
tural arrest takes place. In particular, unfolding averages
have been performed over intervals of duration t=10° by
following a single trajectory. On the other hand, folding
simulations have been followed up to times #==1.1 X 107 and
the averages taken over 5-7 different initial conditions by
considering for each trajectory only the last time span of
duration r=5X10* The error bars (standard deviation)
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FIG. 2. (Color online) Heat capacity C as a function of the
temperature T for good (a) and bad (b) folder; the vertical (red)
dotted line indicates the hydrophobic collapse temperature 7y and
the horizontal (black) dashed line the value Ci;.
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FIG. 3. (Color online) Probability P,,. as a function of the tem-
perature T for good (a) and bad (b) folder; the vertical (magenta)
dashed line indicates the folding temperature T, while the horizon-
tal (black) dotted line refers to the value 0.5.
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FIG. 4. (Color online) Total energy (E) as a function of the
temperature T for good (a) and bad (b) folder; the solid (red) line
corresponds to US’s and the (blue) symbols to FS’s. In the inset an
enlargement for low temperatures: The dashed lines indicate the
glassy (T,) (magenta) and folding (7)) (green) temperatures.
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shown in Fig. 4 should be interpreted, at sufficiently low
temperatures, as a sign of the dependence of the results on
the initial conditions.

The three transition temperatures estimated for the good
and bad folder are reported in Table I11.° One can notice that
T, is larger for the good folder, thus indicating that the col-
lapsed state has a greater stability with respect to the bad
folder. Moreover, while for the good folder T:>T,, for the
bad one this order is reversed. Therefore, the BF will most
likely remain trapped in some misfolded configurations be-
fore reaching the NC even at temperatures 7~ T.

VII. EXTENDED JARZYNSKI EQUALITY
RECONSTRUCTION

In this section we present for both the sequences GF and
BF the reconstruction of the FEL, at various temperatures, as
a function of the end-to-end distance { starting from out-of-
equilibrium measurements. The free-energy profiles have
been obtained via the EJE by averaging over 28-250 repeti-
tions of the same pulling protocol depending on the pulling
velocity as described in Sec. II C. We have generally used
the pulling configuration where the first bead is kept fixed
and the 46th bead is pulled (tail-pulled case). However, by
considering the head-pulled case, where the roles of the first
and last bead are reversed. we obtain, for sufficiently low
velocities (namely, v,,$5 X 10~* for the GF and UI,SS
X 107 for the BF), exactly the same free-energy profile.
These results are essentially in agreement with those reported
in [42] for the GF.

A. Good folder

In Fig. 5(a) are presented the EJE reconstructions f,({)
(symbols) for T=0.3 obtained at various pulling velocities
for the good folder together with the corresponding WHAM
estimate fy/({) (dashed lines). As a first point, we notice that
the estimated FEL collapses towards fy({) as the pulling
velocity decreases. In particular, for the good folder the
asymptotic shape is reached for small { values at a somehow
larger velocity (namely, for /<10 already for v,=5X107%)
than at larger £. In particular, to reproduce fy/(Z) up to yuns
the pulling should be performed at v,=5X 107, Moreover,
referring to Fig. 5, it is possible to identify the structural
transitions (STs) induced by the pulling experiment. As
shown in Fig. 5(b), the asymptotic f;({) profile exhibits a
clear minimum in correspondence of the end-to-end distance
of the NC (namely, {,~ 1.9). In more detail, up to {~ 5.6,
the protein remains in nativelike configurations characterized
by a B barrel made up of four strands, while the escape from
the native valley is signaled by the small dip at {~ 5.6 and it

3In [31] for the sequence GF it has been found 7,=0.65 and Ty
~0.34; however in the same paper the authors suggested that the
folding transition was associated to a shoulder in the C, but this
result has been recently criticized [40]. Moreover, more recent es-
timates, obtained by employing different protocols, suggest that
T;~0.24-0.25 [9,11] and T, ~0.15 [11], values that are essentially
in agreement with our results.
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FIG. 5. (Color online) (a) Free-energy profiles f; for the good
folder as a function of the end-to-end distance ¢ at 7=0.3, obtained
with the EJE for various pulling velocities: From top to bottom
v,=5X1072, 1X 1072, 5X 107, 5x 107, 2x 107, 2x 107, and
5% 107°. In (b) an enlargement of the curve for v »=3X 1076 at low
{ is reported. The (black) dashed curve in (a) and (b) refers to the
WHAM reconstruction fy(¢) with ky=10. The number of different
pulling experiments performed to estimate the profiles ranges be-
tween 150 and 250 at the higher velocities to 28 at the lowest
velocity v,=5X 107°. The letters indicate the value of () for the
pulled configurations reported in Fig. 6(a) and the (blue) vertical
solid lines the location of the STs.

is indicated as ST1 in Fig. 5(b). This ST has been first iden-
tified in [41] by analyzing the the potential energy of ISs
measured during a mechanical unfolding (numerical) experi-
ment. In particular, Lacks [41] identifies this transition as an
irreversible transition, in the sense that above this transition
it is no more sufficient to reverse the stretching to recover the
previously visited conﬁgurations.4

For {>6 the configurations are characterized by an al-
most intact core (made of three strands) plus a stretched tail
corresponding to the pulled fourth strand [see (b) in Fig.
6(a)]. The second ST amounts to pull the strand (PB)sP out
of the barrel. In the range 13<<{<18.5 the curve f,({) ap-
pears as essentially flat, thus indicating that almost no work
is needed to completely stretch the tail once detached from
the barrel [see configuration (c) in Fig. 6(a)]. The pulling of
the third strand (that is part of the core of the NC) leads to a

*Please notice that we observe this transition at {~5.6 and not at
{=4.782 as Lacks has reported, since we are considering the free-
energy profile at 7=0.3, while Lacks’ analysis concerns potential
energies of the ISs. Our inspection of the average potential energies
estimated during the pulling experiments and reported in Fig. 14(a)
confirms this small mismatch.
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FIG. 6. (Color online) (a) Pulled configurations of the good
folder at T=0.3: the NC (a) has {,~ 1.9; the others are character-
ized by {=6.8 (b), {=16.8 (c), and {=27.1 (d). The beads of type N,
B, and P are colored in green, red and yellow, respectively. (b)
Potential energies contributions as a function of the end-to-end dis-
tance { estimated during a pulling experiment with speed v,=5
X 107% and obtained by averaging over 28 different realizations at
T=0.3. (Black) Stars indicate the entire potential energy V, (orange)
crosses Vy, (blue) triangles V,, (magenta) diamonds V3, and (red)
squares V. The (blue) vertical solid lines indicate the transitions
previously discussed in the text.

definitive destabilization of the B barrel. This transition is
denoted as ST3 in Fig. 5(a). The second plateau in f;({)
corresponds to protein structures made up of a single strand
[similar to (d) in Fig. 6(a)].

To distinguish between entropic and energetic costs asso-
ciated to each ST we have also evaluated separately the po-
tential energy contributions V; (i=1,...,4) during the pull-
ing experiment, these data are reported in Fig. 6(b). From the
figure it is clear that the variation of the potential energy
during the stretching is essentially due to the Lennard-Jones
term V,, while the other terms contribute to a much smaller
extent, at least up to {~35. The transition ST1 has essen-
tially only energetic costs, since Af=7(1) and the potential
energy varies almost by the same amount, in particular AV
~AV,=8(1). The other transitions instead have no negli-
gible entropic costs, since the free-energy barrier heights as-
sociate to ST2 and ST3 are 10(1) and 29(2), respectively;
while the corresponding potential energy barriers are higher,
namely AV=16(1) for ST2 and AV=43(1) for ST3. The
complete stretching of the protein up to {=35 has a free
(respectively, potential) energy cost corresponding to Af
=30(2) [respectively, AV=49(1)]. Above {~35, while the
Lennard-Jones and dihedral contributions vanish, the final
(almost quadratic) rise of the free energy is due to the har-
monic and angular contributions, since we are now stretching
bond distances and angles beyond their equilibrium values.
Due to computational constraints and to the fact that this part
of the FEL is not particularly relevant, the reconstructions at
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FIG. 7. (Color online) Free-energy profiles f;({) obtained with
the EJE for good folder at various temperatures: 7=0.2 (red
squares), 0.4 (green stars), 0.5 (orange circles), 0.6 (magenta plus),
and 0.7 (blue triangles). In the inset, an enlargement is reported at
small {. Data refer to v,=5X 10~*. The number of different realiza-
tions performed to estimate the averages at the different tempera-
tures ranges between 160 and 250.

the lowest velocities and the WHAM estimations have been
not performed for these large ¢ values.

In Fig. 7 the reconstruction of the FEL obtained at various
temperatures is shown. For temperatures around T one still
observes a FEL resembling the one found for 7=0.3, while
by increasing the temperature the dip around {~6-7 (asso-
ciated to ST1) disappears and the heights of the other two
barriers reduce. By approaching T, the first plateau, charac-
terizing the transition from the NC to configurations of type
(c), essentially disappears, and it is substituted by a monoto-
nous increase of f,({). This suggests that four stranded
B-barrel configurations coexist with partially unfolded ones.
Above T, only one barrier remains indicating that at these
temperatures the protein unfolds completely in a one-step
process.

The connection between dynamical properties of the sys-
tem and the free-energy profile is still an open problem. In
particular, the relationship between the unfolding times and
the free-energy barriers has been previously discussed in
Ref. [52] for proteins and more recently the same problem
has been addressed for the Ising-like lattice protein model in
Ref. [53]. We have estimated average first passage times 7
via USs by recording the time needed for the protein to reach
a certain end-to-end threshold ¢y, once it starts from the NC
at different temperatures. Our data, reported in Fig. 8, clearly
indicate that at low temperatures the simple result of the
transition state theory [54—56], namely

. (24)

where Af=f({y)—f(&), is in very good agreement with the
numerics. However, at high temperatures the agreement
worsens. Therefore, in order to take in account all of the
details of the free-energy profile and not only the barrier
height, we have generalized a result of the Smoluchowski
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FIG. 8. (Color online) Average unfolding times 7 for the GF at
various temperatures corresponding to {y,=4. Filled (black) circles
denote the numerical data, the estimations obtained via Eq. (24) and
Eq. (25) are represented by empty (blue) diamonds and (red) stars,
respectively. The arbitrary scaling factor entering in Eq. (25) (see
text) has been set equal to 8. The average times have been estimated
over 100 000-200 000 unfolding events for 7=0.7 and 0.6, 12 000
events at 7=0.5 and as few as 200 and 60 events at the lowest
temperatures, namely 7=0.4 and 0.3.

theory for the escape of a particle from a potential well [56]
as follows [53]:

1 (‘4o y
o f dye/™'T f dze™ /T, (25)
g

0 %o

where the potential energy has been substituted by the free-
energy profile. The estimation obtained via Eq. (25) compare
well with the numerical results at all of the considered tem-
peratures, unfortunately apart from an arbitrary scaling factor
common to all of the temperatures that we are unable to
estimate (see Fig. 8).

B. Bad folder

In Fig. 9(a) are reported the free-energy profiles f,({) re-
constructed via the EJE at 7=0.3 for different pulling speeds
(symbols) together with the estimated fy,({) (dashed line), as
in the case of the GF one observes a collapse to the equilib-
rium FEL [represented by fy/({)] for a sufficiently small
speed. In particular, at v,=5X 1076 a reasonably good agree-
ment between f; and fy, is already achieved.

For the BF the mechanically induced unfolding transitions
are less clearly identifiable from the inspection of the free-
energy profile for two reasons. First, for the BF not only the
LJ interactions play a role in the STs but also the dihedral
terms: These two terms contribute with opposite signs to the
whole potential energy thus partially canceling each other.
Moreover, as we will show in the following the main contri-
bution to the free energy is due to entropic terms. Therefore,
in order to identify the STs it is better to consider the distinct
average profile of the single potential contributions V; (i
=1,...,4) reported in Fig. 9(b). In particular, the most rel-
evant is the Lennard-Jones term V,, due to the stabilizing
effect of the hydrophobic interactions on the protein struc-
ture. From the inspection of V,, at least four different STs
can be singled out, occurring at {~7.3, 14.5, 19.3, and 26.3,
respectively.

The first transition amounts to pull the last part of the tail
out of the NC, namely the sixth and fifth strand that we have
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FIG. 9. (Color online) (a) Free-energy profiles f; for the bad
folder as a function of the end-to-end distance ¢, obtained with the
EJE for various pulling velocities: From top to bottom v,=5
X 10™* and 160 realizations (black circles), 2 X 10™* and 200 real-
izations (red squares), 1 X 10™* and 200 realizations (blue triangles),
5X 107 and 100 realizations (green diamonds), 5X 10~ and 28
realizations (magenta stars). The WHAM estimate fy({) is also
shown (black dashed line). In the inset an enlargement of the curve
at low { for v,=5X% 107 is reported together with fy,({). Data have
been obtained at T=0.3. (b) Potential energies contribution as a
function of the end-to-end distance ¢ estimated during a pulling
experiment with velocity v,=5X 107% and obtained by averaging
over 28 different realizations at 7=0.3. Black stars indicate the
entire potential energy V, (orange) crosses V|, (blue) triangles V,,
(magenta) diamonds V3, and (red) squares V. The (blue) solid lines
indicate the transitions discussed in the text.

previously identified. To this ST is associated a free energy
increase of 3.1(5) and a potential energy variation of 8.0(5),
once the ST1 is completed the protein assumes the configu-
ration (b) shown in Fig. 10. ST2 consists in pulling out from
the compact configuration the whole tail (therefore to detach
also the fourth strand) and leaving the protein in a configu-
ration composed by the core (represented by the first three
strands) plus a long tail [see configuration (c) in Fig. 10].
The entropic contributions to ST2 is quite relevant since to
pass from the NC to (c) the free energy increases of 3.8(5),
while the associated potential energy variation is almost the
triple, i.e., 11.5(5). The third transition amounts to detach the
first B strand (BNBPB;NP) from the core and this operation
has much greater costs with respect to the previous STs,
namely, Af=7.0(5) and AV=15(1). The complete opening of
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d e f

FIG. 10. (Color online) Pulled configurations of the bad folder
at 7=0.3: The reported configurations refer to {,=4.7 (NC) (a), ¢
=9.9 (b), 14.5 (c), 22.1 (d), 24.6 (e), and 29.7 (f).

the core structure (now made only of the second and third
strand) occurs at {~27 amounting to a total free (respec-
tively, potential) energy barrier to overcome the height 11(1)
[respectively, 23(1)]. At variance with the GF case, for the
BF the entropic costs are never negligible and instead they
always amount to at least one-half of the potential energy
contributions in all four examined transitions. Finally, analo-
gously to the GF for {>35 the LJ and dihedral contributions
essentially vanish and the free energy increase is due to the
harmonic and angular terms, only.

In Fig. 11 the reconstruction f; of the FEL for the bad
folder is reported at three temperatures below 7'5. As one can
notice the bad folder exhibits at comparable temperatures
much lower free-energy barriers, indicating that the NC and
the partially folded structures are less stable, with respect to
the GF. This is reflected also in the value of T, that has a
smaller value with respect to the GF: Namely, 0.46 for BF
and 0.65 for GF. By increasing T the heights of the free-
energy barriers rapidly decrease and the various STs become
less clearly defined. Moreover, the FEL of the BF at the
lower examined temperature (T=0.2) reveals, besides the ab-
solute minimum (corresponding to the NC), other two local
minima at {~7 and {~ 11. This indicates that, at variance
with the GF, the BF can remain trapped even at T~ T, for
some finite time, in intermediate (misfolded) states far from
the NC.

VIII. INHERENT STRUCTURE LANDSCAPE

In this section we compare the reconstructions of the FEL
for the good and bad folder obtained via the EJE and the IS
approach with the WHAM equilibrium estimation. As al-
ready explained in Sec. IV, we have created two IS data
banks: The thermal data bank (TDB) obtained by performing
equilibrium canonical simulations and the pulling data bank
(PDB) by mechanically unfolding the protein. Figure 12 re-
ports the GF comparison, at three temperatures, between the
estimate fy/({) with fig(£) and the f;({), obtained via the EJE
reconstruction. The results reveal an astonishingly good co-
incidence between fy/({) and fi5({), obtained by employing
the PDB, at all the examined temperatures. For what con-
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FIG. 11. (Color online) Free-energy profiles f;({) obtained via
the EJE for bad folder at three temperatures: Namely, 7=0.2 (red
squares), T=0.3 (orange circles), T=0.4 (blue stars). In the inset an
enlargement is reported at small {. Data refer to pulling velocity
v,=5X 1076 and the averages are performed over 28 samples of the
same protocol.

cerns the EJE reconstructions: At 7=0.3  f,({) is essen-
tially in good agreement with the other two estimations,
while at higher temperatures the f; curves slightly overesti-
mate the equilibrium free energy fy, for {> 10. This discrep-
ancy is probably due to a noncomplete convergence of the
EJE approach at the considered pulling velocities, smaller
velocities are required to recover the equilibrium profile at
all the end-to-end distances.

The further comparison reported in Fig. 12 between the IS
reconstructions obtained via the TDB and the PDB indicates
a perfect coincidence up to {~17. On the contrary, during
the last stage of the unfolding process the two fig differ: The
TDB FEL is steeper than the PDB one. This suggests that
during the mechanical unfolding the protein can easier reach
states with low energies, even at large . These states have a
very low probability to be visited during thermal equilibrium
dynamics. However, at 7=0.3 the value of the barrier to
overcome and that of the final plateau are quite similar to
those of the PDB FEL, while at higher temperatures the final

a)
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fl©
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FIG. 12. (Color online) Free-energy profiles f; (blue solid lines)
as a function of { for various temperatures for the good folder: (a)
T=0.3 for v,=5X 1079 and 28 repetitions; (b) 7=0.4 for v,=5
X 107* and 240 experiments; (c) 7=0.5 for v,=5X 10~* and 240
repetitions. The (black) dashed lines refer to the WHAM estimation
fw(Q), (green) squares to fig({) obtained by employing the TDB and
(red) circles to fi({) obtained by employing the ISs in the PDB for
each considered 7.
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FIG. 13. (Color online) Free-energy profiles f; as a function of ¢
for various temperatures for the bad folder: (a) 7=0.3 and (b) T
=0.4. The data refer to a pulling velocity vp=5X 10~® and 28 rep-
etitions of the same pulling protocol. The symbols are the same as
in Fig. 12.

energy plateaus of the TDB FEL are slightly larger than the
fw plateaus. The reason for these discrepancies is related to
the fact that, despite the high number of IS forming the TDB,
this data bank is far from containing all the relevant ISs, in
particular those associated to high  values are lacking. It
should be remarked that the IS conformation with the maxi-
mal end-to-end distance is the all trans-configuration, corre-
sponding to {,,,,s=35.70, therefore the IS approach does not
allow us to evaluate the FEL for {>{,,,,,. For the GF, we
can safely affirm that the out-of-equilibrium process consist-
ing in stretching the protein is more efficient to investigate
the FEL, since a much smaller number of ISs are needed to
reliably reconstruct it, as reported in Table II.

The comparison for the BF case is reported in Fig. 13 at
T=0.3 and 0.4. Also in this case the fy({) and fi5({) essen-
tially coincide, apart at 7=0.3 and {>20 where fy is slighty
higher than fis. In this case the agreement between the two
IS reconstructions is quite good at both the considered tem-
peratures and for all { values. As far as the EJE reconstruc-
tions are concerned, at the employed pulling velocity
(namely, vp=5X 107%) £, can be considered as asymptotic at
T=0.3, while probably at 7=0.4 is still slightly overestimat-
ing fy, but notice the really small range of the free-energy
scale reported in Fig. 13(b) with respect to the GF.

Furthermore, from the IS analysis by employing Eq. (17)
we can obtain an estimate of the profiles of the potential and
vibrational free energies Vig({) and Rig({), respectively.
From the latter quantity, the entropic costs associated to the
various unfolding stages can be estimated. As shown in Fig.
14(a), for the GF at T=0.3, the structural transitions ST2 and
ST3 previously described correspond to clear “entropic” bar-
riers, while the ST1 transition has only energetic costs since
AR5~ 0. This last result is in good agreement with the pre-
viously reported EJE analysis. For what concerns the other
two transitions, ST2 (respectively, ST3) is associated to a
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FIG. 14. (Color online) Reconstructed Vig({) (lower panel) and
Ris(&) (upper panel) for good folder (a) and bad folder (b) by em-
ploying ISs in the PDB at 7=0.3. In the lower panel the blue dotted
line refers to the average potential energy evaluated during the cor-
responding pulling experiments [this has been already reported in
Fig. 6(b) for the GF and in Fig. 9(b)] for the BF. Please notice that
the data have been vertically translated in order to have zero energy
at the NC.

decrease ~6(1) [respectively, 15(2)] of Ri5({) once more in
agreement with the EJE reconstruction. The complete open-
ing of the protein is associated to a barrier AR g(£)=20(2),
while the analysis reported in Sec. VII A indicates an en-
tropic barrier to overcome corresponding to ~19(2). These
results suggest that for the good folder the entropic contribu-
tions to the free energy are essentially of the vibrational type.
Moreover, the reconstructed potential energies Vig({) are in
very good agreement with the average potential energy
evaluated during the corresponding pulling experiments as
shown in Fig. 14(a).

Finally, one can try to put in correspondence the three
unfolding stages previously discussed for the GF with ther-
modynamical aspects of the protein folding. In particular, by
considering the energy profile Vig({), an energy barrier AVg
and a typical transition temperature T,=(2AVi5)/(3N) can be
associated to each of the STs. The first transition ST1 corre-
sponds to a barrier to overcome AV;g=8(1) and therefore to
T,=0.11(1), that, within error bars, coincide with T,. For the
ST2 transition the barrier to overcome is AVg=16(1) and
this is associated to a temperature 7,=0.23(2) (slightly
smaller than Tj). At the ST3 transition AVig=43(2) corre-
sponding to 7,=0.62(2), while the energetic cost to com-
pletely stretch the protein is 50(2) with an associated transi-
tion temperature 7,=0.72(2): The 6 temperature [T,
=0.65(1)] is well bracketed within these two transition tem-
peratures. At least for the GF, our results indicate that the
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FIG. 15. (Color online) End-to-end distance of the ISs estimated
during USs at various temperatures: (Black) Circles represent the
average value; (blue) stars the minimal value; and (red) squares the
maximal one. The upper panel refers to the BF and the lower one to
the GF. The horizontal magenta dashed line indicates the (s
value. For the GF (respectively, BF) trajectories of duration ¢
~ 100 000-500 000 (respectively, #~50000-250000) have been
examined to obtain the ISs at constant time intervals Ar=5.

observed STs induced by pulling can be put in direct rela-
tionship with the thermal transitions usually identified for the
folding-unfolding process.

Also for the BF the IS approach is able to well reproduce
not only the average potential energy during the pulling ex-
periment, as clearly shown in Fig. 14(b), but also to provide
a good estimate of the “entropic” barriers associated to the
structural transitions. In particular, at 7=0.3 the vibrational
free-energy barriers to overcome are AR;g=5.3(5) at STI,
8(1) at ST2, 10(1) at ST3 and 16(1) at ST4. These values are
in reasonably good agreement with those previously obtained
from the EJE reconstruction, apart from ST3 and ST4, where
the analysis performed in Sec. VII B indicates entropic bar-
riers to overcome corresponding to ~8(1) and ~12(2), re-
spectively. These underestimations at large { values are prob-
ably due to the fact that at this temperature the estimated f;
has not reached its asymptotic shape at the employed veloc-
1ty.

As already previously pointed out, the entropic contribu-
tions for the BF are more relevant than for the GF: e.g.,
while the ST?2 transition is clearly visible by the potential
energy inspection it is almost absent by looking to the free-
energy profile [compare the data reported Figs. 9(a) and
9(b)]. Therefore, we cannot expect to infer information on
the thermal transitions from the knowledge of the potential
energy barriers at the STs, as done for the GF. Indeed the
estimated transition temperatures 7, for the four examined
structural transitions give values not corresponding to any of
the relevant temperatures reported in Table III for the BF.

To better understand this difference we have performed
USs for the GF and BF for T,=<T=<T, and we have esti-
mated the average, the minimal and the maximal { associated
to the visited ISs. The corresponding data are reported in Fig.
15. While for the GF the minimal value remains essentially
{y for all the temperatures and the maximum ¢ increases
smoothly up to ~18 at T=T, the dependence of the minimal
and maximal { values on 7" are more dramatic for the BF. Up
to the temperatures 7~ 0.5 X Ty, average, minimal and maxi-
mal ¢ values almost coincide indicating that the protein is
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still confined around the NC, please remember that for the
BF T,=0.58XTy. As soon as T>0.6XT, the maximum
grows abruptly and reach the upper bound corresponding to
Cirans already at T~Ty, on the other hand, the minimum
value decreases indicating that at higher temperatures the
protein can access basins of ISs with end-to-end distance
lower than . This last result indicates that there is not a
clear monotonic correspondence between the temperature in-
crease and the achievable protein extensions. Moreover, the
fact that the protein can easily attain also extremely stretched
configurations at not too high temperatures suggests that in
the case of the BF the protein can easily escape from the
native valley and reach any part of the phase space, while for
the GF the accessible IS configurations are much more lim-
ited at comparable temperatures. All this amounts to say that
the end-to-end distance cannot be considered as a good re-
action coordinate for the BF.

IX. CONCLUDING REMARKS

In conclusion, we can safely affirm that the reconstruc-
tions of the free-energy landscape as a function of the end-
to-end distance in terms of the ISs, obtained via out-of-
equilibrium mechanical unfolding of the heteropolymers, are
in very good agreement with the equilibrium weighted his-
togram estimate for the good and bad folder sequences at all
of the examined temperatures. In particular, this result indi-
cates that the harmonic approximation employed to estimate
the vibrational term (13) is quite good for temperatures in the
range [7;Ty], as already pointed out in [11] by considering
the average potential energy. Moreover, the EJE reconstruc-
tions of the free-energy profile compare quite well with the
other two approaches for sufficiently low pulling velocities.
For the good folder, the quality of the free-energy landscape
reconstruction via the extended Jarzinsky equality can be
well appreciated by stressing that from pure structural infor-
mation about the landscape a good estimate of dynamical
quantities, like the unfolding times from the native configu-
ration, can be obtained.

Furthermore, for the good folder the information obtained
by the equilibrium FEL both with the EJE and the IS meth-
odologies can be usefully combined to give substantiated
hints about the thermal unfolding. In particular the investi-
gation of the ISs allows us to give an estimate of the (free)
energetic and entropic barriers separating the native state
from the completely stretched configuration. These barriers
are associated to the structural transition induced by the pro-
tein manipulation and for the good folder they can put in
direct relationship with the thermal transitions usually iden-
tified during folding-unfolding processes.

On the other hand, for the bad folder the end-to-end dis-
tance appears not to represent a good reaction coordinate,
since mechanical and thermal unfolding seem to follow dif-
ferent paths. In other terms the unfolding process for the
good folder consists of many small successive rearrange-
ments of the NC, which are well captured by the distribution
of the corresponding ISs on the landscape. While for the bad
folder the thermal unfolding can involve also large confor-
mational rearrangements, thus implying jumps from one val-
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ley to another of the landscape associated to large variations
in the end-to-end distance, that cannot be well reproduced by
the mechanical stretching of the heteropolymer. Future work
on more realistic heteropolymer models is needed to clarify
if the observed features, distinguishing good folders from
bad folders, can be really considered as a specific trademark
of proteins.

A drawback of the EJE reconstruction is that extremely
small velocities or an extremely large number of repetitions
of the protocol are needed to achieve the collapse towards
the equilibrium profile, thus rendering the implementation of
the method quite time consuming. However, new optimized
methods to obtain the asymptotic FEL, by combining the
Jarzinsky equality with the Crooks’ path ensemble average
theorem, have been recently presented [57,58] and it will be
definitely worth testing their performances in the future with
respect to complex landscapes, like those of heteropolymers
[59].

As a final point, we would like to remember that, in the
context of glassy systems, the concept of ISs has been criti-
cally compared to that of pure states [60], the latter being
local minima of the free-energy landscape, while the ISs are
minima of the potential energy, as discussed above. The rel-
evance of the pure states for protein folding has been re-

PHYSICAL REVIEW E 78, 031907 (2008)

cently stressed in Ref. [61], where it has been shown for a
fibronectin domain that pure states can be put in direct cor-
respondence with unfolding intermediates observable during
mechanical pulling. However, in the present paper we have
been only interested in how the FEL, which is the only ther-
modynamical relevant function, together with the corre-
sponding pure states, can be obtained by employing a suit-
ably chosen ensemble of ISs.
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