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Morphology of neurons

• Cell Body:  A globular compartment with a variety of organelles including the nucleus

• Axon:       A cellular extension that projects to the dendrites of other neurons (OUT)

• Dendrites:  Extend from the cell body and receive input from other neurons  (IN)



Communication between neurons

Neurons communicate through action potentials.
These are waves of electrical discharge that travel
along the membrane of a cell.

This signal is transferred from one neuron to the 
other via a synapse, where the axon terminal of 
one cell impinges upon a dendrite (typically).

Two types of synapses:

1. Electrical synapses 
(direct conductive junctions between cells)

2. Chemical synapses 
(communicate via neurotransmitters)



Chemical synapses

Action potential travel down the axon to the presynaptic ending where an electrical 
impulse (Ca++) triggers the migration of vesicles toward the presynaptic membrane. 
The vesicle fuses with the presynaptic membrane releasing neurotransmitters into the 
synaptic cleft. On the postsynaptic ending the neurotransmitter molecules bind 
with receptor sites to influence the membrane potential of the postsynaptic neuron. 

Three basic parts:

1.  Presynaptic ending 
Contains neurotransmitters, 
mitochondria and other cell 
organelles

2.  Synaptic cleft
Space between the 
presynaptic and postsynaptic 
endings, ~20 nm

3.  Postsynaptic ending
Contains receptor sites for 
neurotransmitters.



The membrane potential at rest

Semi-permeable membrane with selective ion channels

Important ions:

Sodium Na +, potassium K+, chloride Cl -, proteins A-

At rest (equilibrium) the inside is negative relative to the outside:
The neuron is polarized.

More sodium ions outside and more potassium ions
inside the neuron

The resting membrane potential of a neuron is about -70 mV.



The postsynaptic potential

Beyond the synaptic gap receptors respond 
by opening ion channels causing a change 
of the local membrane potential.

This is called a postsynaptic potential 
(PSP).

PSPs change the postsynaptic cell's 
excitability:
It makes the postsynaptic cell either more or 
less likely to fire.

The result is excitatory (EPSP), in the case 
of depolarizing currents, or inhibitory 
(IPSP) in the case of hyperpolarizing 
currents.

If the number of EPSPs is sufficient, an 
action potential is fired.

Neuronal integration:

Synaptic input
(PSPs)

Neuronal output
(Action potential)



The action potential

A sufficient depolarization (Threshold-voltage Vthr~ -55 mV) caused by EPSPs 
leads to an action potential (spike).

“All or None”-principle: The size of the action potential is always the same. 
Either the neuron does not reach the threshold or a full action potential is fired.

1. Depolarization (Na+ in)
2. Repolarization (K+ out)
3. Hyperpolarization (stillK+out)

Hyperpolarization, Exhaustion: 
Refractoriness

(All sodium channels inactivated)



Single neuron models: Basic ingredients

•  Variable of interest: Membrane potential Vm of postsynaptic neuron   (State)

•  Neuron receives excitatory and inhibitory postsynaptic potentials      (Input)

•  Neuron emits action potentials      (Output)

   - “All or none” behavior
     (Action potentials stereotyped)

   - Threshold behavior (VThr )

   - Resting potential (VR)

   - Refractoriness



• Neuron without spatial extension (Point neuron)
   (Multi-compartment models)

  Real neurons:
  - Temporal delays due to propagation of PSPs from dendrites to cell body.

•  PSPs have constant amplitude

   Real neurons:
   - Amplitude of PSP depends on voltage and on position of synapse

•  Neurons without memory (Reset mechanism: All spikes are independent)

   Real neurons:
   - Bursting
   - Adaptation
   - …

  

Single neuron models: Simplifications



Simple neuronal model: Integrate & Fire

Basic assumptions:

Input:      Excitatory and inhibitory post-synaptic potentials (Kicks)

Output:   Action potentials (Spikes)

Neuron acts as integrator (Electrical equivalent: Membrane Capacity Cm)

PSPs as instantaneous jumps in the voltage
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Here: Threshold VThr=8mV, Reset potential VR=0 mV (absorbing)



Integrate & Fire
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• Distribution of Inter-Spike-Intervals (ISI)

• Average ISI:

• Firing rate: 

Characterization of spike trains I

∑ −=
k

ktttx )()( δ

=r
>< I S I

1

>< I S I

Spike train: Series of Delta-Functions

Aim: Characterization of output in dependence on input

Further simplifications:

No inhibition, no refractoriness, periodic excitatory kicks (~ constant 
positive current)
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Integrate & Fire: Periodic excitation
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Gain function
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Integrate & Fire: Refractory time
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Leaky Integrate & Fire (LIF)

Real neurons: Existence of leakage channels which remain always open (no gating)

K+ out, N+ and Cl- in (Leak current); Net efflux of positive charge 
(Hyperpolarization)

        Electrical equivalent: Resistance R
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New variable: Time constant of 
membrane



Leaky Integrate & Fire

0 5 10 15 20 25 30 35 40

Inh

Exc

U_R = 0

2

4

6

U_Thr = 8

Output

U
 [

m
V

]

Time [s]



Leaky Integrate & Fire
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Gain function III
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Two types of neuronal models

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

Input current  [nA]

F
ir

in
g

 r
at

e 
 [H

z]

Type I neuron

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

Input current  [nA]

F
ir

in
g

 r
at

e 
 [H

z]

Type II neuron



Random input (Noise)

So far:

• Periodic input (Constant current)

• Characterization in terms of firing rate

 Periodic output (completely regular)

Now:

• Random input (Noise)

• Characterization in terms of regularity

Question: What makes a neuron spike regular/irregular???
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 Firing rate: 

• Coefficient of variation:

• Autocorrelation function:

   - Correlation time:

Characterization of spike trains II
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Input: Poisson distribution
Three conditions:

Every kick is generated

• randomly

• independently of other kicks

• with a uniform probability of occurrence in time

Properties:

• Exponential distribution                          

• Autocorrelation function flat:

• Coefficient of variation: 
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Low time constant: Coincidence detection (rather irregular)
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High amplitudes: 1:1 synchronization (Output follows input)



Integrate & Fire
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Averaging over many kicks: Higher regularity
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Coherence resonance

Maximum regularity of neuronal response for an intermediate 
noise strength 

Low noise: Activation process (Poissonian ISI-Distribution)

High noise: Diffusion with threshold (Inverse Gaussian ISI-Distribution)

In between: Spiking most regular

Indications:

•  Minimum of coefficient of variation CV

•  Maximum of correlation time τ
c

σ

Hodgkin-Huxley:



Correlated input
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- Low frequency

- High amplitude

Increase of variance    :

Correlated kicks:

Increase in amplitude

σ

Uncorrelated kicks:

Increase in frequency

Shared input: Different neurons fire together

Correlation coefficient Cxx: Average fraction of shared neurons

Intervals between kicks: Poissonian distribution

Kick amplitudes:             Binomial distribution:
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Correlated input (Different correlations)
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FitzHugh-Nagumo (FHN)
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•  Balanced neuron: Total amount of excitation = Total 
amount of inhibition

•  Three different cases:

-  Only correlation in the excitation

-  Only correlation in the inhibition

-   [ No correlation ]

•  For each correlation: Dependence of CV on the noise strength

Two-dimensional single neuron model:
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Full excitatory correlation

Correlated excitatory kicks:
- Low frequency
- High amplitude

Increase of variance    :
- Correlated excitatory kicks:
   Increase in amplitude
- Uncorrelated inhibitory kicks:
   Increase in frequency
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Full excitatory correlations: ISI-Distributions 
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Full excitatory correlation
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Correlated inhibitory kicks:
- Low frequency
- High amplitude

Increase of variance    :
- Correlated inhibitory kicks:
   Increase in amplitude
-Uncorrelated excitatory kicks:
   Increase in frequency

Full inhibitory correlation
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Full inhibitory correlation: Low noise
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Full inhibitory correlation: Medium noise
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Full inhibitory correlation: High noise
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Full inhibitory correlations: ISI-Distributions
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Intermediate noise: Excitatory background high enough
to reach repetitive firing

High noise: Very high kicks lead to multiple peaks in the histogram



Full inhibitory correlation
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All correlations: Smooth transition
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Double coherence resonance
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