Corso di dottorato: Modelli semplici di interesse biologico -Dalle proteine ai neuroni

Neuroni:

Effetti di coerenza indotti dal rumore (Noise induced coherence resonance)

Thomas Kreuz (Email: thomas.kreuz@fi.isc.cnr.it)

Content

- Repetition: Information transfer between neurons
- Simple models of neuronal spiking
 - Integrate and fire (IF)
 - Leaky integrate and fire (LIF)
- Characterization of spike trains
- Coherence Resonance (CR)
- CR with correlated synaptic input
 - FitzHugh-Nagumo (FHN)

Morphology of neurons

- Cell Body: A globular compartment with a variety of organelles including the nucleus
- Axon: A cellular extension that projects to the dendrites of other neurons (OUT)
- Dendrites: Extend from the cell body and receive input from other neurons (IN)

Communication between neurons

Neurons communicate through **action potentials.** These are waves of electrical discharge that travel along the membrane of a cell.

This signal is transferred from one neuron to the other via a **synapse**, where the axon terminal of one cell impinges upon a dendrite (typically).

<u>Two types of synapses</u>:

Electrical synapses
 (direct conductive junctions between cells)

2. Chemical synapses(communicate via neurotransmitters)

Chemical synapses

Three basic parts:

1. Presynaptic ending

Contains neurotransmitters, mitochondria and other cell organelles

2. Synaptic cleft

Space between the presynaptic and postsynaptic endings, ~20 nm

3. Postsynaptic ending

Contains receptor sites for neurotransmitters.

Action potential travel down the axon to the **presynaptic ending** where an electrical impulse (Ca++) triggers the migration of vesicles toward the presynaptic membrane. The vesicle fuses with the presynaptic membrane releasing neurotransmitters into the **synaptic cleft**. On the **postsynaptic ending** the neurotransmitter molecules bind with receptor sites to influence the <u>membrane potential</u> of the postsynaptic neuron.

The membrane potential at rest

Semi-permeable membrane with selective ion channels

Important **ions**:

Sodium Na +, potassium K+, chloride Cl -, proteins A-

At rest (equilibrium) the inside is negative relative to the outside: The neuron is **polarized**.

More sodium ions outside and more potassium ions inside the neuron

The **resting membrane potential** of a neuron is about **-70 mV**.

The postsynaptic potential

Beyond the synaptic gap receptors respond by opening ion channels causing a change of the local membrane potential.

This is called a **postsynaptic potential** (PSP).

PSPs change the postsynaptic cell's excitability:

It makes the postsynaptic cell either more or less likely to fire.

The result is **excitatory (EPSP)**, in the case of depolarizing currents, or **inhibitory (IPSP)** in the case of hyperpolarizing currents.

If the number of EPSPs is sufficient, an **action potential** is fired.

The action potential

A sufficient depolarization (**Threshold-voltage** $V_{thr} \sim -55$ mV) caused by EPSPs leads to an action potential (spike).

"All or None"-principle: The size of the action potential is always the same. Either the neuron does not reach the threshold or a full action potential is fired.

Single neuron models: Basic ingredients

- Variable of interest: Membrane potential V_m of postsynaptic neuron (State)
- Neuron receives excitatory and inhibitory postsynaptic potentials (Input)
- Neuron emits action potentials

- "All or none" behavior (Action potentials stereotyped)
- Threshold behavior (V_{Thr})
- Resting potential (V_R)
- Refractoriness

Single neuron models: Simplifications

 Neuron without spatial extension (Point neuron) (Multi-compartment models)

Real neurons:

- Temporal delays due to propagation of PSPs from dendrites to cell body.
- PSPs have constant amplitude

Real neurons:

- Amplitude of PSP depends on voltage and on position of synapse
- Neurons without memory (**Reset mechanism**: All spikes are independent)

Simple neuronal model: Integrate & Fire

Basic assumptions:

Input: Excitatory and inhibitory post-synaptic potentials (Kicks)Output: Action potentials (Spikes)

 \land $t_{i\perp 1}$

Neuron acts as integrator (Electrical equivalent: Membrane Capacity C_m)

PSPs as instantaneous jumps in the voltage

$$I(t) = C_m \frac{d V_m(t)}{dt} \qquad \text{Spike times: } \int_{t_i}^{t_{i+1}} I(t) dt = C_m V_{thr}$$

Here: Threshold V_{Thr} =8mV, Reset potential V_R =0 mV (absorbing)

Characterization of spike trains I

Aim: Characterization of output in dependence on input

Further simplifications:

No inhibition, no refractoriness, periodic excitatory kicks (~ constant positive current)

Integrate & Fire: Periodic excitation

U [mV]

Integrate & Fire: Increasing rate (current)

Integrate & Fire: And so on

Gain function

Integrate & Fire: Refractory time

U [mV]

Gain function II

Leaky Integrate & Fire (LIF)

<u>Real neurons</u>: Existence of leakage channels which remain always open (no gating)

K+ out, N+ and Cl- in (**Leak current**); Net efflux of positive charge (**Hyperpolarization**)

 $I = I_R + I_C$

Electrical equivalent: Resistance R

$$I(t) = \frac{u(t)}{R} + C \frac{du(t)}{dt}$$

New variable: **Time constant** of membrane $\tau = RC \rightarrow \tau \frac{du}{dt} = -u(t) + RI(t)$

Leaky Integrate & Fire

U [mV]

Leaky Integrate & Fire

Gain function III

Two types of neuronal models

Random input (Noise)

<u>So far:</u>

- Periodic input (Constant current)
- Characterization in terms of firing rate
 Periodic output (completely regular)

Now:

- Random input (Noise)
- Characterization in terms of regularity

<u>Question:</u> What makes a neuron spike regular/irregular???

Characterization of spike trains II

Firing rate:
$$r = \frac{1}{\langle ISI \rangle}$$

• Coefficient of variation: $C_{V} = \frac{s t d(ISI)}{\langle ISI \rangle}$

• Autocorrelation function: $C(\tau) = \langle x(t)x(t+\tau) \rangle - \langle x(t) \rangle^2$

Input: Poisson distribution

Three conditions:

Every kick is generated

- randomly
- independently of other kicks
- with a uniform probability of occurrence in time

Properties:

- Exponential distribution
- Autocorrelation function flat: $C(\tau) = \delta(0)$ Coefficient of variation: $C_V = 1 \frac{t_{ref}}{\langle IS \rangle}$

Leaky Integrate & Fire (LIF)

Low time constant: Coincidence detection (rather irregular)

High amplitudes: 1:1 synchronization (Output follows input)

Refractoriness: Higher regularity

Averaging over many kicks: Higher regularity

What causes regularity under more general conditions?

Output

Coherence resonance

Maximum regularity of neuronal response for an intermediate noise strength $\,\sigma\,$

Low noise: Activation process (Poissonian ISI-Distribution)

High noise: Diffusion with threshold (Inverse Gaussian ISI-Distribution)

In between: Spiking most regular

Indications:

- Minimum of coefficient of variation C_v
- Maximum of correlation time au_c

Hodgkin-Huxley:

Correlated input

Shared input: Different neurons fire together

Correlation coefficient C_{xx}: Average fraction of shared neurons $(0 \le C_{yy} \le 1)$

Intervals between kicks: Poissonian distribution

Kick amplitudes:

Binomial distribution:

$$p_{w}^{N_{x}} = \frac{N_{x}!}{w!(N_{x} - w)!} C_{xx}^{w} (1 - C_{xx}^{w})^{N_{x} - w}$$

Correlated kicks:

Increase of variance σ :

- Low frequency

Correlated kicks:

Uncorrelated kicks:

- High amplitude Increase in amplitude

Increase in frequency

Correlated input (Different correlations)

FitzHugh-Nagumo (FHN)

Two-dimensional single neuron model:

$$\frac{dV(t)}{dt} = \Phi \left(V - \frac{V^3}{3} - W\right)$$
$$\frac{dW(t)}{dt} = V + a + I(t)$$

- Balanced neuron: Total amount of excitation = Total amount of inhibition
- <u>Three different cases:</u>
- Only correlation in the excitation
- Only correlation in the inhibition
- [No correlation]

- For each correlation: Dependence of C_v on the noise strength σ

Full excitatory correlation

Full excitatory correlation: Low noise

Full excitatory correlation: Medium noise

Output

Full excitatory correlation: High noise

Output

Full excitatory correlations: ISI-Distributions

Full excitatory correlation

Full inhibitory correlation

Full inhibitory correlation: Low noise

Output

Full inhibitory correlation: Medium noise

Output

Full inhibitory correlation: High noise

Output

Full inhibitory correlations: ISI-Distributions

Full inhibitory correlation

All correlations: Smooth transition

Double coherence resonance

References

Biophysical background:

C. Koch: Biophysics of computation, Oxford Univ. Press, New York, 1999

Simple neuronal models (e.g., Integrate and Fire):

W. Gerstner and W.M. Kistler: Spiking neuron models, Cambridge Univ. Press, 2002

Correlated noise:

E. Salinas and T.J. Sejnowski: Correlated neuronal activity and the flow of neural information, Nature Rev Neurosci 2 (2001) 539.

T. Kreuz, S. Luccioli, A. Torcini: Coherence resonance due to correlated noise in neuronal models (submitted), contact: thomas.kreuz@fi.isc.cnr.it