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• Reduction of the Hodgkin-Huxley model
• The FitzHugh-Nagumo model
• Phase plane analysis
• Excitability (threshold-like behavior), periodic spiking (Hopf bifurcation)
• The Hindmarsh-Rose model for bursting neurons



Neuron models (sketch)

Single Neurons

Hodgkin−Huxley, 1952
− current based

detailed, specific models
− compartmental (structure)
− more currents
− adaptive (state−dep. prop.)

low−dimensional models
− FitzHugh−Nagumo, 1960’s
− Hindmarsh−Rose, 1980’s

Networks
* effective numerical simulation
* allow for most common features
   − excitability
   − spiking, different time scales

integrate−and−fire models
stochastic models

Hopfield network, 1980’s
− on−off neuron, learning, stat. physics

experiments

reduction

simplification

abstraction
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Hodgkin-Huxley model

• neuronal signals are short electrical pulses: spikes or action potentials on msec
scale

• intracellular: incoming spike modifies membran potential

Hodgkin-Huxley (1952): Semirealistic 4-dimensional model for the dynamics of the
membran potential by taking into account Na+, K+, and a leak current. Dynamics of ion
channels highly nonlinear ⇒ emergence of chaotic evolution.

membran potential:
dV
dt

= CNam3h(ENa−V)+CK n4(EK−V)+Cleak(Vrest−V)+ Iinj(t)

sodium INa, fast:
dm
dt

= αm(V)(1−m)−βm(V)m

slow:
dh
dt

= αh(V)(1−h)−βh(V)h

potassium IK , slow:
dn
dt

= αn(V)(1−n)−βn(V)n
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Dynamics of currents m, h, n

General form:
dx
dt

=− 1
τ(V)

[x−xs(V)]

Solution for constant V : x(t) = (x0−xs)exp(−t/τ)+xs

⇒ exponential relaxation to steady state value xs

For varying V(t) : x(t) follows varying steady state value xs(t)

small τ : fast relaxation ⇒ x(t) ≈ xs(t)
large τ : slow dynamics
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Reduction to two-dimensional model

fast sodium dynamics:

approximate by steady state value: m(t) ≈ ms(V)

similar dynamics of slow sodium and potassium:

replace h(t) , n(t) by one effective current w(t)

⇒ two equations for temporal evolution of V(t) and w(t)
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FitzHugh-Nagumo model

FitzHugh (1961) and Nagumo, Arimoto, Yoshizawa (1962) derived 2-dimensional model
for an excitable neuron:

membran potential:
dv
dt

= v− v3

3
−w+ I

current variable:
dw
dt

=
1
τ
(v+a−bw)

typical values: a = 0.7, b = 0.8, τ = 13

⇒ v̇
ẇ
∼ 10 ⇒ w slow , v fast

For constant input I = constno chaotic evolution
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Phase plane analysis

Two-dimensional flow field:

~F(v,w) =
d
dt

(
v
w

)
=

(
v− v3

3 −w+ I
1
τ(v+a−bw)

)

(numerical) solution:
(

v(t)
w(t)

)
⇒ trajectory in 2-D plane

Characteristics:

• trajectories cannot cross (uniqueness of solutions)
• nullclines define lines in the 2-D plane:

v̇ = 0 ⇒ w = v− v3

3 + I

ẇ = 0 ⇒ w = (v+a)/b

• crossings of the nullclines correspond to fixed points (stable for I = 0)
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Phase plane portrait of FitzHugh-Nagumo model for I = 0

arrows indicate flow field (v̇, ẇ)
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Subthreshold pulse injection

injection of weak pulse I(t) = I0δ(t− t0) : fast return to FP
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Subthreshold pulse injection

no action potential
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Suprathreshold pulse injection

stronger pulses: large excursion in phase plane
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Suprathreshold pulse injection

spike response – action potential generation
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Refractory period

Immediately after spike the neuron is indifferent to further input
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FitzHugh-Nagumo model for constant I > 0

Phase plane analysis:
I shifts nullcline of v, nullcline of w unaffected

v̇ = 0 : w = v− v3

3
+ I , ẇ = 0 : w = (v+a)/b

⇒ for large enough I > 0.33 the fixed point, v̇ = ẇ = 0, becomes unstable

⇒ Onset of sustained oscillations (Hopf-bifurcation)
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Nullclines for constant I > 0

v - nullcline shifted ⇒ for I > 0.33 the fixed point becomes unstable
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Below the bifurcation, I = 0.3

Fixed point remains stable ⇒ small damped oscillations

-2 -1,5 -1 -0,5 0
v

-1

-0,5

0

0,5

1

w

v=0

w=0
.

.

15



Below the bifurcation, I = 0.3

Fixed point remains stable ⇒ small damped oscillations
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Above the bifurcation, I = 0.4

Fixed point unstable ⇒ Hopf-bifurcation to sustained oscillations on limit cycle
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Above the bifurcation, I = 0.4

Fixed point unstable ⇒ periodic spiking
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FitzHugh-Nagumo model for varying I(t)

Recapitulation:

• For I = const> 0.33 onset of stable oscillations with Frequency Ω(I)
• Refractory period where system is rather indifferent to external signals

Time dependent input:

• periodic signals: resonance effects
• noisy signals: coherence resonance
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Summary FitzHugh-Nagumo

• two dimensional model that can be derived from Hodgkin-Huxley via reduction of
variables

• allows effective phase plane analysis
• ecitable: spike response to suprathreshold input pulse
• refractory period
• with increasing input current Hopf-bifurcation to sustained periodic spiking

• reduction of complexity: no self-sustained chaotic dynamics
• no bursting
• few parameters: difficult to adapt to neurons with specific properties
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The Hindmarsh-Rose model

Developed 1982-1984 by J. L. Hindmarsh and R. M. Rose to allow for rapid firing or
bursting

Idea:
Allow for triggered firing, i.e., switch between a stable rest state and a stable limit cycle
(rapid periodic firing)
⇒ more than one fixed points required: can be achieved by deformation of the null-
clines (nonlinear “current” equation)

Basic equations:

dx
dt

= 3x2−x3−y+ I ,
dy
dt

= 5x2−1−y

Nullclines:

ẋ = 0 : y = 3x2−x3+ I , ẏ = 0 : y = 5x2−1
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Phase portrait of Hindmarsh-Rose model

3 Fixed points ⇒ coexistence of rest state and limit cycle
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Adaption variable

Termination of firing via additional adaption variable z that should:

• lower the effective current when neuron is firing
• return to zero when x has reached its rest state value xr

Complete equations:

dx
dt

= 3x2−x3−y+ I −z ,
dy
dt

= 5x2−1−y ,
dz
dt

= r [s(x−xr)−z]
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Bursting of Hindmarsh-Rose model

After repeated firing the dynamics returns to the stable fixed point
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Bursting of Hindmarsh-Rose model

Several spikes with varying interspike-interval (ISI)
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Features of the Hindmarsh-Rose model

3-D model for neuron with rapid firing

Suitable choice of parameters allows for

• regular bursting
• chaotic bursting

Suitable choice of parameters ? ⇐⇒ ? real neurons
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Further reading

• W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single Neurons, Popula-
tions, Plasticity,
http://diwww.epfl.ch/ gerstner/SPNM/SPNM.html .

• C. Koch, Biophysics of Computation: Information Processing in Single Neurons
(Computational Neuroscience), Oxford University Press.

• J. Hindmarsh and P. Cornelius, The Development of the Hindmarsh-Rose model
for bursting,
www.worldscibooks.com/lifesci/etextbook/5944/5944−chap1.pdf .
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