
PHYSICAL REVIEW E 99, 052412 (2019)

Neural activity of heterogeneous inhibitory spiking networks with delay
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We study a network of spiking neurons with heterogeneous excitabilities connected via inhibitory delayed
pulses. For globally coupled systems the increase of the inhibitory coupling reduces the number of firing
neurons by following a winner-takes-all mechanism. For sufficiently large transmission delay we observe the
emergence of collective oscillations in the system beyond a critical coupling value. Heterogeneity promotes
neural inactivation and asynchronous dynamics and its effect can be counteracted by considering longer time
delays. In sparse networks, inhibition has the counterintuitive effect of promoting neural reactivation of silent
neurons for sufficiently large coupling. In this regime, current fluctuations are on one side responsible for neural
firing of subthreshold neurons and on the other side for their desynchronization. Therefore, collective oscillations
are present only in a limited range of coupling values, which remains finite in the thermodynamic limit. Out
of this range the dynamics is asynchronous and for very large inhibition neurons display a bursting behavior
alternating periods of silence with periods where they fire freely in absence of any inhibition.
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I. INTRODUCTION

Despite the fact that inhibition emerges only at later stages
of development of the brain [1], its role is fundamental for
a correct and healthy functioning of the cerebral circuits. In
the adult brain, the majority of neurons are excitatory, while
only 15–20% has been identified as inhibitory interneurons.
However, this limited presence is sufficient to allow for an
overall homeostatic regulation of global activity in the cere-
bral cortex and at the same time for rapid changes in local
excitability, which are needed to modify network connections
and for processing information [2].

The role of inhibition in promoting brain rhythms at
a mesoscopic level, in particular in the beta (12–30 Hz)
and gamma (30–100 Hz) bands, has been clearly demon-
strated in experiments and network models [3,4]. In particular,
recent optogenetic analysis in vivo have shown the rele-
vance of specific interneuron inhibitory populations: namely,
parvalbumin-positive interneurons are essential for gamma-
rhythm generation in the cortex [5,6]; while somatostatin-
positive and parvalbumin-positive interneurons orchestrate
sensory induced beta and gamma cortical oscillations [7]. On
one hand, synaptic inhibition enhances short-timescale corre-
lations in the spiking activity by promoting the generation of
oscillations and pairwise synchrony between excitatory neu-
rons. On the other hand, inhibition suppresses long-timescale
correlations, such as those due to noise, potentially favoring
an enhancement of neural encoding [8].

This justifies the interest for the dynamics of purely in-
hibitory neural networks and in particular for the emergence
of collective oscillations (COs) in these systems. COs have
been usually reported for networks presenting either a time de-
lay in the transmission of the neural signal or a finite synaptic

timescale. An interesting analogy can be traced between the
dynamics of inhibitory networks with delay and instantaneous
synapses, and that of circuits where the postsynaptic poten-
tials (PSPs) have a finite duration and an instantaneous synap-
tic transmission. In particular, in Ref. [9] it has been shown
that in homogeneous fully coupled networks, for finite PSPs
one usually observes coexistence of synchronized clusters of
different sizes, analogously to what reported in Refs. [10,11]
for delayed systems. Furthermore, in Ref. [10] the authors
found that the average number of coexisting clusters decreases
with the delay, somehow analogously to what reported in
Ref. [9] for increasing duration of the PSP. As a matter of
fact, stable splay states, corresponding to a number of clusters
equal to that of the neurons, are observable in the limit of zero
delay and instantaneous synapses [12].

The introduction of disorder in the network at the level of
either connections or excitability distributions, does not pre-
vent the emergence of COs as shown for systems with delay
[13–15] or with finite PSPs [16]. The only case in which COs
have been reported in sparse networks in absence of delay and
for instantaneous synapses is for quadratic integrate-and-fire
(QIF) neurons in a dynamically balanced regime [17].

A common phenomenon observable in inhibitory networks
is the progressive silencing (neurons’ death) of less excitable
neurons induced by the activity of the most excitable ones
when the inhibition increases. This mechanism, referred in
the literature as Winner Takes All (WTA) with inhibitory
feedback [18–20], has been employed to explain attention-
activated competition among visual filters [21], visual dis-
crimination tasks [22,23], as well as the so-called γ -cycle doc-
umented in several brain regions [24]. Furthermore, the WTA
mechanism has been demonstrated to emerge in inhibitory
spiking networks for heterogeneous distributions of the neural
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excitabilities [25]. However, while in globally coupled net-
works (GCNs) the increase in synaptic inhibition can finally
lead to only few or even only one surviving neuron, in sparse
networks (SNs) inhibition can astonishingly promote, rather
than depress, neural activity inducing the reactivation of silent
neurons [25–27].

Our aim is to analyze in neural networks with delay, the
combined effect that synaptic inhibition and different types of
disorder produces on neurons’ death and reactivation, as well
as on the emergence of COs. For GCNs we show that COs
can emerge for sufficiently large synaptic inhibition and delay.
This despite the fact that the number of active neurons steadily
decreases with the inhibition, due to the WTA mechanism.
An increase of the heterogeneity in the neural excitabilities
promotes both neural’s death and the emergence of asyn-
chronous dynamics, these effects are somehow counteracted
by considering longer time delays.

In SNs, at sufficiently large synaptic coupling, the cur-
rent fluctuations induced by the disorder in the presynaptic
connections [13,14], are responsible for the firing of inactive
neurons. At the same time, these fluctuations desynchronize
the neural activity leading to the disappearance of COs. There-
fore, in SNs by varying the synaptic coupling one can observe
two successive dynamical transitions: one at small coupling
from asynchronous to coherent dynamics and another at larger
inhibition from COs to asynchronous evolution. Furthermore,
we show that the interval of synaptic couplings where COs are
observable remains finite in the thermodynamic limit.

The paper is organized as follows: Sec. II is devoted to the
introduction of the studied model and of the microscopic and
macroscopic indicators employed to characterize its dynam-
ics. The system is analyzed in Sec. III for a globally coupled
topology, where the WTA mechanism and the emergence
of COs are discussed. In Sec. IV, we study sparse random
networks, with emphasis on the role of current fluctuations to
induce a rebirth in the neural activity at large synaptic scale as
well as their influence on collective behaviors. The combined
role of heterogeneity and delay on the dynamical behavior of
the system is addressed both for GCNs (Sec. III) and SNs (in
Sec. IV). Section V deals with a detailed analysis of the effect
of disorder on finite-size networks. Finally, a brief discussion
of the reported results can be found in Sec. VI.

II. MODEL—MICROSCOPIC AND MACROSCOPIC
INDICATORS

We consider a heterogeneous inhibitory random network
made of N pulse-coupled leaky integrate-and-fire (LIF) neu-
rons. The evolution of the membrane potential of the ith
neuron in the network, denoted by vi, is given by

v̇i(t ) = ai − vi(t ) − g

K

N∑
l=1

∑
n|t (n)

l <t

Si,lδ
(
t − t (n)

l − td
)
. (1)

Whenever vi reaches the firing threshold vθ = 1 it is instan-
taneously reset to the resting value vr = 0 and a δ-spike is
emitted at time t (n)

i and received by its postsynaptic neighbors
after a delay td . The sum appearing in Eq. (1) runs over all the
spikes received by the neuron i up to the time t . Si,l denotes the
connectivity matrix, with entries 1, whenever a link connects

the presynaptic neuron l to the postsynaptic neuron i, and
0, otherwise. For sparse networks we randomly select the
nonzero entries of Si,l ; however, we impose that the number
of presynaptic connections is constant and equal to K for each
neuron i, namely

∑
l �=i Si,l = K , since autaptic connections

are not allowed. Therefore, for the GCN we have K = N − 1.
The positive parameter g appearing in Eq. (1) represents the
coupling strength and the preceding negative sign denotes the
inhibitory nature of the synapse. Each neuron is subject to
a different suprathreshold input current ai > vθ , representing
the contribution both of the intrinsic neural excitability and of
the external excitation due to projections of neurons situated
outside the considered recurrent network. Heterogeneity in the
excitabilities is introduced by randomly drawing ai from an
uniform distribution of width �a = a2 − a1 defined over the
interval [a1, a2]. For simplicity, all variables are assumed to
be dimensionless.

The microscopic dynamics can be characterized in terms
of the interspike interval (ISI) Ti,ISI statistics for each neuron
i. The statistics is known once the corresponding probability
density function (PDF) P(Ti,ISI ) is given, from which it can be
obtained the average firing period Ti = 〈Ti,ISI〉 as well as the
coefficient of variation CVi = σ (Ti,ISI)/〈Ti,ISI〉, σ (Ti,ISI ) being
the standard deviation of the ISI distribution. The average
firing rate of neuron i is given by νi = 1/Ti. For the considered
heterogeneous distribution of the excitabilities, each isolated
neuron is characterized by a different free spiking period,
namely Ti,free = ln[ai/(ai − 1)]. However, in the network the
activity of each neuron is modified by the firing activity of
its presynaptic neighbors. In particular, the effective input μi

to a generic neuron i in the network can be written, within a
mean-field approximation, as follows:

μi(t ) = ai − gνAnA(t − td ), (2)

where nA(t − td ) is the percentage of active neurons at time
t − td and νA is the average firing rate of the neurons ac-
tive at time t − td . A neuron will be supra- or subthreshold
depending whether μi(t ) is larger or smaller than vθ . The
percentage of active neurons nA(t f ) in a certain time interval t f

is a quantity that we will employ to characterize the network
at a microscopic level. Since the firing rate has been defined in
terms of the ISI, nA(t f ) is defined as the percentage of neurons
that have emitted at least two spikes within a time period
t f after discarding a transient corresponding to the emission
of 20N spikes (we employ these values for all the reported
simulations, unless otherwise stated).

To study the collective behavior of the network we in-
troduce an auxiliary field Ei(t ) for each neuron representing
the linear superposition of the received train of spikes fil-
tered opportunely. In particular we filter each spike with a
postsynaptic profile having the shape of an α-function p(t ) =
α2texp(−αt ) (t > 0). Therefore, the corresponding effective
fields Ei(t ) can be obtained by integrating the following
second order ordinary differential equations:

Ëi + 2αĖi + α2Ei = α2

K

N∑
l=1

∑
n|t (n)

l <t

Si,lδ
(
t − t (n)

l − td
)
, (3)

where α represents the inverse pulse width and it is fixed
to α = 20. The integration of the set of ordinary differential
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Eqs. (1) and (3) has been performed in an exact manner
by employing a refined event driven technique explained in
details in Ref. [15].

The macroscopic dynamics of the network can be analyzed
in terms of the mean field

[E (t )] = 1

N

N∑
i=1

Ei(t ),

which gives a measure of the instantaneous firing activity at
the network level. Furthermore, to identify COs it is more
convenient to use the standard deviation of the mean field
[E (t )] defined as

σ ([E ]) =
√

〈[E ]2〉 − 〈[E ]〉2,

where 〈·〉 indicates the time average.
In general we will always measure either the time average

or the standard deviation of [E ], hence to avoid overuse of
symbols and unless otherwise stated, 〈E〉 ≡ 〈[E ]〉 and σ (E ) ≡
σ ([E ]).

III. GLOBALLY COUPLED NETWORK

First, we will examine how the dynamics of a GCN
changes for increasing synaptic coupling strength g, for a
chosen time delay, and a certain quenched distribution of the
neuronal excitability. The results of this analysis are reported
in Figs. 1(a)–1(c) for two different system sizes, namely, N =
4000 and N = 8000. Analogously to what found in absence of
delay in Ref. [25], we observe a steady decrease of the value
of nA for increasing g and essentially no dependence on the
system size. Furthermore, the value of nA is independent of
the value of the considered time period t f once a transient time
is discarded, as clearly shown in the inset of Fig. 1(a).

For sufficiently small coupling, all the neurons are active
(i.e., nA = 1), and the time averaged field 〈E〉, which is a
proxy of the firing activity of the network, presents an almost
constant value with few or no fluctuations. This indicates an
asynchronous activity [28], as confirmed by the raster plot
shown in Fig. 1(d) for g = 0.1. By increasing the coupling, nA

reduces to values below one. This is because now the neuronal
population splits in two groups: the winners which are active
neurons able to mute the other group, the losers. Usually the
winners (the losers) are characterized by high (low) values of
the excitability ai.Further increases in the inhibition produces
a steady decrease of the percentage of active neurons nA as a
consequence of the increased inhibitory action of the winners.
This in turn induces an enlargement of the family of the losers
and an associated decrease in the network activity measured
by 〈E〉 as shown in Fig. 1(b). This is clearly an effect that can
be attributed to the WTA mechanism.

In Ref. [10] it has been shown that perfectly synchronized
clusters of neurons emerge in homogeneous fully coupled in-
hibitory networks due to the transmission delay. The presence
of disorder (either in the excitability distribution or in the
connections) leads to a smearing of the clusters associated to
a non perfect synchronization [15,29,30] as we observe in the
present case. The smeared clusters are evident in the raster
plots reported in Figs. 1(e) and 1(f) for sufficiently large g.
Furthermore, the partial synchronization among the neurons

FIG. 1. Winners take all in GCNs: (a) Fraction of active neurons
nA, (b) time average of the field 〈E〉, and (c) the corresponding
fluctuations σ (E ) as a function of the strength of the inhibition g.
In the inset in (a) nA is reported for N = 4000 and two different
time intervals: namely, t f = 5 × 102 time units (black filled circles)
and t f = 5 × 104 time units (blue open diamonds). In the inset in
(c) σ (E ) has been multiplied by

√
N . Black filled circles correspond

to N = 4000 while red empty squares represent N = 8000. (d–f)
Raster plots (top) and time traces of the field (bottom) for increasing
coupling strength: from the left to the right g = 0.1, 3, and 100 for
N = 4000 (for reasons of clarity in the raster plots only the spikes
of 1000 neurons are shown). (g, h) Return maps for the maxima of
the field EM for g = 3 (g) and g = 100 (h) in the case of N = 4000.
Simulations in this figure were obtained after discarding a transient
corresponding to 20N spikes and calculating the statistics over a time
interval t f = 5 × 102 time units, apart for the data shown in panels
(g) and (h) where t f = 5 × 103 time units. The data refer to a time
delay td = 0.1, with a1 = 1.2 and a2 = 2.8, and α = 20.
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leads (at a macroscopic level) to the emergence of COs in the
mean field [E ], as shown in the lower panels of Figs. 1(e)
and 1(f). In particular, we observe a transition from an asyn-
chronous to collective dynamics, as demonstrated in Fig. 1(c)
by reporting σ (E ) as a function of g for different system
sizes. At g � 0.5, σ (E ) tends to vanish as 1/

√
N , a typical

signature of asynchronous dynamics [31]. For larger values of
the coupling strength (namely, g > 0.5), σ (E ) displays a finite
value which is independent of the system size, signaling the
presence COs. The nature of these oscillations has been pre-
viously extensively analyzed in Ref. [29]. In such a study the
authors have shown that at intermediate coupling strengths,
the collective dynamics is irregular, despite the linear stability
of the system, due to the stable chaos mechanisms [32]. This
is evident from Fig. 1(e), where the first return map for the
maxima of the field EM (n) is reported for g = 3. In the present
analysis we examine much larger coupling strength than in
Ref. [32], namely, g � 10. At these large synaptic strengths
we observe that the complexity of the collective dynamics
is reduced because the number of active neurons drastically
declines, as shown in Fig. 1(a). The few active neurons have
a quite limited spread in their excitabilities (namely, �nA�a
[33]), thus promoting their reciprocal synchronization. This is
also evident from the sharp peaks in the mean-field evolution
[see Fig. 1(f)] and from the periodic behavior of the first return
map of EM (n), shown in Fig. 1(h).

Role of the heterogeneity and the delay

To better understand the influence on the dynamics of the
parameters entering in the model, we considered different
distributions of the excitabilities and different time delays td .
Let us consider excitability distributions with different widths
�a = a2 − a1, but with the same average value [a] = 2, for
a fixed value of the delay (namely, td = 0.1). As shown in
Fig. 2(a) and as already demonstrated in absence of delay [25]
for a1 → vθ = 1 (corresponding to �a → 2 in the present
case) any arbitrary small amount of inhibition is sufficient to
induce neuronal deactivation. However, for increasing values
of a1 (which amounts to decrease the width �a) the onset of
neuronal deactivation occurs at increasingly larger g values,
since larger amount of inhibition are required to silence the
neurons with smallest excitability. This also explains why the
values of the curves nA = nA(g) decrease for increasing �a,
as shown in Fig. 2(a).

The average mean field does not present significant mod-
ifications with g as seen in Fig. 2(b). This is due to the fact
that, from a mean-field perspective, the system is subject
to the same average excitability, and hence one does not
expect large deviations in the average firing rates. There are
only small deviations at very large g where the network
with wider dispersion in the excitabilities display slightly
smaller firing rates, just because the number of active neurons
is drastically decreased. This effect is much more evident
in Fig. 2(c), where we can observe that the value of �a
significatively affects both the onset and the amplitude of the
COs as measured by σ (E ). This is because the decrease of nA

brings to a reduction in the number of partially synchronized
neurons, and therefore a reduction of the amplitude of the
field’s fluctuations.

0.01 0.1 1 10 100 1000
g

10-2
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nA

10-2

10-1
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<
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>

(a)

(b)

(c)

FIG. 2. Relevance of the heterogeneity for the dynamics of
GCNs: From top to bottom, (a) fraction of active neurons, (b) average
temporal value of the mean field, and (c) average fluctuations of the
field E , for different strengths of inhibitory connections and several
values of heterogeneity. Black circles refer to �a = 0.4, red squares
to �a = 1.2, and green diamonds to �a = 1.8. A fixed time delay of
td = 0.1 is used in this figure. The size of the network is N = 4000,
other parameters as described in the caption of Fig. 1

Let us now consider the influence of the time delay, for
a fixed distribution of the excitabilities. From Fig. 3(a), it
appears that nA approaches an asymptotic plateau for very
large coupling, whose value steadily increases for increasing
td . Indeed, for small delays, the survivors reduce to few units,
e.g., see the example reported in Fig. 3(a) for td = 0.005. This
dependence of nA on the delay at large couplings is confirmed

0.01 0.1 1 10 100 1000
g

0

0.2

0.4

σ(
E
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0
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1

nA

10-2

100

<
E

>

(b)

(a)

(c)

FIG. 3. Relevance of the time delay in GCNs: From top to
bottom (a) fraction of active neurons, (b) average temporal value
of the mean field, and (c) average fluctuations of the field E , for
different strengths of inhibitory connections and several values of
delay: namely, td = 0.25 (blue diamonds), td = 0.05 (green squares),
and td = 0.005 (red triangles). For this figure a fixed heterogeneity
distribution with a1 = 1.2 and a2 = 2.8 is used. The size of the
network is N = 4000, other parameters as described in the caption
of Fig. 1
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also by the corresponding values of the field E shown in
Fig. 3(b). Overall, longer synaptic delays counteract the effect
of the heterogeneity and therefore the neural deactivation.
As a matter of fact, for td � Tfree � 1 the fraction of active
neurons is �0.67, even for g = 1000 (data not shown).

Furthermore, the delay has a crucial role in the emergence
of COs that can be observed already for td � 0.05 for the
parameters considered in Fig. 3(c). Indeed, no collective dy-
namics have been observed in heterogeneous GCN in absence
of delay at any coupling strength [25]. By increasing the delay,
we observe larger and larger oscillations in the field E , as
shown by the curves reported in Fig. 3(c).

These behaviors can be explained by the fact that COs are
due to the presence of clusters of neurons at a microscopic
level. As shown in Refs. [10,34] for homogeneous systems,
and confirmed in Ref. [15] for heterogeneous networks, the
average number of clusters Nc increases proportionally to the
inverse of the delay. For this reason, for small delays we
expect to observe an asynchronous state, characterized by
Nc � N . Conversely, for increasing delay, Nc decreases and
therefore the neurons are more and more synchronized, thus
promoting larger collective fluctuations. The increase in the
overall synchronization leads to a reduced effective variability
in the neuron dynamics which prevents neuronal deactivation.
Indeed, disorder promotes deactivation as demonstrated in
Ref. [25] in absence of delay, and as shown in Fig. 2(a), where
nA is reported for various �a values.

IV. SPARSE NETWORK

We will now consider the diluted case, i.e. each neuron has
now exactly K < (N − 1) random presynaptic neighbors. In
this case we observe that nA has a nonmonotonic behavior
with g, as shown in Fig. 4(a) for different values of the
in-degree K for a fixed system size, namely, N = 4000. In
particular, we observe that for small coupling, nA decreases in
analogy to what reported for the GCN. However, for synaptic
couplings larger than a critical value gm, the percentage of
active neurons increases with g. This behavior indicates that
for g > gm an increase of the inhibitory coupling can lead to
the reactivation of neurons that were inactive for smaller g. An
analogous behavior has previously been reported in inhibitory
sparse networks in absence of delay for conductance based
[26] and LIF [25,27] neuronal models. The value of gm grows
faster than a power-law with the in-degree K , as shown in
the inset of Fig. 4(a). In particular, we expect that for K →
(N − 1), i.e., by recovering the fully coupled case, gm → ∞
and nA converges toward the curve reported in Fig. 1(a).

Analogously to GCNs, the average mean field 〈E〉 steadily
decreases by increasing g indicating that neuronal dynamics
slow down for increasing inhibition. This means that for
sufficiently large g all the neurons can be reactivated but with
a definitely lower firing rate. The dependence of 〈E〉 with
K , shown in Fig. 4(b), reveals that for g < gm essentially all
curves coincide, while at larger synaptic coupling the smaller
is K the larger is the value of the field. This latter behavior is
clearly dictated by nA: namely, more neurons are reactivated,
higher is the filtered firing rate measured by 〈E〉.

The mean-field fluctuations σ (E ) have now a striking dif-
ferent behavior with respect to the GCN. In sparse networks,

FIG. 4. Reactivation and collective oscillation in SNs: (a) Frac-
tion of active neurons nA, (b) average mean field 〈E〉, and (c) fluc-
tuations σ (E ) of the mean field as a function of the inhibition. The
data refer to a fixed network size N = 4000 and different in-degrees:
namely, K = 40 (magenta crosses), K = 80 (blue diamonds), K =
240 (black circles), K = 800 (red squares), K = 1600 (green trian-
gles), and K = 3200 (brown stars). In the inset of (a) the value of
gm is plotted versus the in-degree K , where gm has been estimated by
using a cubic regression in the region of the minimum of g. The black
dashed curve in (c) refers to the GCN previously reported in Fig. 1(c).
(d–f) Raster plot (top) and time course of the mean field [E ] (bottom)
for g = 0.3 (d), g = 3 (e), and g = 1000 (f). Other parameters as
described in the caption of Fig. 1

σ (E ) displays a maximum at some intermediate g value,
while for small and large couplings σ (E ) tends to vanish, as
shown in Fig. 4(c). This suggests that COs are present only at
intermediate couplings, while out of this range the dynamics
is asynchronous. This is confirmed by the raster plots and
the fields’ evolution reported in Figs. 4(d)–4(f) for different
synaptic couplings. In particular, at small and very large cou-
pling (namely, g = 0.3 and g = 1000), the instantaneous field
[E ] is essentially constant [see Figs. 4(d) and 4(f)]. This is a
clear indication of asynchronous dynamics. However, the cor-
responding raster plots differ from one another. Specifically,
while for g = 0.3 the activity is almost homogeneous, for
g = 1000 a sporadic bursting activity characterizes the neuron
firing. A detailed analysis of the differences between these two
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 σ(E)
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FIG. 5. Finite-time effects in SNs: (a) Fraction of active neurons
as a function of inhibition for four different time windows, namely,
t f = 5 × 102 (black circles), t f = 5 × 103 (red squares), t f = 5 ×
104 (green triangles), and t f = 5 × 105 (blue stars). (b) Fluctuations
of the mean field as a function of inhibition estimated for the three
shortest time windows t f reported in panel (a). The vertical dot-
dashed magenta line denotes gm, as estimated for t f = 5 × 105. The
data refer to N = 4000 and K = 240, all the other parameters as
described in the caption of Fig. 1

asynchronous regimes will be discussed in Sec. IV B. Finally,
at intermediate synaptic couplings COs are clearly observable,
as testified by the raster plot and the field shown in Fig. 4(e)
for g = 3.

From Fig. 4(c) it is also evident that the onset and the
amplitude of the collective dynamics strongly depend on the
dilution, measured in terms of the in-degree K , and that for
K → (N − 1) the globally coupled behavior is recovered.
In particular, smaller is K smaller is the amplitude of the
COs and narrower is the synaptic coupling interval where
they are observable. These two effects are due to the fact
that the disorder in the connectivity distribution increases
as 1/

√
K . Therefore, on one side the clusters of partially

synchronized neurons, which are responsible for the COs, are
more smeared at smaller K thus inducing smaller amplitudes
of the oscillations. On the other side, the disorder prevents
the emergence of COs, thus the region of existence is reduced
at lower K . As a matter of fact, for N = 4000 we start to
observe COs only when K > 40, the critical case K = 40 is
displayed in Fig. 4(c) as magenta crosses. The existence of a
critical connectivity for the emergence of collective dynamics
is a general feature of sparse networks [17,31].

To understand if the value t f of the time interval over
which we measure nA and σ (E ) has an influence on the
observed effects, we also examined the dependence of these
two quantities on t f for a fixed size N and in-degree K . The
results of this analysis are reported in Fig. 5, where it is
shown that, on one hand, for g < gm the percentage of active
neurons is almost insensible to the considered time window
analogously to what observed for the GCN. On the other hand,
for g > gm, the value nA grows with t f and for sufficiently
long times and sufficiently large g all the neurons can be
reactivated. However, as shown in Fig. 5(a), the growth of

nA dramatically slows down with increasing t f , and we can
safely affirm that for t f > 105 the further evolution of nA

occurs on unrealistically long timescales. For what concerns
σ (E ) finite-time effects are essentially not present, as shown
in Fig. 5(b).

A. The role of current fluctuations

Previous analyses of inhibitory networks in absence of
delay [25–27] have clearly shown that the position gm of the
minimum of nA marks the transition from a regime dominated
by the activity of the suprathreshold neurons (mean driven)
to a regime where the most part of the neurons are below
threshold and the firing is mainly due to current fluctuations
(fluctuation driven) [35].

With the aim of verifying that the origin of neuronal reacti-
vation in the present case is also related to such transition, let
us analyze the system from a mean-field perspective. In this
framework, the activity of a neuron is completely determined
by the average input current and its fluctuations. Let us limit
our analysis to the active neurons, since these are the only
ones contributing to the network dynamics. In particular, the
average effective input to the active neurons can be estimated
as follows:

μA = IA − gνAnA, (4)

where IA (νA) is the average excitability (firing rate) of the ac-
tive neurons. Despite the dynamics being fully deterministic,
thanks to the sparseness in the connections, each neuron can
be seen as subject to nAK uncorrelated Poissonian trains of
inhibitory spikes of fixed amplitude g with rate νA.Therefore,
by following Refs. [13,36] the current fluctuations can be
estimated as

σA = g

√
νAnA

K
. (5)

As it can be appreciated from Fig. 6, the theoretical esti-
mations Eqs. (4) and (5) (dashed curves) are in very good
agreement with the numerical data for μA and σA (filled
symbols) over the whole considered range of the synaptic
inhibition (corresponding to five orders of magnitude). On the
one hand, one observes a steady decrease of μA with g, which
can be understood from its expression Eq. (4), since νA is a
quantity monotonically decreasing with the synaptic strength
despite the neural reactivation present in SNs. This can be
inferred from the behavior of the mean field [E ], which is
strictly connected to νA, reported in Fig. 4(b). On the other
hand, the fluctuations of the input currents increase with g,
thus indicating that in Eq. (5) the growth of g prevails over the
decrease of νA.

The key result explaining the mechanism behind neural
reactivation is reported in Fig. 6: It is clear that μA becomes
smaller than the firing threshold vθ = 1 exactly at g = gm, in
concomitance with a dramatic growth of the current fluctua-
tions. Hence, for g > gm, since all the neurons are on average
below threshold, the neural firing is mostly due to current
fluctuations and not to the intrinsic excitability of each neuron.
For this reason we expect that for large coupling strength,
on one side the average firing of the neurons will become
slower, as indeed shown in Fig. 4(b), while on the other side
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FIG. 6. Mechanism of neural reactivation in SNs: Average μA

(black) and fluctuations σA (red) of the effective input current in
the active subpopulation. The dashed curves are the theoretical
estimations [Eqs. (4) and (5)], while the filled symbols represent
the numerical estimations. The firing threshold of the LIF neuron is
depicted as a blue dashed line. Vertical dot-dashed line line denotes
the measured value gm. A SN of size N = 4000 and K = 240 is
considered; all other parameters as described in the caption of Fig. 1.

the fraction nA of firing neurons will increase, thanks to the
increase of σA with g. Therefore, we can confirm that the
occurrence of the minimum in nA signals a transition from a
mean driven to a fluctuation driven dynamics, analogously to
what found in Ref. [25] in absence of delay.

Nonetheless, in the present case current fluctuations have
also a destructive role on the collective dynamics induced
by the delay. As it can be inferred from Fig. 5(b) (see also
Fig. 11 in the last section), the coherent motion disappears for
synaptic coupling larger than gm, when the amplitude of the
random fluctuations in the input currents becomes sufficiently
large to completely desynchronize the neural activity.

B. Characterization of the microscopic dynamics

The analysis of the microscopic dynamics can clarify the
different observed regimes. In particular, we will consider the
dynamics of the neurons in a network with N = 4000 and K =
240 in three typical regimes: namely, in presence of collective
motion (0.5 < g < gm), in proximity of the minimum of nA

(g � gm = 10) and for very large inhibition (g � gm). For
each synaptic coupling we study the distribution of the ISIs,
P(TISI), for three representative neurons characterized by high
(H), intermediate (I), and low (L) average firing rates.

The results of this analysis are reported in Fig. 7, where
we considered g = 2 (a, b), g = 30 (c), and g = 1000 (d).
In particular, g = 2 corresponds to the maximum in the am-
plitude of the COs measured by σ (E ) (see Fig. 5). For this
synaptic coupling the distributions P(TISI ) are quite peculiar,
being characterized by several peaks separated by a constant
time lag δt . The number of peaks and the value of δt increase
going from the fastest to the slowest neuron: namely, the time
lag δt varies from ∼0.12 (F) to ∼0.23 (I) and ∼0.25 (L).

This structure can be traced back to the coherent inhibitory
action of clusters of partially synchronized neurons, coarse

grained by the collective field [E ], on the targeted neuron.
This effect is illustrated in Fig. 7(b), where the membrane po-
tential vL of the low firing rate neuron and the corresponding
average field [E ] are reported during a short time interval. The
field [E ] displays irregular oscillations due to the clustered ac-
tivity of the neurons, furthermore it is clear that the occurrence
of every local maximum in [E ] is in perfect correspondence
with a local minimum of vL. This means that a spike can only
be emitted in correspondence to a local minimum of the field.
As a consequence, the TISI of neuron (L) should be a multiple
of the oscillation period of [E ], namely, ∼0.25. The locking
with the collective field is progressively less effective for the
neurons with higher firing rates [namely, (I) and (H)] and this
reduces the multipeak structure and the value of δt . Moreover,
in this regime dominated by collective inhibitory oscillations,
the minimal TISI,i for each active neuron is definitely larger
than the corresponding free periodTfree,i. Obviously, the more
active the neuron is, the closer to Tfree,i is the minimal TISI,i

[see the inset in Fig. 7(a)].
For larger values of g � gm, the COs vanish and the mul-

tipeak structure in P(TISI ) disappears accordingly. Moreover,
the statistics of the firing times becomes essentially Poisso-
nian as shown in Fig. 7(c). Also, starting from a coupling
strength of g = 30, where no more collective effects are
present, the free spiking period of the considered neuron Tfree,i

appears as the minimal TISI,i of the corresponding distribution
P(TISI) [see the inset in Fig. 7(c)].

Finally, in the regime of very large g, an interesting phe-
nomenon emerges: as shown in Fig. 7(d) for g = 1000 the ISI
distribution displays a large peak at Tfree,i and an exponential
tail, a typical signature of Poissonian firing. This peculiar
structure is due to the bursting activity of the neuron [see
also Fig. 4(f)]. Indeed, for this large coupling the firing rate of
the presynaptic neurons is very low, therefore the postsynaptic
neurons are usually not inhibited and fire with their own free
spiking period Tfree,i. However, whenever they receive sporad-
ically inhibitory kicks of large amplitude g, the neurons are
silent for a long period necessary for the membrane potential
to recover positive values. Furthermore, the Poissonian nature
of the distribution of the kick arrival times, is reflected in the
long tail of the P(TISI).

Overall, upon increasing inhibition, on one side we observe
that the average frequency of neurons steadily decreases, on
the other side the neurons tend to fire occasionally at the
fastest possible frequency, namely, 1/Tfree,i. Moreover, in-
creased inhibition produces a steady increase of the variability
in the microscopic firing of neurons, as clearly shown in Fig. 8
where we report the ensemble average of the coefficients of
variation, [CV]. In particular, we observe upon increasing
g, a transition from a very regular firing characterized by
[CV] � 0 to a dynamics with [CV] > 1, which is a signature
of multimodal ISI distributions. As shown in Ref. [37], the
possible observable P(TISI) distributions in presence of fluc-
tuating inputs are limited only to three types [analogous to
the three ones reported in Figs. 7(a), 7(c), and 7(d)], whose
occurrence is controlled by the value of the average effective
input μ. Furthermore, in Ref. [37] it has been demonstrated
that these distributions, for fixed mean 〈TISI〉 and CV, are
independent of the considered neural model, therefore the
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FIG. 7. Microscopic behavior: ISI analysis in SNs. Probability distributions of the ISIs, P(TISI ), of representative neurons for increasing
values of the coupling strength: namely, g = 2 (a), g = 30 (c), and g = 1000 (d). In (a) and (c) the black, red, and green curves correspond to
neurons with high (H), intermediate (I), and low (L) average firing rate, respectively; in the inset is shown a closeup where the free periods
of the three neurons (namely, Tfree,H , Tfree,I , and Tfree,L) are indicated by vertical dashed lines with the same color code. Note that starting
from the coupling strength g = 30 the value of the free period of the considered active neuron appears as the first channel of the histograms.
In (d) the first peak of the histogram, T1, corresponds to the period of the considered free neuron Tfree. In (b) is shown the mechanism originating
the multipeak structure in the distributions of panel (a): It is represented on the same time axis an instance of the membrane potential vL of the
neuron with low firing rate and of the field [E ] (the vertical dashed line marks the locking between local minima of vL and local maxima of
[E ]). Network size N = 4000 and K = 240. Other parameters as described in the caption of Fig. 1.
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FIG. 8. Microscopic variability of the ISIs in SNs. Ensemble
average over all the neurons of the coefficients of variation of the
ISIs, [CV], versus the coupling strength g. The dashed line signals
the value corresponding to a Poissonian statistics, namely, [CV] = 1.
Network size N = 4000 and K = 240, other parameters as described
in the caption of Fig. 1.

results here reported should be considered as generic ones,
not peculiar of LIF networks.

C. Role of the heterogeneity and of the delay

Analogously to what done for the GCNs, we analyzed the
influence of different excitability distributions as well as of
the time delay td on the dynamics of SNs. The corresponding
results are reported in Figs. 9 and 10.

To study the effect of the heterogeneity in the neuronal
excitabilities, we choose to keep constant the average [a] = 2
and to vary �a. As discussed in the previous subsections,
heterogeneity is necessary for the occurence of the WTA
mechanism. Therefore, for small �a the overall deactivation-
reactivation effect is less evident. This is because the percent-
age of inactive neurons is much smaller than what reported
for larger �a and the complete reactivation of all neurons is
obtained at relatively smaller g [see Fig. 9(a)]. Similar to the
GCNs, the average network activity measured by 〈E〉 remains
unchanged, because it is mainly dictated by the average synap-
tic current [see Fig. 9(b)]. Finally, also in this case, the value
of �a affects the onset and the amplitude of the collective
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FIG. 9. Relevance of the heterogeneity in SNs. (a) Fraction of
active neurons nA, (b) time average of the mean field 〈E〉, (c) fluc-
tuations of the mean field σ (E ), vs. the synaptic inhibition and for
several values of heterogeneity. Namely, �a = 0.4 (black circles),
�a = 1.2 (red squares), and �a = 1.6 (green diamonds). In all
panels the time delay is set to td = 0.1, the network size to N = 4000
and the in-degree to K = 240, other parameters as described in the
caption of Fig. 1.

motion [see Fig. 9(c)], due to the same mechanism already
discussed for GCNs.

Regarding the delay, it is worth to remind that in the
globally coupled system, the effects of the synaptic delays
were observable in nA and 〈E〉 only at large inhibition, where
the WTA mechanism reduces largely the number of active
neurons. This effect is not present in SNs due to the reactiva-
tion process occurring at sufficiently large g [see Figs. 10(a)
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FIG. 10. Relevance of time delay is SNs. (a) Fraction of active
neurons nA, (b) time average of the mean field 〈E〉, (c) fluctuations of
the mean field σ (E ), vs. g and different values of time delay. Namely,
td = 0.005 (black circles), td = 0.05 (red squares), and td = 0.25
(blue diamonds). For this figure a fixed heterogeneity distribution
with �a = 1.6 is used. In all the panels a fixed value of N = 4000
and K = 240 are employed, other parameters as described in the
caption of Fig. 1.
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FIG. 11. Finite-size scaling of the mean-field fluctuations in
SNs. Standard deviation of the mean field, σ (E ), as a function of
inhibition for networks with K = 150 and increasing size. Namely,
N = 400 (black circles), N = 1000 (red squares), N = 2000 (green
diamonds), N = 4000 (blue triangles), and N = 8000 (magenta di-
amonds). The vertical dot-dashed line marks gm. In the inset the
standard deviation has been rescaled with the system size N . Each
point in the figure and in the inset is the average over 10 realizations
of the disorder. Other parameters as described in the caption of Fig. 1.

and 10(b)]. However, similar to the GCNs, the collective
activity can emerge only for sufficiently long delays, namely,
td > 0.005, and the amplitude of the COs, measured by σ (E )
increases with td as shown in Fig. 10(c).

V. FINITE-SIZE EFFECTS

In this section we report a detailed analysis of the effects of
the disorder on finite-size networks. In GCNs the only source
of disorder is associated to the distribution of the excitabilities,
while in SNs, the disorder is due also to the random distribu-
tion of the connections. In both cases we consider for each
system size 10 different network realizations, which implies
different excitability and connectivity distributions.

Let us first consider the field E and its fluctuations σ (E ).
Similar to what was reported for the GCNs [see Fig. 1(b)],
for the SNs the average value of 〈E〉 does not depend on N
(data not shown). Instead, the mean-field fluctuations strongly
depend on the size N , as shown also for the GCNs in Fig. 1(c).
In particular, for SNs we report σ (E ) as a function of g in
Fig. 11 for a fixed in-degree K = 150 for system sizes ranging
from N = 400 to N = 8000. From Fig. 11 (and the inset) it is
clear that for g � 0.3 and g � 30, σ (E ) ∝ N−1/2, indicating
that in the thermodynamic limit the dynamics is asynchronous
for small and large couplings. For intermediate values of g
(namely, 0.3 < g < 30) σ (E ) saturates, for sufficiently large
N , to an asymptotic finite value, thus showing clearly the
persistence of the collective behavior in the thermodynamic
limit. The saturation is already observable for N � 4000
for 1 � g � 5. Therefore, we can safely affirm that in the
thermodynamic limit COs are present within a finite interval
of the synaptic couplings and that their amplitude does not
diverge. Furthermore, the width of the interval is determined
by the value of K [as shown in Fig. 4(c)] but not by the size
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FIG. 12. Fraction of active neurons: Finite-size effects. Panel (a) refers to GCNs, while panel (b) refers to SNSs with K = 150, for different
network sizes: namely, N = 200 (black circles), N = 400 (blue squares), N = 1000 (red triangles), N = 2000 (maroon stars), N = 4000 (green
squares), and N = 8000 (magenta diamonds). The panels display the average nA (top) and the standard deviation σ (nA) (bottom) of the fraction
of active neurons versus the coupling strength g. The average and fluctuations have been measured over 10 different realizations of the disorder
in the network for each value of g and N . In the case of GCNs the standard deviation has been multiplied by the square root of the system size.
Remaining parameters as described in the caption of Fig. 1.

of the network N . Furthermore, for SNs with sufficiently long
delay we have two phase transitions: from asynchronous to
collective behavior (at small coupling) and from collective to
asynchronous dynamics (at large g).

Let us now consider the effect of the realizations of dis-
order on the percentage of active neurons. In particular, in
Fig. 12 we report the average, nA, and the standard devia-
tion, σ (nA), of the fraction of active neurons obtained for
10 different network realizations for increasing N both for
GCNs an SNs. As a general remark we observe that nA is
not particularly sensible to the system size, apart for really
small sizes (N < 500) in the SN case [see the upper panels
in Figs. 12(a) and 12(b)]. The case of small network sizes for
SNs will be discussed later in this section.

For the GCNs, we observe, as expected, a decrease of
σ (nA) as N−1/2 with the system size, as clearly evident from
the lower panel in Fig. 12(a). Moreover, we observe that σ (nA)
is essentially constant over the whole coupling range, apart
for very small coupling strength, g � 0.1 (not shown in the
figure), where due to the essentially uncoupled dynamics of
the neurons σ (nA) = 0 for every N . The behavior is quite dif-
ferent for SNs as shown in Fig. 12(b) for networks with K =
150. As a general remark we observe that whenever nA → 1
(i.e., for g < 0.3 and g > 1000) the fluctuations vanish and
σ (nA) exhibit finite values in the range of synaptic strength
where nA < 1. Furthermore, for increasing N the values of
σ (nA) saturate toward an asymptotic profile. Therefore, the
fluctuations will persist even in the thermodynamic limit, in
agreement with the results reported in Ref. [31], and they
assume an almost constant value [σ (nA) � 0.1] in the range
of existence of COs (namely, 0.3 < g < 30).

The sparseness of the network can give rise to striking
effects for small system size, as it is shown in Fig. 13. In
particular, in Fig. 13(a) we report the values of nA for 2000
different realizations of the network for N = 200 and K =
150. For small coupling strength, namely g � 50, we observe
that the distribution of nA values has a single peak centered

around the average n̄A. While, for larger coupling strength
the distribution reveals two distinct peaks: one associated to
the typical dynamics of a sparse network at large g (i.e.,
neural reactivation) and one to the typical dynamics of a GCN
(i.e., the WTA mechanism). Thus, rendering the definition
of n̄A quite questionable. As a matter of fact, for g > 50 we
estimated two distinct averages for each g, one based on the
nA values larger than nA = 0.2 and one on the smaller values,
these are reported as red lines in Fig. 13(a). We observe
this coexistence of two different type of dynamics also by
considering different initial conditions for a fixed disorder
realization (data not shown).

The group of networks with very low nA are characterized
by a peculiar dynamics where only few neurons remain ac-
tive. An example of this dynamics for g = 200 is reported
in Fig. 13(b), this state is also indicated by a green arrow
in Fig. 13(a). The corresponding raster plot reveals, after
a short transient, the convergence toward a dynamical state
where only few neurons survive (namely, three in this case),
while the rest of the network becomes silent. The interesting
aspect is that these three neurons are completely uncoupled
among them and their activity is sufficient to silence all
the rest of the neurons. The microscopic analysis reveals
that the three neurons have high intrinsic excitability (but
not necessarily the highest) and that the ensemble of their
postsynaptic neurons correspond to the whole network, apart
themselves.

The reported effects, i.e., the coexistence of different dy-
namics as well as the existence of states made of totally
uncoupled neurons, disappear increasing the system size. As a
matter of fact these effects are already no more observable for
N = 400. Indeed, an analysis of small networks reveals that
the peculiar states characterized by few neurons (two or three)
with high excitabilities (namely, among the top 20% neurons)
uncoupled among them but with postsynaptic connections
projecting over the whole network becomes extremely rare
already when N/K � 2.
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FIG. 13. Effects of the realizations of disorder on small SNs. (a) The plot reports the values of nA obtained for 2000 different realizations
of the network for each value of the coupling strength g, 80 randomly chosen realizations are shown as black symbols for each g. The red lines
are averages n̄A over the realizations of the disorder: for 0.1 � g � 50 the average is computed over the total number of realizations, while
for coupling strengths larger than g = 50 the averages are performed by considering two groups of networks as explained in the text. Inset:
Probability distributions of nA for g = 30 (blue histogram) and g = 300 (orange histogram). (b) The raster plot displays an example of a the
dynamical evolution of a peculiar state obtained for large coupling (here g = 200), which is indicated in panel (a) by a green arrow. Data refer
to N = 200 and K = 150, other parameters as described in the caption of Fig. 1.

VI. CONCLUDING REMARKS

In this paper we have clarified how in an inhibitory spiking
network the introduction of various ingredients, characteristic
of real brain circuits, like delay in the electric signal trans-
mission, heterogeneity of the neurons, and random sparse-
ness in the synaptic connections, can influence the neural
dynamics.

In particular, we have studied at a macroscopic and mi-
croscopic level the dynamics of heterogeneous inhibitory
spiking networks with delay for increasing synaptic coupling.
In GCNs the heterogeneity is responsible for neuron’s death
via the WTA mechanism, while the delay allows for the emer-
gence of COs beyond a critical coupling strength. Further-
more, we have shown that the increase in the delay favors the
overall collective dynamics (synchronization) in the system,
thus reducing the effective variability in the neuron dynamics.
Therefore, longer delays counteract the effect of heterogeneity
in the system, which promotes neural deactivation and asyn-
chronous dynamics. For GCNs and SNs, sufficiently long time
delays are needed to sustain COs. The required time delays are
of the order of 1–5 ms, by assuming a membrane time constant
of 20 ms, these can be considered as realistic values, since
they are comparable to axonal conduction delays measured in
the brain [38].

In SNs by increasing the coupling we observe a passage
from a mean driven to a fluctuation driven dynamics induced
by the sparseness in the connections. We have a transition
from a regime where the neurons are on average suprathresh-
old to a phase where they are on average below-threshold and
their firing is induced by large fluctuations in the currents.
This transition is signaled by the occurrence of a minimum
in the value of the fraction of active neurons as a function
of the inhibitory coupling. Therefore, we can affirm that we
pass from a regime dominated by the WTA mechanism, to
an activation regime controlled by fluctuations, where all
neurons are finally firing but with firing rates definitely lower

than those dictated by their excitabilities [25]. However, the
fluctuations desynchronize the neural dynamics: the COs
emerging at small coupling, due to the time delay, disappear at
large coupling when current fluctuations become predominant
in the neural dynamics.

Finite-size analysis confirm that in SNs we have two
phase transitions that delimit the finite range of couplings
where COs are observable. Outside this range the dynamics
is asynchronous; however, we have two different kinds of
asynchronous dynamics at low and high coupling. At low
coupling, we observe a situation where the firing variability
of each neuron is quite low and essentially the active neurons
behave almost independently. At large coupling, the variabil-
ity of the firing activity is extremely large, characterized by
a bursting behavior at the level of single neurons. Due to the
sparseness and the low activity of the fluctuations activated
presynaptic neurons, each neuron is subject to low rate Pois-
sonian spike trains of PSPs of large amplitude. Therefore, the
neurons are active for a long time and unaffected by the other
neurons; however, when they receive large inhibitory PSPs
they remain silent for long periods.

It should be remarked that the role of the heterogeneity
is fundamental for the occurrence of these two phase transi-
tions, indeed in inhibitory sparse delayed networks made of
integrate-and-fire neurons with no intrinsic excitability only
the transition from asynchronous to collective dynamics at
low synaptic coupling is present [13]. Furthermore, it has
been recently shown that for LIF balanced networks with
homogeneous excitability the collective dynamics depends on
how the thermodynamic limit is taken. In particular, for sparse
(massive) networks where the connectivity K is independent
of (proportional to) the system size N only asynchronous
states (collective irregular oscillations) are observable for any
coupling strength [39–41]. In the present paper we limited our
analysis to SNs, future work should be devoted to characterize
the transitions among different dynamical states in massive
networks.
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The observed transition from COs to asynchronous dy-
namics observable at large synaptic strength can have some
biological plausibility in terms of a sort of homeostatic mech-
anism able to prevent abnormal synchronization in inhibitory
circuits. Usually inhbitory plasticity has been experimentally
revealed for inhibitory-excitatory connections [42]. However,
there are conjectures supported by preliminary evidences
that in the Striatum synaptic plastic effect can be present
in purely inhibitory networks, as the one involving fast-
spiking interneurons and medium spiny neurons (MSNs) or
even MSNs with other MSNs [43]. In particular, during COs
we could expect Hebbian synaptic reinforcement among the
recurrently coupled neurons due to some form of plasticity
among the inhibitory neurons [42]. This reinforcement will
drive the system toward the asynchronous regime, where
it will desynchronize. As a consequence the synapses will
weaken leading back the network toward the CO regime.
Similar phenomena of decoupling through synchrony have
been reported for networks of pyramidal (excitatory) neurons
with spike-timing-dependent plasticity in presence of axonal
delays [44] or for LIF networks in absence of delays [45]. This
mechanism will maintain the network at the border between
randomness and partial synchronization, thus favoring the
emergence of almost synchronized clusters of cells, which is
typical feature of the activity of the MSNs in the striatum
[46]. Therefore, it will be worth to examine in future works
the dynamics of our network in presence of synaptic plasticity
and to understand the role played by the delay in this context.

It has been shown that heterogeneity and noise
can increase the information encoded by a population
counteracting the correlation present in neuronal activity
[47–51]. However, it remains to be clarified how disorder
(neural heterogeneity and randomness in the connections)
and delay should combine to enhance information encoding.
The results reported in this paper can help in understanding
the influence of delay and disorder on the dynamics of neural
circuits and therefore on their ability to store and recover
information.
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