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The dynamical phases of the Hindmarsh-Rose neuronal model are analyzed in detail by varying the
external current I. For increasing current values, the model exhibits a peculiar cascade of noncha-
otic and chaotic period-adding bifurcations leading the system from the silent regime to a chaotic
state dominated by bursting events. At higher I-values, this phase is substituted by a regime of
continuous chaotic spiking and finally via an inverse period doubling cascade the system returns to
silence. The analysis is focused on the transition between the two chaotic phases displayed by the
model: one dominated by spiking dynamics and the other by bursts. At the transition an abrupt
shrinking of the attractor size associated with a sharp peak in the maximal Lyapunov exponent is
observable. However, the transition appears to be continuous and smoothed out over a finite current
interval, where bursts and spikes coexist. The beginning of the transition �from the bursting side� is
signaled from a structural modification in the interspike interval return map. This change in the map
shape is associated with the disappearance of the family of solutions responsible for the onset of the
bursting chaos. The successive passage from bursting to spiking chaos is associated with a progres-
sive pruning of unstable long-lasting bursts. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2818153�

Neuronal membranes display an excitable electrical ac-
tivity due to the out-of-equilibrium conditions in which
they are maintained by virtue of active ionic pumps. Un-
der the action of external stimuli the membrane potential
can exhibit complicated dynamical evolution in connec-
tion with variations of the intramembrane ionic currents.
Signals among neurons are probably transmitted as pat-
terns of action potentials (spikes) of different complexity.
The most common signals are constituted by continuous
firing of action potentials (i.e., spiking dynamics) or by
oscillations between tonic spiking and a silent (resting)
state (i.e., bursting dynamics). Phenomenological and
neurophysiological models developed to reproduce the
electrical activity of cell membranes have provided many

nontrivial examples of dynamical systems. The richness
of the behaviors exhibited by these models is often asso-
ciated with extremely complicated bifurcation diagrams.
The Hindmarsh-Rose (HR) model represents a paradig-
matic example of these systems, since it is able to repro-
duce spiking or bursting dynamics upon variation of an
external parameter (the dc current). Besides a rich bifur-
cation diagram, the HR model displays two different cha-
otic regimes: one dominated by bursts and one by spiking
solutions. The characterization of these two dynamical
phases and of the transition connecting them is the sub-
ject of our analysis.

I. INTRODUCTION

Several models have been introduced to reproduce the
bursting behavior of neuronal cells, in particular the devel-
opment of the Hindmarsh-Rose �HR� model1 was stimulated
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by the studies of bursting neurons of the pond snail Lym-
naea, while various other theoretical models2–5 have been
triggered by the analysis of the activity of pancreatic �-cells.

The main characteristics of the dynamics of all these
models can be summarized as follows: by varying a control
parameter �e.g., an external dc current� the system passes
from a situation where it exhibits stable bursting solutions to
a regime characterized by continuous spiking. Moreover the
transition from bursting to spiking is typically chaotic and it
has been analyzed for the HR model in two previous
papers.6,7 In both these works the transition has been identi-
fied as a crisis which destabilizes the chaotic state of con-
tinuous spiking, González-Miranda has defined this transi-
tion a continuous interior crisis,7 while Wang suggested that
the genesis of the bursting state should be related to the
realization of a homoclinic reinjection mechanism to an un-
stable chaotic saddle born at the crisis.6 These two authors
provided two different criteria to identify the transition: for
González-Miranda this is characterized by a sharp drop in
the size of the three-dimensional attractor, or analogously in
the spread of the interspike intervals �ISIs�; for Wang during
the phase of spiking �resp. bursting� the associated attractor
is restricted �resp. not restricted� to one side of the invariant
manifold associated with the stable and weakly unstable di-
rections of the fixed point of the system.

Another peculiar feature of these models is the occur-
rence of a cascade of period-adding bifurcations leading
from the silent regime to repetitive bursting, each bifurcation
being characterized by the increase of one unit in the number
of spikes forming the burst.8–11 In 1991 Terman8 showed, in
a general framework, that this kind of transition could be
either continuous or discontinuous. In the first case a stable
periodic solution modifies smoothly from n to n+1 spikes
and during the transition the period of the burst itself be-
comes extremely long, while in the second case a Smale
horseshoe can arise during the transition, but its nature
would be essentially repulsive.12 However, numerical results
reported more recently for models of the pancreatic �-cell
seem to somehow contradict the scenario depicted by Ter-
man. In particular, in Ref. 10 the authors have shown, by
examining the Sherman model,5 that stable n-spike bursts
cease to exist due to subcritical period doubling bifurcations
and stable bursts with n+1-spike emerge in correspondence
to saddle-node bifurcations. At the transition there is a coex-
istence region for stable bursts with n and n+1 spikes, whose
basin of attractions reveal boundaries with a fractal structure.
These differences could be due to the fact that the Terman
results are essentially based on an analysis of the fast sub-
system �FS�, once the system itself has been decomposed in
a fast and a slow part. Indeed this approach allows a drastic
simplification of the dynamics, but it can lead to misleading
conclusions.10 Moreover, in Ref. 9 the analysis of the Chay
neuron model2 has revealed that, in absence of chaos, the
sequence of period-adding bifurcations for the bursts can be
put in direct relationship with the period doubling cascade
involving the spiking solutions.

In the present article, we aim at re-examining in the
context of the HR model the nonchaotic and chaotic period
adding bifurcations23 as well as the transition from the cha-

otic bursting state to the chaotic spiking phase. The noncha-
otic bifurcation sequence is analyzed in details by discussing
general aspects of these period adding bifurcations and dif-
ferences with respect to previous analysis of similar sce-
narios reported for other bursting neurons. The chaotic pe-
riod adding bifurcation is characterized in terms of Lyapunov
exponents as well as by estimating the distributions of regu-
lar and anomalous bursts. In order to describe the transition
from bursting chaos �BC� to spiking chaos �SC�, we intro-
duce as an order parameter the maximal number of spikes
occurring within a �regular� burst. Moreover, the investiga-
tion of the transition is performed by considering the ISI
sequences and the associated return maps combined with the
Lyapunov analysis and the bursts distributions.

In Sec. II the model will be introduced together with the
main dynamical indicators employed here. In order to give a
first general description of the possible dynamical behaviors
present in the HR model Sec. III will be devoted to an analy-
sis of the phase diagram of the associated FS. The bifurca-
tion diagram of the complete model will be discussed in Sec.
IV, with particular emphasis on the period-adding nonchaotic
bifurcations. The chaotic bifurcations as well as the transi-
tion from BC to SC will be the subject of Sec. V. A short
summary of the main results will be reported in Sec. VI.

II. MODEL AND TOOLS

In the present paper we will limit our analysis to the HR
model, that can be written in the following way:

ẋ = 3x2 − x3 + y − z + I , ẏ = 1 − 5x2 − y ,

�1�

ż = r�4�x +
8

5
� − z� .

We will examine the dynamics of the model for two values
of the parameter r �namely, r=0.0021 and 0.001� by varying
the external dc current I. The model has been integrated by
employing Runge-Kutta schemes, usually a fourth order with
time step �t=0.0002−0.0001, but in some cases also a vari-
able time step fourth to fifth order algorithm with absolute
precision of 10−6–10−7 has been used.

In order to study the bifurcation diagram of Eq. �1� we
will employ the continuation software AUTO 2000,13 while the
linear stability of the solutions is analyzed in terms of their
Floquet eigenvalues. The degree of chaoticity of the whole
dynamics is measured in terms of the Lyapunov spectrum
	�k
�k=1,2 ,3�, evaluated by integrating the linearized dy-
namics associated with Eq. �1� and by performing periodic
Gram-Schmidt ortho-normalizations according to the method
reported in Ref. 14. The Lyapunov exponents �k are real
numbers ordered from the largest to the smallest, a positive
maximal Lyapunov �1 indicates that the dynamics of the sys-
tem is chaotic. Moreover, from the knowledge of the
Lyapunov spectrum it is possible to obtain an estimation of
the number of degrees of freedom actively involved in the
chaotic dynamics in terms of the Kaplan-Yorke dimension15

dKY= j+�k=1
j �k / �� j+1�, j being the maximal index for which

�k=1
j �k�0.
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As previously shown in Refs. 6 and 16 and due to the
fact that one direction is strongly contracting, the dynamics
of the present model can be well described in terms of a
one-dimensional map of the interval. Typically a Poincaré
section has been employed to construct such a map, instead
we will analyze the first return map associated with the se-
quence of ISIs, similarly to what was recently done in Ref.
17. Since the time series associated with the ISIs usually
contains sufficient information to reconstruct the dynamics
of a spiking system.18

III. THE FAST SUBSYSTEM

The HR model has been devised to reproduce bursting
behavior of neurons and it has been developed from a sim-
pler two-dimensional model exhibiting an S-shaped stability
curve for the corresponding fixed point �FP� coexisting with
stable periodic solutions �i.e., with regular spiking�. The third
added variable has a slower dynamics �whose time scale is
ruled by the parameter r� and for specific values of the cur-
rent the presence of this third variable allows the system to
pass from the silent regime to the repetitive firing behavior
during a periodic cycle, thus giving rise to bursts of different
complexity.

Due to the smallness of the r parameter the time dynam-
ics of the system can be decomposed in a slow and a fast
evolution. Moreover, the analysis of the FS can already lead
to a reasonable comprehension of the behavior of the whole
model.8,19 The equations for the FS can be rewritten as

ẋ = 3x2 − x3 + y − W , ẏ = 1 − 5x2 − y , �2�

where W=z− I plays the role of an external parameter. These
equations admit FP solutions coexisting with stable periodic
ones, that are displayed in Fig. 1. The FP solutions exhibits
the typical S-shaped form, in particular in the lower branch
the FP is stable, while in the intermediate branch becomes a
saddle �for W�t2��W�W�t1�, see Fig. 1�. In the upper
branch the situation is more complicated, at very large nega-
tive W-values �not displayed in Fig. 1� the FP is stable, then
it loses its stability via a supercritical Hopf bifurcations at h1

where a first family of periodic stable solutions �P1� emerges
surrounding the unstable FP. The family P1 disappears when
the periodic orbit collides with the FP metastable branch at
the homoclinic point o1. By following the upper branch to-
wards larger W-values, the FP turns from unstable to stable at
h2. Another family of stable periodic orbits �P2� coexist with
the unstable FP in the interval W�o2��W�W�h2�; they
emerge via a supercritical Hopf bifurcation at h2 and disap-
pear at o2, due to a homoclinic collision with another saddle.
By further following the upper branch for larger W, the
stable FP loses its stability via a tangent bifurcation by col-
liding with a saddle at t1. Finally another tangent bifurcation
interests the FP at t2 where the saddle branch and the lower
branch of stable solutions collides.

Since we consider quite small r-values the phase dia-
gram associated with the FS reported in Fig. 1 will be ex-
tremely useful to help in understanding the dynamics and the
bifurcations of the complete 3D model �1�. In particular, the
family P1 of periodic orbits will be associated with the burst-
ing and spiking dynamics of the complete model, while the
family P2 plays a fundamental role in the nonchaotic period-
adding bifurcations.

IV. THE BIFURCATION DIAGRAM
OF THE COMPLETE SYSTEM

In the present section we will illustrate the sequence of
bifurcations observed for the complete model �1� for r
=0.0021 by varying the external current I.

A. Fixed point bifurcations

The system always admits a unique FP, that is given by
the intersection of the z null cline,

x =
z

4
−

8

5
=

W + I

4
−

8

5
�3�

with the curve representing the stationary FPs for the FS
reported in Fig. 1. Let us start from very large currents, in
this case the FP is located in the upper branch shown in Fig.
1 at very negative W-values as it is stable. It loses its stability
at I=25.2612 �corresponding to h1 for the FS� via a super-
critical Hopf bifurcation that gives rise to a stable limit cycle,
that will remain stable until I=3.2195. We will later investi-
gate the bifurcations of the periodic solutions. For the mo-
ment, let us limit the analysis to the FP stability. The FP
returns stable at I=6.1976 �corresponding to h2 for the FS�
where a subcritical Hopf bifurcation takes place. Therefore
for I�6.1976 we have the coexistence of a stable FP with
two limit cycles, one stable and one unstable. At I=5.3978
�corresponding to t1 in Fig. 1� the FP will again lose its
stability via a supercritical Hopf bifurcation and we have the
coexistence of two stable limit cycles. The FP will remain
unstable for a large current interval �the most relevant one
for the complex dynamics of the model� up to I=1.2895
�corresponding to t2 in Fig. 1� where it will become defini-
tively stable via a subcritical Hopf bifurcation.

FIG. 1. �Color online� Extrema of x for the stationary solutions of the FS �2�
vs the parameter W. The S-shaped line refers to the FPs, while the extrema
of the periodic solutions P1 �resp. P2� are shown in blue �resp. red�. Solid
�resp. dotted� lines indicate stable �resp. unstable� solutions, while the
dashed ones are associated with saddles. The dot-dashed straight line is the
z-nullcline �3� for I=0.10. In particular, h1�W�h1� ,x�h1��
= �−11.5932,1.8164�, h2= �0.9264,0.1835�, t1= �1.0000,0.0000�, t2

= �−0.1851,−1.3333�, o1= �0.0856,−0.9194�, and o2= �0.8162,−0.3317�.
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B. Spiking solutions: Period doubling cascade

As already mentioned, a stable limit cycle emerges at I
=25.2612 and it has a pure sinusoidal shape, by decreasing
the current value the shape modifies and the periodic solution
becomes a train of identical spikes. This solution gives rise
to a cycle characterized by two spikes per period at I
=3.3703 via a period doubling bifurcation. Finally, a cascade
of period doubling leads the system to a chaotic �spiking�
state at a current Ics=3.3242�1�. The cascade is shown in Fig.
2 by reporting the peak positions Wpeak=zpeak− I vs I. The
nonchaotic regular spike trains, composed by one or more
spikes per cycle, corresponds to the family P1 of periodic
solutions found in the FS. A typical spiking solutions is
shown in Fig. 3�a�.

C. Bursting solutions: Period-adding bifurcations

In this subsection we discuss how the bursting solutions
will emerge from the stable FP present at low current values
by increasing I. The FP is initially the unique solution of the
system and it is stable until I=1.2895, where due to a sub-
critical Hopf bifurcation it becomes unstable �see Fig. 4�a��.
In correspondence of this transition point an unstable limit
cycle emerges and turns stable via a saddle-node bifurcation
occurring at I=1.2685 �SN1a in Fig. 4�a��. This stable limit
cycle is termed “burst” and it is different from the stable
spiking solutions described before, since the orbit in this case
does not remain always confined in the vicinity of the branch
of periodic solutions P1 of the FS, but it spends also a large
part of the cycle in proximity of the stable FP of the FS �as
shown in Fig. 3�b��. This solution, characterized by only one
spike, disappears via a second saddle-node bifurcations
�SN1b� at I=1.270 18, while a stable burst with two spikes
appears at a lower current I=1.270 17 �SN2a� again via a
tangent bifurcation. It should be noticed that in the interval
�1.2685; 1.2895� the stable FP coexists with stable bursts. By
increasing I a peculiar sequence of saddle-node bifurcations
can be observed: the burst with k-spikes disappears at SNkb

and a new burst with k+1-spikes arises at a lower current via
a tangent bifurcation at SNk+1a, moreover the two stable so-
lutions with k and k+1 peaks are continuously connected via
a branch of unstable bursting solutions �see Fig. 4�b��. As a
final remark, the two stable bursting solutions coexist in a

small current interval. This period-adding transition is quite
similar to the one described in Ref. 10 apart from the fact
that in that paper the authors have identified the first transi-
tion �where the k-spike burst ceases to exist� as a subcritical
period-doubling.

As we have mentioned the emergence of the new spike
in the burst is a continuous process, if one includes in the
picture also the unstable solution interpolating between the
stable bursts with k and k+1 spikes. Since this scenario is
common to all the period-adding bifurcations �in absence of
chaos� we will limit to analyze the transition from four to
five spikes reported in Fig. 4�b�. At I=1.854 57 the four-
spike burst disappears by colliding with an unstable solution.
By following the unstable solution for decreasing currents
one observes a peculiar increase in the duration of the burst
by approaching the SN5a �at I I*=1.854 136 702 2�, as it
can be clearly appreciated in Fig. 5. The period of the solu-
tion increases because the orbit once reached the homoclinic
point o1 is not attracted �as expected� by the stable branch,
but it instead follows the “metastable” saddle branch towards
t1 �as shown in Fig. 5�a��. By decreasing I the orbit finally
reaches t1 and then the orbit folds back being attracted by the
family P2 of �stable in the FS� periodic solutions. This gives
rise to an additional peak in the burst structure and the solu-
tions with one extra peak gets finally stabilized at SN5a. A
similar mechanism for the period-adding bifurcation has
been suggested by Terman8 for a continuous nonchaotic tran-
sition. However Terman suggested that the solution should
remain stable during the whole transition, but this does not
seem to be true for the HR model. Moreover, exactly at SN5a

FIG. 2. Peak positions Wpeak=zpeak− I as a function of the current I. The
whole bifurcation diagram is shown in �a�, while in �b� a magnification of
the chaotic region is reported. The data refers to r=0.0021 and they have
been taken after discarding a transient period T�105.

FIG. 3. �Color online� Extrema of x corresponding to the stationary solu-
tions of the FS �2� versus W together with stable solutions of the complete
HR model. In �a� a spiking solutions with two spikes per cycle is reported
for I=3.35; while in �b� a bursting solution with two peaks per burst is
shown for I=1.30. The symbols are as in Fig. 1 and the dot-dashed �ma-
genta� z null clines refer to the examined currents.
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the new peak is located quite far from the rest of the packet
of spikes and the period of the burst is peculiarly long, but
for increasing currents the new peak rapidly reapproaches the
old ones and the period of the whole burst returns at values
similar to those preceding the SN4b bifurcation �as displayed
in Fig. 5�b��. Please notice that this transition occurs in an
extremely narrow current interval and it could be very diffi-
cult to clarify all these aspects without the help of a continu-
ation software, like AUTO 2000.13

This sequence of period adding nonchaotic bifurcations
repeats until the burst reaches 11 peaks as shown in Fig. 2�a�,
in particular the bursts emerging from these successive bifur-
cations are quite different from the one observed at lower
currents �reported in Figs. 3�b� and 5�. Since now the solu-
tion never follows precisely the FP stable branch of the FS
�as clearly shown in Fig. 6�a�� and this is probably due to the
fact that the FP of the complete HR model is now located far
from the stable branch of the FS. However, the arrangements
of successive spikes within a burst is quite peculiar and it can
be summarized as follows:

• Each successive spike has a decreasing height xpeak �i.e.,
the maximal x-value corresponding to each peak de-
creases�.

• Each successive peak is associated with larger z-values
�i.e., the position of the peak zpeak increases�.

• The duration of each successive ISI within a burst, follow-
ing the initial silent phase, is monotonically increasing.

All these facts can be appreciated in Figs. 6�a� and 6�b�. The
first two characteristics are due to the peculiar arrangement
of the branch of periodic solutions P1 in the phase space
shown in Fig. 1, while the third one can be explained by
noticing that by moving along the burst the solution ap-
proaches the �unstable� FP. Therefore, the velocity of the
orbit along each successive loop tends to decrease giving rise
to longer and longer ISIs. A bursts with the above character-
istics will be termed regular.

The structure of the bursts can be better appreciated by
considering the ISI return map, displayed in Fig. 6�b�. In this
representation the silent regime is characterized by an ex-
tremely long ISI �a maximum in the map�; the successive
iteration of this point leads to an extremely low ISI, that
corresponds to the period separating the 2 first spikes of the
burst. The monotonic increase of the ISIs for the successive
spikes is associated with points of the map lying on a line
bending upwards with respect to the bisectrix �as it can be
seen in the inset of Fig. 6�b��. Moreover the ISI map is al-
most tangent to the diagonal for small ISI values, thus sug-
gesting that the dynamics of the system could be interpreted
as a intermittent behavior between a laminar phase charac-
terized by regular spiking �a point on the diagonal would
correspond to a tonic spiking regime� and a reinjection phase
denoted by silence.6

FIG. 4. Maximal z values associated with the stationary solutions of the
complete HR model as a function of the external current I. In �a� the sub-
critical Hopf bifurcation where the FP loses its stability �filled circle� and the
cascade of period-adding saddle-bifurcations leading from bursts with one
spike to bursts with five spikes. In �b� an enlargement of the bifurcation
diagram in proximity of the transition from a burst with four-peaks to bursts
with five-peaks is reported. Solid �resp. dashed� lines refer to stable �resp.
unstable� solutions.

FIG. 5. �Color online� Curves and axis analogous to those displayed in Fig.
3. In �a� are reported the unstable bursts for three current values below the
bifurcation SN5a. The period of the solutions as well as the height of the
extra peak increase by approaching SN5a; i.e., for decreasing currents.
Namely, the three lines refer to I=1.854 136 708 6, I=1.854 136 702 3, and
I= I*. In �b� are reported a few stable solutions above the bifurcation SN5a,
the period of the solutions decreases for increasing current values I*� I
�1.854 140. The symbols are as in Fig. 1 and the dot-dashed z-nullcline
refers to I= I*.
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The successive bifurcation towards a burst with 12 peaks
is more complicated, in particular it is chaotic, and it will be
addressed in the next section.

V. THE CHAOTIC PHASES

In the following the chaotic regions of the model will be
characterized in terms of a Lyapunov analysis and of the ISI
return maps. In particular, we will mainly focus on the pa-
rameter value r=0.0021 �i.e., the value considered by
González-Miranda in Ref. 7�, however we will also discuss
some aspect of the dynamics for r=0.0010 �i.e., the value
examined by Wang in Ref. 6�.

A. Lyapunov analysis

As a first step we have examined the degree of chaoticity
of the model in terms of the associated Lyapunov spectrum
for r=0.0010 and r=0.0021. In both cases one can observe
chaotic regions characterized by a positive maximal
Lyapunov exponent �1.

As shown in Fig. 7, at low currents for r=0.0010 several
narrow chaotic intervals are observed within the bursting re-
gion �for r=0.0021 only one of these is indeed discernible�.
These chaotic intervals are associated �as shown in the next
subsection� with period-adding bifurcations. Moreover, in
both cases a wider chaotic interval where �1 reaches its
maximal value is present. Within this interval, the transition
from a regime where the chaotic dynamics is dominated by
bursts �termed bursting chaos �BC�� to a �chaotic� dynamical
phase where the spiking dynamics is prevalent �termed spik-
ing chaos �SC�� will take place. However, it should be no-
ticed that these chaotic regions are interrupted by stable pe-
riodic windows containing solutions of different complexity.
As already mentioned, a common aspect is that the maximal
Lyapunov attains a sharp maximum �1�0.0166 �resp. �1

�0.0137� within this interval at Imax=3.2958�1� �resp. Imax

=3.2414�1�� for r=0.0021 �resp. r=0.001�. Remarkably,
these values are, within the error bars, coincident with the
values previously identified as the transition points from BC
to SC �see Fig. 7�. In particular in Ref. 6 for r=0.0010 the

FIG. 6. �Color online� �a� Extrema of x corresponding to the stationary
solutions of the FS vs W, together with a 11-peaks stable burst for I=3.13.
The symbols are as in Fig. 1 and the solid �magenta� lines are the z null cline
for the examined current. �b� The ISI return map for the same solution, in
the inset an enlargement of the map together with the diagonal �red dashed
line� is reported.

FIG. 7. �Color online� Maximal Lyapunov exponents �1 as a function of the
external current I. �a� r=0.0021; �b� r=0.0010. The dashed lines represent
IG �resp. IW� in �a� �resp. �b��, while the solid lines refer to the corresponding
IS. In the insets are reported the fractal dimensions dKY. The data have been
obtained by following the linearized evolution of the system over a total
time t=100 000, after that a transitory of duration of 1000 has been
discarded.
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value IW=3.241 320 53�5� has been reported, while in Ref. 7
for r=0.0021 the transition was located at IG=3.295 85.

As far as the Kaplan-Yorke dimension is concerned we
can observe �see the insets of Fig. 7� that its value is essen-
tially 2 in the whole examined current intervals apart correc-
tions of the order of 10−3 and that its behavior reflects that of
�1. Thus supporting the idea that a one-dimensional map
could well reproduce the dynamics of the continuous system.

B. Period-adding chaotic bifurcation

Let us now consider for r=0.0021 the period-adding
transition from a burst with 11-peaks to a burst with 12-
peaks, as already mentioned this is characterized by chaos.
The system is chaotic in the interval �3.135 74; 3.1499�, im-
mediately before one has a stable 11-peak burst and imme-
diately after a stable burst with 12-peaks is observable. How-
ever, the destabilization of the 11-peak burst is not trivial,
because this burst bifurcates via period doubling at a current
Ipd=3.135 762�1� larger then the one associated with the on-
set of chaos. Therefore there is a small region of coexistence
of chaotic and regular solutions. The main characteristic of
this chaotic region is the appearance of anomalous burst,
with this term we indicate bursts where successive ISIs
within a burst are no more monotonically increasing �or cor-
respondingly xpeak and zpeak are no more monotonic�. This
means that the spiking phase �within the burst� is no more
characterized by a monotonous motion towards the ho-
moclinic point o1 followed by a slow silent �reinjection�
phase �SP�, but that once the solution arrives in proximity of
o1 it can be reinjected �without any SP� at some intermediate
point of the burst from where it restarts spiking. An example
of an anomalous and a regular burst is reported in Fig. 8�a�.
These bursts will be denoted by the number of spikes N
before the rapid reinjection and by the number of spikes M
emitted in the following period before the SP separated by
the letter a; e.g., �12a2� indicates a burst of 12 peaks fol-
lowed by two further peaks emitted after a rapid reinjection
phase. In particular, we have observed only anomalous
spikes with M �2.

Typically, in the proximity of Ipd one observes a majority
of regular bursts with 11 peaks �characterized by different
duration in the SP�, some regular burst with 12 peaks, and an
increasing number of anomalous bursts with 13 or 14 peaks
�typically of the type �11a2� �11a3��. As shown in Fig. 8�b�
by increasing I the number of regular or anomalous bursts
containing 11 peaks rapidly declines while the density of
bursts containing 12 peaks increases and reaches one at I
=3.1500, the chaotic interval is however interrupted by
stable windows. In particular we have identified at I
=3.1399 a stable periodic solution composed of four bursts
with different number of spikes: the solution can be identi-
fied by the number of spikes in each burst as
�12,11,11,11a2�. Furthermore, within the current interval
�3.1417;3.1420� another stable structure made of two bursts
�12,11a2� is observable, and finally a stable solution made
of 3 bursts, namely �12,12,11a2�, has been found for I
� �3.1450;3.1451�. To summarize, the solution containing
only bursts with 11 peaks becomes unstable around I

=3.1358 and at the same time anomalous bursts �mainly of
the type �11a2� and �11a3�� begin to appear. By further in-
creasing the current regular and anomalous bursts with 12
peaks appears and at I=3.1399 a solution made of two regu-
lar bursts with 11 peaks, one burst with 12 peaks and an
anomalous one �11a2� get stabilized. At higher currents the
bursts containing 12 peaks tend to prevail on the ones with
11 peaks and at the same time the number of anomalous
bursts begins to decline and finally disappears �see Fig. 9�a��.

An interesting aspect of this transition is that the number
of anomalous bursts is somehow related to the degree of
chaoticity of the system. As shown in Fig. 9�a�, the maximal
Lyapunov is nonzero in the same region where anomalous
bursts are present, moreover the density of anomalous bursts
show a similar dependence on the current, apart in proximity
of the stable windows containing bursts of the type 11a2.
The correlation between the density of anomalous bursts and
�1 is not as simple as a proportionality, since as already
mentioned also anomalous bursts can eventually become
stable. In particular, it seems that the anomalous bursts with
12 peaks �that never get stabilized within the considered cur-
rent interval� better correlate with �1 �see Fig. 9�a��.

Similar to what done in Ref. 17 for the Sherman’s
model, a useful characterization of this chaotic regime can be
achieved in terms of the ISI return map.17 A typical example
is shown in Fig. 9�b�: the map is quite peculiar presenting a
broad maximum with two horns. Each burst can be defined
as a series of spikes separated by a �sufficiently long� ISI �the

FIG. 8. �Color online� �a� The time evolution of the variable x for I
=3.1360 displaying one anomalous burst �11a2� followed by a regular burst
with 11 peaks. �b� Density of bursts �regular or anomalous� containing N
=11 �solid line� and N=12 �dashed line� spikes. The density have been
estimated over a statistics of 5000 bursts, after discarding a transient of
1�106.
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SP�, in particular we define a SP as an ISI longer than a
certain threshold ISIth �in the present case ISIth=135�. For
these current values a burst is preceded and followed by a SP,
therefore there is an ambiguity in identifying which SP
should be associated with a certain burst. We noticed that the
duration of the SP preceding the burst identifies in an unique
manner the number of spikes and the type �anomalous or
regular� of the following burst. Therefore it is natural to con-
sider a burst as made by a reinjection phase followed by a
spiking phase. In particular, with reference to the inset of
Fig. 9�b�, we observe that regular bursts with 11 peaks fol-
low the longest SPs, while shorter SPs are associated with
burst of the type �11aM� and �12aM�-bursts correspond to

even shorter SPs. Regular bursts with 12 peaks have SPs
located at the bottom of the upper part of the map shown in
the inset of Fig. 9�b�.

The origin of the two horns in the ISI return map is
related to the way the 11-peaks burst becomes unstable in the
present case. In particular the dynamics in proximity of the
chaotic onset is characterized by a sequence of bursts with
“oscillating” value of SPs �as shown in Figs. 10�a� and 10�b�
for I=3.1359�. In this case the SP-values oscillate around the
value of the SP corresponding to the unstable burst with
11-peaks, moreover their distance with respect to the refer-
ence SP increases in time. This oscillating behavior is inter-
rupted by abrupt collapses of the orbit to a neighborhood of
the unstable periodic solution, followed again by oscillations
of increasing amplitude. These oscillations are probably due
to the fact that the unstable 11-peaks burst is a focus �i.e., it
is characterized by complex Floquet exponents�. This is at
the origin of the two horns, since the SP �and also the ISI
within the bursts� oscillates around an average value �see
Fig. 10�c��. Therefore by starting from almost identical initial
conditions one can finish to one or to the other of the two
horns of the ISI return map. This characteristic of the map is
not only present in proximity of the bifurcation, but it is also
a peculiarity of the BC for this model. As shown in Fig.
10�d� deep inside the chaotic interval, namely for I=3.1407,
oscillations of successive SPs around the unstable 11 peaks
structure are still present, but now the dynamics is more
irregular due to the presence of bursts with different numbers
of peaks.

C. The transition from bursting to spiking chaos

At higher currents the stable burst with 12 peaks be-
comes chaotic via a period-doubling cascade, taking place
within the current interval �3.2210:3.2217�. Moreover, also
in the chaotic phase the dynamics of the system remains
often trapped in proximity of a burst with 12 peaks, as it can
be clearly seen from Fig. 2�b� where the 12 peaks structure is

FIG. 9. �Color online� �a� Maximal Lyapunov exponent �1 �filled circles� vs
the external current I. On the same graph are reported in arbitrary units the
density of anomalous bursts �stars� together with the density of anomalous
bursts of the type 12aM only �filled triangles�, where M can be any number.
The Lyapunov have been estimated, after a transient of duration 2�105, by
following the tangent dynamics for an analogous time, while the densities
have been obtained by averaging over a statistics of 5000 bursts. �b� The ISI
return map for chaotic solutions �gray dots� corresponds to I=3.1407, for
stable bursts of period 11 �filled circles� to I=3.1350 and for stable bursts
with 12 peaks �filled squares� to I=3.1500. The lines connecting the data
have been maintained for the stable solutions as a guide for the eyes. In the
inset is reported an enlargement of the upper part of the map showing the
SPs. The gray dots refer to SPs of bursts of any kind, while SPs preceding
�11� �filled circles�, �11aM� �crosses�, �12aM� �triangles�, and �12� �plus�
correspond to decreasing ISI values, respectively. The data have been taken
after discarding transients of 106–107.

FIG. 10. �Color online� �a� Sequence of SPs as a function of the burst index
m; �b� enlargement of figure �a�; �c� upper part of the ISI return map dis-
playing SP �here indicated as ISIn+1� as a function of the previous ISI; �d�
sequence of SPs as a function of the burst index m. In �c� the SPs preceding
a regular �anomalous� burst with 11 peaks are associated to higher �lower�
values. Figures �a�, �b�, and �c� refer to I=3.1359 and �d� to I=3.1407.
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still discernible up to currents I�3.29–3.30. Therefore, we
can safely affirm that this elementary structure should be the
most relevant to examine in order to understand the origin of
the transition from bursting to spiking chaos.

Let us briefly describe the different dynamical regimes
encountered by increasing the current I. As already men-
tioned, the 12-peaks burst follows a period doubling route to
chaos. The 12-peaks solution remains stable up to I
=3.2210 then it bifurcates to a 24-peaks solution. This tran-
sition from a 12 to a 24-peaks burst is hysteretic, since the
24-peaks solution is stable in the range �3.2205:3.2214� that
overlaps with the stability range of the 12-peaks solution.
Furthermore, at I�3.2215 the stable burst with 24 peaks
bifurcates to a 48-peaks structure �that remains stable in the
window �3.2215:3.2216�� and this is then subjected to a rapid
period doubling cascade finally leading to chaos for I
�3.2217 �this is also confirmed from the Lyapunov analy-
sis�.

Initially, in a narrow range of currents �namely
�3.2217:3.2224�� the only solutions giving rise to the chaotic
dynamics are regular bursts with 12 peaks. In particular, the
initial 12-peaks burst should have become an unstable focus,
since the associated ISI return map reveals again the two
horns structure previously discussed in Sec. V B. Around I
=3.2225 the system begins to display several different burst-
ing solutions, namely regular and anomalous bursts with 12
peaks �the great majority� and shorter �regular and anoma-
lous� bursts with 11–7 peaks. The corresponding ISI return
map is still characterized by a broad maximum with 2 horns.

For higher I-values the system becomes more chaotic
and reveals an increasing number of anomalous 12-peaks
bursts �mainly of the type �12a2� and �12a3�� together with
anomalous and regular bursting solutions with a smaller
number of peaks. The chaotic region is interrupted by several
narrow stability windows, in particular we have identified the
following ones: a first one at I=3.2253�1� characterized by
the presence of a anomalous burst of the type �12a3�; a sec-
ond one at I=3.2269�1�, where a three bursts solution
�12,12,12a4� is encountered, and a third one at I
=3.2274�1� in which a solution �12,12a2� is observed. At
higher currents a wide nonchaotic interval appears for I
� �3.2316;3.2349�, in this interval only solutions containing
bursts of the type �12a2� are observables. In particular,
within this interval the elementary �12a2� burst is subjected
to a period doubling cascade leading to a chaotic dynamics
where only �12a2� bursts are represented �namely for
3.2350� I�3.2355�. Regular and anomalous 13-peaks burst
solutions begin to manifest around current I�3.2403, and a
stable window characterized by bursts of the type �13a2� is
found for 3.2436� I�3.2442, within this window a period-
doubling cascade involving as elementary structure the burst
�13a2� is observed.

The dynamics in the range I� �3.245;3.289� is essen-
tially characterized by bursting solutions �regular or anoma-
lous� with 13 or 12-peaks plus an increasing number of iso-
lated spikes observables in between the bursting solutions.
This observation can been made more quantitative by esti-
mating the average number of spikes �M� emitted after a
regular burst and before the successive SP �see Sec. V B�.

�The quantity M has been defined in Sec. V B and it can be
evaluated by counting the number of spikes following a
regular burst and preceding the successive SP.24� This quan-
tity is steadily increasing with I and reaches a maximal value
around I�3.296 �as shown in Fig. 11�a��. The exact position
of the maximum slightly depends on the employed value
SP0. However, this maximum is located around I
�3.2958–3.2960 almost in correspondence of the current
Imax for which the system is maximally chaotic and of IG

previously identified in Ref. 7 as the transition point from
BC to SC.

Above I=3.2885 no �regular or anomalous� burst with
13-peaks is observable and the maximal number of bursts
within a regular spike is again 12. For larger currents the
dynamical behavior becomes more complicated, since now
bursts can coexist with spikes and it is difficult to discrimi-
nate between the two kind of solutions. Since the 12-peak
bursts seem to have a peculiar relevance in the dynamics of
the model, we have decided to focus on bursts with the

FIG. 11. �Color online� �a� Average number of spikes following a regular
burst �M� as a function of the external current I. An enlargement is shown
in the inset, where the three reported lines refer to different thresholds,
employed for the identification of the SPs: namely, SP0=130 �solid line�;
SP0=135 �dashed line�; SP0=140 �dotted line�. �b� Maximal number of
spikes observed within a regular burst Nmax as a function of the current I, in
the inset is reported SPmax still vs I. The vertical dot-dashed line indicates
the value of IG, while the vertical dashed line refers to IS. The data have
been obtained after discarding a transient t�106.
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higher number of spikes, that in turn corresponds to the
longer measured SPs. As shown in Fig. 11�b�, the �regular�
bursts with maximal number of spikes Nmax decreases rap-
idly for increasing I in correspondence with the drop of
SPmax. This drop has been previously identified as a signature
of a continuous interior crisis leading from bursting to spik-
ing chaos.7 From our analysis it emerges that this continuous
crisis is related to a rapid disappearance of bursts with many
peaks, in the region 3.290� I�3.301 there is a sort of in-
verse cascade leading from bursts with at most 12 peaks to
bursts with at most 3 peaks. Therefore the crisis is associated
with the disappearance of long lasting bursting solutions. On
the other hand, it should be stressed that isolated bursting
solutions are clearly observable �even if immersed in trains
of spikes� up to currents I�3.30. This last observation indi-
cates that the crisis indeed leads from a dynamics dominated
by bursts to one dominated by spikes, but both solutions
coexist above and below the transition.

We have also noticed that the beginning of the transition
�from the bursting side� is associated with a structural modi-
fication of the ISI return map. As shown in Fig. 12, the ISI
return map is characterized by two horns up to IS

=3.2944�1�, while for higher currents the two horns merge
giving rise to a map with a single hump. It should be noticed
that exactly at I= IS the bursts with 12-peaks disappear, while
the destabilization of this kind of orbits was at the origin of
the onset of the BC. The two horns in the map have been
previously associated with an “oscillatory” divergence from
some bursting solution �representing an unstable focus�. The
structural modification of the map and the contemporary dis-
appearance of 12-peaks solutions indicates that the peculiar
dynamics was intimately related to this kind of bursting or-
bits. A similar analysis performed for r=0.001 �i.e., the value
studied in Ref. 6� confirms the previous results, giving the
following critical value for the structural transition IS

=3.241 320 040�5�, that is not too far from the value re-
ported by Wang, i.e., IW=3.241 320 53�1�. Moreover, the
structural transition is again associated with the disappear-
ance of the family of �anomalous or regular� bursts contain-
ing 23 peaks, and once more these solutions are the most
relevant for the chaotic bursting dynamics at this r-value.

As we have already mentioned, the previously published
analysis of the “bursting-spiking” transition suggested that it

should be a sort of �interior� crisis that destabilizes the cha-
otic phase of continuous spiking and leads to a state charac-
terized by chaotic bursting.6,7 However, as we have shown
bursting solutions can be found for r=0.0021 up to currents
I�3.30, currents that are deeply inside the region of spiking
chaos, accordingly to the criteria of González-Miranda, who
found IG=3.295 85 as the transition value, and Wang, that, as
we have numerically verified, gives a similar value IW

=3.295 88�1�.
While González-Miranda7 has identified the transition as

a sharp drop in the size of the three-dimensional attractor �or
equivalently in the SPmax value�, Wang6 claimed that the 2D
invariant manifold associated with the stable and weakly un-
stable directions of the unstable FP should play a fundamen-
tal role in the origin of the bursting behavior. In particular,
Wang has suggested that an orbit approaching the FP would
remain in the oscillatory region or escape towards the burst-
ing attractor, depending on which side of the 2D manifold it
would fall. In other words, since each orbit �within the tran-
sition region� evolves in time towards the FP, the reinjection
mechanism would lead the orbit towards the bursting or spik-
ing solutions depending if the trajectory would �in proximity
of the FP� fall on one side or on the other of the 2D invariant
manifold. However, due to the difficulties in evaluating the
nonlinear manifolds, Wang was obliged to adopt several ap-
proximations to verify the validity of his transition criterion.
In particular, he considered the linearization of the invariant
manifolds and, in order to examine the trajectories in prox-
imity of the FP, he has taken a Poincaré section located at a
small �arbitrary� distance from the FP itself. Unfortunately,
the points lying on this Poincaré map are not only the points
in the reinjection region, but points located all along the
trajectory. In particular, as we have verified, the points re-
sponsible for the validation of the “transition criterion” are
the more distant from the FP �the ones with the smaller
z-values�. From our analysis we can conclude that the
Wang’s criterion is essentially able to capture a strong in-
crease in the size of the attractor �along the z direction�. This
would explain why the value estimated by us �employing
Wang’s criterion� almost coincide with the IG value. To con-
clude we cannot affirm that the mechanism responsible for
the occurrence of bursting solutions suggested by Wang is
wrong, but the implementation of the exact criterion is ex-
tremely difficult and the approximated test reported in Ref. 6
seems to be quite questionable.

VI. SUMMARY

A detailed analysis of the dynamical regimes of the
Hindmarsh-Rose model has been here reported. In particular,
we focused on the characterization of dynamical phases pre-
senting bursting solutions. These emerge from the resting
state via a cascade of period-adding bifurcations. All these
bifurcations present similar features: the stable burst with
n-spikes disappears �via a saddle-node bifurcation� by collid-
ing with an unstable branch that continuously connects this
solution to the stable n+1-spikes burst emerging in corre-
spondence of a tangent bifurcation at a lower current value.
During the bifurcation the period of the burst becomes ex-

FIG. 12. �Color online� Upper part of the ISI return maps for various current
values: �circles� I=3.2934; �asterisks� I=3.2942; �squares� I IS=3.2944,
and �triangles� I=3.2945. The two horns are clearly visible for I=3.2934,
while at I=3.2942 they are reduced to two shoulders, they merge at I= IS and
only one hump remains at I=3.2945.
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tremely long, similar to what was predicted by Terman for
continuous period-adding bifurcations.8 At variance with the
results of Terman the period increase occurs along a branch
of unstable solutions and the increase is due to the fact that
the period-adding is realized by connecting two distinct
families of periodic solutions exhibited by the fast sub-
system.

Also chaotic period-adding bifurcations have been ob-
served for this model, and the origin of the chaotic dynamics
can be ascribed to the occurrence of anomalous bursts. These
bursts do not present, as the regular ones, a monotonic in-
crease of the ISI periods following the initial silent �rest�
period. In particular, the density of the anomalous bursts ap-
pear to be correlated with the level of chaoticity of the
system.

As already pointed out in two previous works,6,7 the
transition from bursting to spiking chaos resembles a crisis,
since it is associated with an abrupt �but continuous� reduc-
tion of the size of the chaotic attractor. We have shown that
this kind of crisis is associated with a sharp peak in the
maximal Lyapunov exponent and in the average number of
spikes not belonging to regular bursts. Therefore, once more
the chaotic activity in the system �on the bursting side�
seems to be related to the occurrence of irregular spikes in
between regular bursts. It should be noticed that bursting and
spiking solutions coexist over the whole range of the transi-
tion making a clear distinction of the two phases quite diffi-
cult. However, the maximal number Nmax of peaks observ-
able, for a certain current, within a single regular burst can
be employed as an order parameter to characterize the tran-
sition itself. A vanishing of Nmax will clearly indicate that we
are in a phase characterized only by spiking solutions. In-
deed Nmax has a sharp drop in correspondence of the attractor
size shrinking. Furthermore, the beginning of the transition
�from the bursting side� is marked from a structural modifi-
cation of the ISI return map together with the disappearance
of the family of bursts responsible for the onset of the burst-
ing chaos.

These characteristics resemble another chaos-chaos tran-
sition: the phase to defect-turbulence transition observed for
the complex Ginzburg-Landau equation �CGLE�.20 Also in
that case the transition from one dynamical regime to another
was related to the disappearance of a family of unstable so-
lutions of the CGLE.21 However, at variance with the present
situation no indication of the transition was possible to infer
from the Lyapunov analysis.22

The analysis reported here can be of interest not only
among the scientists working on nonlinear dynamical sys-
tems, but also for the neuroscience community. We believe
that the characterization we have performed for the
Hindmarsh-Rose model can be useful in clarifying similar
transitions observed for other models of bursting neurons11

and hopefully can be of some utility for a better comprehen-
sion of neuronal information transmission. In particular, as
recently suggested in Ref. 11 an efficient and robust coding

of the dynamics can be achieved in neuronal models present-
ing a cascade of period adding bifurcations, by introducing
different universality classes, each one labeled by the period
of the bursting solution dominating such dynamical phase.
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