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Kuramoto at MPIPKS

On october, 11th 1997 I gave the following talk at MPIPKS

Transition from phase to amplitude turbulence in the CGLE

Seminar on Patterns and Dynamics in Complex Fluids and Biological Systems

Scientific Director: W. Zimmermann

Kuramoto was sitting in the first row and after the talk came by me . . .

AT, H. Frauenkron, P. Grassberger, PRE 55 (1997) 5073
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My 15 Minutes of Fame

On october, 12th 1997 at 8.30 AM, we met and Kuramoto says

I am interested in non-locally coupled CGLE

My collaborator, Dorjsuren Battogtokh, has found this numerical result

It seems you developed a new integration

scheme for CGLE

May you please send it to Battogtokh ?

Y Kuramoto & D Battogtokh, Nonlinear Phenomena in Complex Systems

(2002)
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Pteroptix Malaccae

Usually, entrainment results in a constant phase angle equal to the difference between pacing frequency

and free-running period as it does in P. Cribellata. The mechanism of attaining synchrony by Malaysian

firefly Pteroptyx Malaccae is quite different. When the pacer changes, this firefly requires several cycles to

reach a steady state. Once this steady state is achieved, the phase angle difference is near zero

irrespective of the pacer period. This can be explained only by the animal adjusting the period of its

oscillator to equal that of the driving oscillator.

Experiments on Fireflies by Hanson, 1982
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Kuramoto Model with inertia

Ermentrout developed a pulse-coupled (Winfree) model with inertia to deal with

this kind of synchronization [B. Ermentrout, Journal of Mathematical

Biology (1991)]

A phase model with inertia allows for adaptation of oscillator frequency to the

forcing one

Tanaka, Lichtenberg, Oishi [PRL, Physica D 1997] developed a

generalization of Kuramoto model by including an inertia term

mθ̈i + θ̇i = Ωi +
K

N

∑

j

sin(θj − θi)

Hysteretic first order synchronization transition

Self-consistent mean field equation the macroscopic order parameter

For sufficiently large inertia → Clusters of drifting oscillators appear

Peculiar finite size and finite mass scaling

Acebrón et al PRE (2000); Gupta et al PRE (2014); Komarov et al

PRE (2014); Olmi et al PRE (2014)
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Plan of the Talk

Dynamics of two symmetrically coupled populations of rotators

A brief description of the experiment

Introduction of the 2 population model

Kuramoto model with inertia

Emergence of chaotic broken symmetry states

Intermittent Chaotic Chimeras (ICC)

Chaotic Two Populations state (C2P)

Linear Stability (Lyapunov) of an Intermittent State

Theoretical estimation for globally coupled systems

ICCs are Transient States

Some considerations on

The role of topology

The thermodynamic limit
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The experiment (WOW !!!)

Two populations of metronomes (self-sustained oscillator)

Each population: N = 15 identical metronomes (same frequencies) on an

alluminium swing (strong coupling)

The two swings are coupled via 2 tunable springs (weak coupling)

UV fluorescent spots on metronomes and swings

THE VIDEO !

E.A.Martens et al. PNAS , 2013
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The Model

Two symmetrically coupled populations of N oscillators with inertia (rotators)

mθ̈
(σ)
i + θ̇

(σ)
i = Ω+

2
∑

σ′=1

Kσσ′

N

N
∑

j=1

sin(θ
(σ′)
j − θ

(σ)
i − γ)

σ = 1, 2 identifies the population

θ
(σ)
i is the phase of the ith oscillator in population σ

Ω is the natural frequency

γ = π − 0.02 is the fixed frequency lag

Kσ,σ > Kσ,σ′

The collective evolution of each population is characterized in terms of the macroscopic

fields

ρ(σ)(t) = R(σ)(t) exp [iΨ(t)] = N−1
N
∑

j=1

exp [iθ
(σ)
j (t)]

where R(σ) is the order parameter for the synchronization transition

In analogy with Abrams, Mirollo, Strogatz and Wiley, PRL (2008).
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Experiment vs Model
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(a)-(d) Chaotic Chimeras

(b)-(e) Intermittency

(c)-(f) C2P states

R(1) and R(2) for the two populations, N = 15

Different Initial conditions

Broken Simmetry Conditions in (a,b) (d,e)

Uniform Conditions in (c,f)
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Chaotic Chimeras
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or Regular States ?
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Chaotic Chimeras

Spatio-Temporally Chaotic Chimeras observed in ring of coupled oscillators

Bordyugov et al PRE (2010); Wolfrum and Omelchenko (2011);

Sethia and Sen, PRL (2014)

Kuramoto model on a ring with finite-range interactions

Chimeras are transient

The transient time diverges exponentially with the size

Chimeras are weakly chaotic, with features of spatially extended systems

Wolfrum et al Chaos (2011)

Chaotic Chimeras (CCs) reported in two

population of pulse-coupled oscillators

Pazó & Montbrió, PRX (2014)

Our aim: describe dynamical features of

CCs for 2 coupled populations of

Kuramoto model with inertia
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Intermittent Chaotic Chimera

The chaotic population exhibits clear intermittent behavior, displaying a laminar phase

where the two populations tend to synchronize and a turbulent phase.
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The finite time Lyapunov exponent (FTLE) Λ(t) = 1
∆t

ln[
√

∑4N
i=0 Ti(∆t)Ti(∆t)]

is calculated by performing a short time average of the magnitude of the tangent vector

T = (δθ̇
(1)
1 , ..., δθ̇
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N
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Laminar Phase
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The laminar phase, whose probability of occurrence is measured by p0 vanishes in

the thermodynamic limit;

In the limit N → ∞ only the turbulent regime is present,
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Maximal Lyapunov exponent

The maximal Lyapunov exponent ΛM restricted to the turbulent phase

ΛM remains positive in the limit N → ∞

ΛM scales as 1/lnN with the system size
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ΛM (N → ∞) > λ0 > 0

λ0 is the mean field LE for the chaotic population
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Mean Field Result

The mean field evolution of a single rotator forced by the complex fields

ρ(σ
′) = R(σ′)(t)eiΨ(t) is

mφ̈(σ) + φ̇(σ) = Ω+

2
∑

σ′=1

Kσσ′

[

ℑρ(σ
′) cos(φ(σ) + γ)−ℜρ(σ

′) sin(φ(σ) + γ)
]

.

the growth rate of the infinitesimal perturbation d(t) =
√

|δφ̇(1)(t)|2 + |δφ(1)(t)|2 is the

mean field Lyapunov exponent (LE) λ0 for the chaotic population.

The evolution of ln d(t) in the tangent space can be seen as a drifting Brownian

particle with average velocity λ0 and a diffusion coefficient D .

ln d(t) ≃ λ0t [ln d(t)− λ0t]2 = Dt

From the mean field analysis one gets λM = λ0, this is correct for the bulk part of

the spectrum, but wrong for the maximal LE

The interaction with the other rotators should be taken in account

ḋj(t) = eλ0t[dj(t) +
1

N

∑

k

Ajk(t)dk(t)]

Same analysis as in the talk by Edward Ott
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Beyond mean field

The particles ln |dj(t)| are indeed interacting Brownian particles

ḋj(t) = eλ0t[dj(t) +
1

N

∑

k

Ajk(t)dk(t)]

Assuming a localized Lyapunov vector the modulus is dominated by the largest

component dM (t) therefore

ln |dj(t)| diffuses freely if |dj(t)| >> |dM (t)|/N

otherwise the coupling term enters in the game and the growth is dominated by

|dM (t)|/N

the particles can move only within a box of size ≃ ln(N): the slowest particles

are pulled and the fastest particle pushes the box;

The maximal LE λM is the average velocity of the box.
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Finite Size Scaling

One can write a Fokker-Planck equation for the evolution of these pseudo-particles within

the box and from the stationary solution one gets the correct scaling for the maximal LE
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λ0 is the mean field LE value

D is the diffusion coefficient associated to

the fluctuations of λ0

First quantitative verification for a continuous time system of the Takeuchi et al theory,

with the extra difficulties to have intermittent dynamics and two interacting populations

Takeuchi, Chaté, Ginelli, Politi, AT, PRL (2011)
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Lyapunov Spectrum

The Lyapunov spectrum is made of 4N exponents, but it exhibits a pairing rule

λi + λ4N−i+1 = − 1
m

i = 1, . . . , 2N U Dressler PRA (1988)

The spectrum is composed of a positive part and a constant negative part.

The negative part is associated to the synchronized population and coincides with

the mean field value for this population

The positive part is associated to the chaotic population
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Positive Lyapunov Spectrum

The chaos is high dimensional N − 2 positive Lyapunov exponents

The most part of the positive spectrum tends to flatten to the mean field LE value

λ0, trivially extensive

the Lyapunov in two sub-extensive bands O(lnN) take different values with

respect to λ0, similarly to what shown for λM
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Same behavior demonstrated for one population of globally coupled dissipative units

Takeuchi, Chaté, Ginelli, Politi, AT, PRL (2011)
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Life Times of the ICCs
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The chaotic chimeras converge to a

regular non chaotic state after a

transient time τ for all investigated

masses (m = 6, 8 and 10)

The final, stable, state can be either

the fully synchronized solutions or

even a broken symmetry state, cor-

responding to a breathing chimera.

Chaotic transients diverge with N as a power law with an exponent α ≈ 1.60.

This result is in contrast with the observed exponential growth of the transient

time found by Wolfrum and Omel’chencko in PRE (R) (2011), typical of

spatially extended systems (with Kuramoto-Sakaguchi oscillators).
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Chaotic Two Population States
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d
i ω̄i =

d̄θi
dt

average velocities

d̄i average contribution of the i-th

oscillator to the maximal LE

C2P are states with broken symmetry

C2P are not transient states

C2P are Multistable

Most of the oscillators of the two populations form a common cluster

Only the isolated oscillators contribute to chaos
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Mass Dependence
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At small m coexisting breathing chimeras and quasi-periodic chimeras, no chaos

At sufficiently large m chaotic states emerge

We never observed a stationary chimera state
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Main Results

Wolfrum et al. (CHAOS 2011), analyzing a ring of identical Kuramoto oscillators with a

finite range interaction, have shown that

Chimera states are chaotic transients diverging exponentially with N ;

Chaos is weak

Lyapunov spectra scales as in spatially extended systems.

We considered a network of two fully coupled populations; in this case

The life-times of the ICCs diverge as a power-law with N and m

The maximal Lyapunov exponent remains positive in the infinite size limit and

tends to split from the rest of the spectrum.

The spectrum becomes asymptotically flat (thus trivially extensive), but this part is

sandwiched between subextensive bands (as for fully coupled systems)

[Takeuchi et al. PRL 2011]

S. Olmi, E. Martens, S. Thutupalli, AT, arXiv:1507.07685
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Conclusions and Outlook

Topology matters for the stability properties of chaotic chimera states;

Furthermore, the presence of inertia is responsible of the fact that ICCs become a

stationary chaotic state in the thermodynamic limit

These systems are akin to Hamiltonian models , namely Hamiltonian Mean Field (HMF)

Model (Antoni & Ruffo, 1995) -- 20 years of the HMF Model

The Lyapunov spectrum satisfies the following a pairing rule

λi + λ4N−i+1 = − 1
m

i = 1, . . . , 2N [U Dressler, PRA, 1988]

Transient times diverging as N1.7 have been reported for the metastable states

observed in the HMF model [ YY Yamaguchi, PRE, 2003]

Can the properties of ICCs be related to Hamiltonian features ?
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Fokker-Planck Equation

The distribution of the particles u = ln |d| in the box u ∈ [0;umax] in the reference frame

moving with velocity λM (N) is ruled by the following Fokker-Planck equation

∂P (u, t)

∂u
= −

∂

∂u
[∆λ]P +

D

2

∂2P (u, t)

∂u2

where ∆λ = λ0 − λM (N)

For sufficiently large N , since umax ∝ lnN , the stationary solution is given by

Ps(u) =
2∆λ

D
e−

2∆λu

D

Furthermore, the following normalization condition should hold

∫

∞

umax

duPs(u) =
O(1)

N

since only 1 particle should be nearby umax, this leads to the finite size scaling

λM (N) = λ0 +
D

2
+

a

ln(N)
+O

(

1

ln2(N)

)
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