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Abstract. The thermodynamics and the dynamics of particle systems with infinite-
range coupling display several unusual and new features with respect to systems with
short-ranged interactions. The Hamiltonian Mean Field (HMF) model represents a
paradigmatic example of this class of systems. The present study addresses both at-
tractive and repulsive interactions, with a particular emphasis on the description of
clustering phenomena from a thermodynamical as well as from a dynamical point of
view. The observed clustering transition can be first or second order, in the usual ther-
modynamical sense. In the former case, ensemble inequivalence naturally arises close
to the transition, i.e. canonical and microcanonical ensembles give different results. In
particular, in the microcanonical ensemble negative specific heat regimes and temper-
ature jumps are observed. The emergence of coherent structures (clusters) as well as
their motion can be interpreted either by using the tools of statistical mechanics or as a
manifestation of the solutions of an associated Vlasov equation. The chaotic character
of these structures has been also analyzed in terms of their Lyapunov spectrum.

1 Introduction

Long-range interactions appear, e.g., in the domain of gravity [1,2] and of plasma
physics [3] and make the statistical treatment extremely complex. Additional fea-
tures are, however, present in such systems at short distances: the gravitational
potential is singular at the origin and screening phenomena mask the Coulomb
singularity in a plasma. This justifies the introduction of simplified toy models
that retain only the long-range properties of the force, allowing a detailed de-
scription of the statistical and dynamical behaviors. In this context a special role
is played by mean-field models, i.e. models where all particles interact with the
same strength. This constitutes a dramatic reduction of complexity, since in such
models the spatial coordinates has no role, since each particle is equivalent. How-
ever, there are several preliminary indications that behaviors found in mean-field
models extend to cases where the two-body potential decays at large distances
with a power smaller than space dimension [4-6]. The Blume-Emery-Griffiths
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(BEG) mean-field model is already discussed in this book [5] and represents an
excellent benchmark to discuss relations between canonical and microcanonical
ensembles. Indeed, this model is exactly solvable in both ensembles and is, at
the same time, sufficiently rich to display such interesting features as negative
specific heat and temperature jumps in the microcanonical ensemble. Since these
effects cannot be present in the canonical ensemble, this rigorously proves en-
semble inequivalence. However, the BEG model has no dynamics and only the
thermodynamical behavior can be investigated. Moreover, being a spin model,
variables take discrete values. It would therefore be amenable to introduce a
model that displays all these interesting thermodynamical effects, but for which
one would also dispose of an Hamiltonian dynamics with continuous variables,
whose equilibrium states could be studied both in the canonical and in the mi-
crocanonical ensemble. Having access to dynamics, one could moreover study
non equilibrium features and aspects of the microscopic behavior like sensitivity
to initial conditions, expressed by the Lyapunov spectrum [7]. Such a model has
been introduced in Ref. [8] and has been called the Hamiltonian Mean Field
(HMF) model. In the simpler version, it represents a system of particles moving
on a circle, all coupled by an equal strength attractive or repulsive cosine inter-
action. An extension of it to the case in which particles move on a 2D torus has
been introduced in Ref. [9] and it has been quite recently realized that all such
models are particular cases of a more general Hamiltonian [10]. The HMF model,
that we introduce in Section 2, is exactly solvable in the canonical ensemble by
a Hubbard-Stratonovich transformation. The solution in the microcanonical en-
semble can be obtained only under certain hypotheses that we will discuss in
Section 3, but detailed information on the behavior in the microcanonical en-
semble can be obtained by direct molecular dynamics (MD) simulations. The
model has first and second order phase transitions and tricritical points. Its rich
phase diagram allows to test the presence of ensemble inequivalence near canon-
ical first order phase transitions and, indeed, we find negative specific heat and
temperature jumps in the microcanonical ensemble. Having access to dynamics,
one can study metastability of out-of-equilibrium states. This is done in Sec-
tion 4, where we analyze the emergence of a coherent structure in the repulsive
HMF at low energy. Similar features are also discussed in another chapter of this
book [11] for the attractive case near the second order phase transition. Section
5 is devoted to the study of the spectrum of Lyapunov exponents. The maximal
exponent has a peak near the phase transition [9,12,13] and vanishes when in-
creasing the number of particles with a universal scaling law in the whole high
energy disordered phase. In a low energy range the Lyapunov spectrum has a
thermodynamic limit distribution similar to the one observed for systems with
short-range interaction [14].
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2 The HMF models

A generic two-body potential in a two dimensional square box of side 27 with
periodic boundary conditions, a 2D torus, can be Fourier expanded as

Viz,y)= Y., exp(ik-r)V(ks,ky) - 1)
k=(ko,ky)

A sufficiently rich family of potential functions is obtained if we restrict to the
first two momentum shells |k| = 1 and |k| = v/2, we require that the potential
is only invariant under discrete rotations by all multiples of 7 /4, and we assume
that the Fourier coefficients on each shell are the same. This amounts to perform
a truncation in the Fourier expansion of the potential (1), as done in studies of
spherically symmetric gravitational systems in another chapter of this book [15].
We get

V(z,y) =a+bcosz + bcosy + ccoszcosy . (2)

As the constant a is arbitrary and scaling b is equivalent to scale the energy, ¢
remains the only free parameter. We consider N particles interacting through
the two-body potential V(z,y) and we adopt the Kac prescription [16] to scale
the equal strength coupling among the particles by their number N. This scaling
allows to perform safely the thermodynamic limit, since both the kinetic and the
potential energy increase proportional to N'. By appropriately redefining the
constants a = 2¢ + A,b = —e,¢ = — A in formula (2) and using Kac prescription
one gets the following potential energy

| X
__NZ e (1 —cos(x; — ;) + & (1 —cos(y; — y;))

+A (1 - cos(z; — ;) cos(y; —y;)) 3)

with (z;,y;) €] — 7, 7] x] — m, 7] representing the coordinates of i-th particle and
(Pe,i» Py,i) its conjugated momentum. The Hamiltonian of the HMF model is
now the sum of this potential energy with the kinetic energy

N /.2 2
Dzt Dy
K=) <72 Y ) : (4)

i=1
We get
Haur=K+Va . (5)

In the following, we will consider model (5) for A = 0 and both & positive
(attractive case) and negative (repulsive case). The A # 0 case will always have
A>0ande=1.

! Kac prescription is, however, unphysical and it would be important to find a viable
alternative.
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3 Equilibrium Thermodynamics

In this section, we discuss the equilibrium thermodynamical results for model (3)
in the canonical and microcanonical ensembles. Canonical results will be ob-
tained analytically while, for the microcanonical ones, we will mostly rely on
molecular dynamics (MD) simulations.

3.1 Canonical Ensemble for A =0

For pedagogical reasons, we will initially limit our analysis to the case A = 0, for
which the model reduces to two identical uncoupled systems: one describing the
evolution of the {z;,p,;} variables and the other the {y;, p, ;} ones. Therefore
let us rewrite the Hamiltonian associated to one of these two sets of variables,
named ;. We obtain

N o N
p; €
Ho=) T+ o D [L—cos(ti —0;)] = Ko+ Vo (6)
i=1

ij=1

where 0; € [—m; [ and p; are the corresponding momenta. This model can be
seen as representing particles moving on the unit circle, or as classical XY -rotors
with infinite range couplings. For € > 0, particles attract each other and rotors
tend to align (ferromagnetic case), while for ¢ < 0, particles repel each other
and spins tend to anti-align (antiferromagnetic case). At short distances, we can
either think that particles cross each other or that they collide elastically since
they have the same mass.

The physical meaning of this model is even clearer if one introduces the mean
field vector

N
o 1
M:Me’d’:NE:mi (7)
i=1

where m; = (cos8;,sin ;). M and ¢ represent the modulus and the phase of the
order parameter, which specifies the degree of clustering in the particle interpre-
tation, while it is the magnetization for the XY rotors. Employing this quantity,
the potential energy can be rewritten as a sum of single particle potentials v;

N
1 .
Vb = 5 i:E - Vi with v; = 1-— MCOS(G,’ - ¢) . (8)

It should be noticed that the motion of each particle is only apparently decoupled
from the others, since the mean-field variables M and ¢ are determined at each
time t by the instantaneous positions of all particles.

The equilibrium results in the canonical ensemble can be obtained from the
evaluation of the partition function :

Z= / d™ pid™; exp (—BH) (9)
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where 8 = 1/(kgT) and the integration domain is extended to the whole phase
space. Integrating over momenta, one gets:

7= (%”) " /7; dV8; exp [_ﬂ;Nu - M2)] . (10)

In order to evaluate this integral, we use the two dimensional Gaussian identity

exp dy exp [-y +fx y] (11)
<[]

where x and y are two-dimensional vectors and p is positive. We can therefore

rewrite Eq. (10) as
N/2 _
7= (%”) exp[ %N]J (12)

= %/ dNHi/ / dy exp [~y* + /2uM - y] (13)

and p = BeN. Using definition (7), we can exchange the integrals in (13) and
factorize the integration over the coordinates of the particles. Once introduced
the rescaled variable y — y+/N/20e, one ends up with

27rﬁa/ / dyexp[ (yﬁ —In (271 (y )))] (14)

where I,, is the modified Bessel function of order n and y is the modulus of y.
Finally, integral (14) can be evaluated by employing the saddle point technique
in the mean-field limit (i.e. for N — 00). In this limit, the Helmholtz free energy
per particle f reads as :

with

Bf = — lim mZz __1ly (21) + P 4 max (i - ln(27rIo(y))) - (15)

Nooo N 2 B 2 y \20e
The maximum condition leads to the consistency equation
y _ h(y)
16
Be  Io(y) (16)

For € < 0, there is a unique solution § = 0, which means that the order param-
eter remains zero and there is no phase transition (see Fig. 1). The particles are
all the time homogeneously distributed on the circle and the rotors have zero
magnetization. On the contrary, in the ferromagnetic case (¢ > 0), the solution
gy = 0 becomes unstable at 8 > 8. = 2 through a pitchfork bifurcation. At
B = B., two stable symmetric solutions appear and, correspondingly, a disconti-
nuity in the second derivative of the free energy, indicating a second order phase
transition.
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Fig. 1. Temperature and magnetization as a function of the energy per particle U
for A =0 and |¢] = 1 in the ferromagnetic (a),(b) and in the antiferromagnetic case
(¢),(d). Symbols refer to MD data. for N = 102 and 103, while the solid lines refer to the
canonical prediction obtained analytically in the mean-field limit. The vertical dashed
line indicates the critical energy in the ferromagnetic situation. The inset of panel (d)
presents the rescaled magnetization M x v/N.

These results are confirmed by an analysis of the order parameter?

I, (y)
Ir(y)

For € > 0, the magnetization M vanishes continuously at ., while it is always
identical to zero in the antiferromagnetic case (see Fig. 1). Since M measures
the degree of clustering of the particles, we have for £ > 0 a transition from a
clustered phase when 8 > . to a homogeneous phase when 8 < 8.. We can
obtain also the energy per particle

y_0Bn _ 1

o 2p

which is reported for || = 1 in Fig. 1. Panel (d) of Fig. 1 is limited to the
range U > 0 because in the antiferromagnetic model a non-homogeneous state,

M =

(17)

+2(1-M?) (18)

£
2

% This is obtained by adding to the hamiltonian an external field and taking the
derivative of the free energy with respect to this field, at zero field.



300 T. Dauxois et al.

a bicluster, can be generated for smaller energies. The emergence of this state
modifies all thermodynamical and dynamical features as will be discussed in
section 4.2.

For A = 0, the dynamics of each particle obeys the following pendulum
equation of motion

f; = —Msin(0; — ¢) (19)

where M and ¢ have a non trivial time dependence, related to the motion of
all the other particles in the system. Equation (19) has been very successfully
used to describe several features of particle motion, like for instance trapping
and untrapping mechanisms [8]. There are also numerical indications [8] and
preliminary theoretical speculations [17] that taking the mean-field limit before
the infinite time limit, the time-dependence would disappear and the modulus
and the phase of the magnetization become constant. The inversion of these two
limits is also discussed in the contribution by Tsallis et al [11].

3.2 Canonical ensemble for A # 0

As soon as A > 0, the evolution along the two spatial directions is no more
decoupled and the system cannot be described in terms of a single order param-
eter. A complete description of the phase diagram of the system requires now
the introduction of two distinct order parameters:

M. = ({cos(2))n, (sin(2))n) = M, exp (i¢.) (20)
where ¢, € [0,7/2] and z = z or y;
P, = ({cos(2))n, (sin(z))n) = M exp (i¢);) (21)

where 9, € [0,7/2] and z = x £ y. The average () are over all the particles of
the system, while M,,P, and ¢,,1, represent the amplitudes and the phases of
the vectors. It can be shown that in average My ~ My ~ M and Ppyy ~ Pp_y ~
P: therefore, we are left with only two order parameters.

Following the approach of section 3.1, the canonical equilibrium properties
can be derived analytically in the mean-field limit [9], and we obtain

5f — M2;—P2 T [G(M,ﬂP;A)] (22)
with o
G = ds Iy (M + V2AP cos s) exp (M cos s) (23)
0

where s is an integration variable and we limit our analysis to € = 1.
The energy per particle reads as

1 24+ A—2M?% — AP?
U=+ — —K+Vi . (24)




Vixy)

The Hamiltonian Mean Field Model 301

Depending on the value of the coupling constant A, the potential V4 = % > Vi
can have different shapes, which induces different clustering phenomena de-
scribed below. We report the single particle potential v; for A =1 and A =4
in Fig. 2. These potentials are periodic and strongly dependent on the values
of A, M and P. For small A values (namely for A < M/P) v; exhibits a 27
periodicity with a single minimum located in the origin, four maxima at the
extrema of the single cell and four saddles in between (see Fig. 2 (a)). As we
will see this kind of potential can give rise only to a phase characterized by a
single cluster. On the other hand for sufficiently high A-values the periodicity
of the potential becomes 7, with a single cell exhibiting two coexisting minima
(see Fig. 2 (b)). In particular, if M will vanish before P the two minima will
have the same depth (stability). In this case the emergence of a phase with two
clusters is possible and indeed observed as shown in the following.
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Fig. 2. Single particle potential v; for A =1, =1 (a) and A =4,e = 1(b).

Since the system is ruled by two different order parameters M and P, the
phase diagram is more complicated than in the A = 0 case and we observe two
distinct clustered phases. In the very low temperature regime, the system is in
the clustered phase C'P;: the particles have all the same location in a single
point-like cluster and M ~ P =~ 1. In the very large temperature range, the
system is in a homogeneous phase (HP) with particles uniformly distributed,
M =~ P = O(1/v/N). For A > Ay ~ 3.5, an intermediate two-clusters phase
C P, appears. In this phase, due to the symmetric location of the two clusters,
M ~ O(1/v/N) while P ~ O(1) [10]. We can gain good insights on the transitions
by considering the line T (resp. Tp) where M (resp. P) vanishes and the phase
CP; (resp. CP,) looses its stability (see Fig. 3 for more details).

We can therefore identify the following four different scenarios depending on
the A-value.
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Fig. 3. Canonical phase diagram of model (3) reporting the transition temperatures
versus the coupling parameter A. The solid (resp. dashed) lines indicate the T (resp.
Tp) lines. The dots the points where the nature of the transitions change. A;, As and
Ags are the threshold coupling constants that determine the transition scenario I — I'V.

(I) When 0 < A < Ay = 2/5, one observes a continuous transition from the
phase CP; to HP. The critical line is located at Thy = 1/2 (Un = 3/2 + A)
and a canonical tricritical point, located at A; = 2/5, separates the 1st order to

second order phase transition regions®.

(IT) When A4; < A < Ay = 3.5, the transition between CP, and HP is first
order with a finite energy jump (latent heat).

(III) When A; < A < A3 = 5.7, the third phase begins to play a role and two
successive transitions are observed: first C P, disappears at T via a first order
transition that gives rise to C'Py; this two-clusters phase gives rise to the HP

phase via a continuous transition. The critical line associated to this transition
isTp = A/4 (UP = 3A/4 + ].)

(IV) When A > Aj, the transition connecting the two clustered phases, C P
and CP,, becomes second order.

3 Due to the presence of two order parameters and at variance with [5], here the
tricritical point has been identified by finding first the value of P = P(M, A, 3) that
minimizes f(M, P; A, 3) and by substituting the solution P in f. This reduces f to
a function of the only order parameter M, at this point the standard procedure can
be applied [5]
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3.3 Microcanonical Ensemble

As we have anticipated, our microcanonical results have been mostly obtained
via MD simulations, since we cannot estimate the microcanonical entropy S an-
alytically for the HMF model. However, we show below how far we can get,
starting from the knowledge of the canonical free energy, using Legendre trans-
form or inverse Laplace transform techniques. The following derivation is indeed
valid in general, it does not refer to a specific microscopic model.

The relation that links the partition function Z (3, N) to the microcanonical
phase-space density at energy £ =U - N

W(B,N) = / AN pidN0:5(F — H) (25)

is given by
Z(B,N) = / dE w(E,N) e PF (26)
0

where the lower limit of the integral (E = 0) corresponds to the energy of the
ground state of the model. Expression (26) can be readily rewritten as

Z(B,N) = N/OOo dU exp [N(—ﬂU + %ln(w(E, N))] (27)

which is evaluated by employing the saddle-point technique in the mean-field
limit. Employing the definition of entropy per particle in the thermodynamic
limit .
=1 —1
S(U) Jim [N nw(U,N)] , (28)
one can readily obtain the Legendre transform that relates the free energy and
the entropy:

—BF(B) = m[?x[—ﬂU + S(U)] with = % . (29)

Since a direct analytical evaluation of the entropy in the microcanonical ensemble
is not possible, we are rather interested in obtaining the entropy from the free
energy. This can be done only if the entropy S is a concave function of the energy.
Then, one can invert (29), getting
: . 9(BF)

SU) = rﬂn;r&[ﬂ(U F(B))] with U= a5 . (30)
However, the assumption that S is concave is not true for systems with long range
interactions in proximity of a canonical first order transition, where a ”convex
intruder” of S appears [5], which generates a negative specific heat regime in the
microcanonical ensemble?. For such cases, we have to rely on MD simulations or
microcanonical Monte-Carlo simulations [18].

4 A convex intruder is present also for short range interactions in finite systems, but
the entropy regains its concave character in the thermodynamic limit.
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An alternative approach to the calculation of the entropy would be to express
the Dirac ¢ function appearing in Eq. (25) using the Laplace transform. One
obtains

1 +io0
w(BN) = 5 [ ds e 2(9) (31)

2im )0
where one notices that [ is imaginary. As the partition function can be estimated
for our model, we would just have to do an analytic continuation to complex
values of 3. By performing a rotation to the real axis of the integration contour,
one could then evaluate w by saddle point techniques. However, this rotation
requires the assumption that no singularity is present out of the real axis: this
is not in general guaranteed. We have checked [19] this numerically to be true
for the A = 0 model, obtaining then an explicit expression for w, confirming

ensemble equivalence.

However, when A > A;, a first order canonical transition occurs, leading to
possible ensemble inequivalences. For these cases, a canonical description would
be unable to capture all the features associated to such a transition. As we have
not been able to derive an analytic expression for the microcanonical entropy,
we have to rely here on MD simulations.

The MD simulations have been performed adopting extremely accurate sym-
plectic integration schemes [20], with relative energy conservations during the
runs of order ~ 107 8. It is important to mention that the CPU time requested
by our integration schemes, due to the mean-field nature of the model, increases
linearly with the number of particles.

Whenever we observe canonically continuous transitions (i.e. for A < A;), the
MD results coincide with those obtained analytically in the canonical ensemble,
as shown in Fig. 1 for A = 0. The curve T'(U) is thus well reproduced from MD
data, apart from finite IV effects. It has been however observed that starting from
”water-bags” initial conditions metastable states can occur in the proximity of
the transition [11].

When A > A, discrepancies between the results obtained in the two en-
sembles are observable as shown in Fig. 4. For example, MD results in the case
A =1, reported in Fig. 4(a), differ clearly from canonical ones around the tran-
sition, exhibiting a regime characterized by a negative specific heat. This feature
is common to many models with long-range [21,22] or power-law decaying inter-
actions [4] as well as for finite systems with short-range forces [18]. However, only
recently a characterization of all possible microcanonical transitions associated
to canonically first order ones has been initiated [5,10].

For A slightly above A;, the transition is microcanonically continuous, i.e.
there is no discontinuity in the T'—U relation (this regime presumably extends up
to A ~ 1.2). Before the transition, one observes a negative specific heat regime
(see Fig. 4a). In addition, as already observed for the Blume-Emery-Griffiths
model [5], microcanonically discontinuous transitions can be observed in the
”convex intruder” region. This means that, at the transition energy, temperature
Jjumps exist in the thermodynamic limit. A complete physical understanding of
this phenomenon, which has also been found in gravitational systems [2], has not
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Fig. 4. Temperature-energy relation in the coexistence region for A=1 (a) and A=4
(b). Lines indicate canonical analytical results, while circles correspond to microcanoni-
cal MD simulations. Solid thick lines are equilibrium results, solid thin lines metastable
states and dashed thin lines unstable states. The dash-dotted line is the Maxwell con-
struction. Figure (a) refers to a first order transition from C'P; to HP, (b) to discontin-
uous transition connecting the two clustered phases. In (b) the second order transition
from CP; to HP associated to the vanishing of P is also shown. The MD results refer
to model (3) with NV = 5000 averaged over a time ¢ = 10°. particles.

been reached. For A > 1.2, i.e. above the "microcanonical tricritical point”, our
model displays temperature jumps. This situations is shown in Fig. 5 for A = 2.

For A > A,, we have again a continuous transition connecting the two clus-
tered phases CP; and CP,. This is the first angular point in the T'— U relation
at U ~ 3.65 in Fig. 4(b). The second angular point at U ~ 4 is the continuous
transition, connecting C'P, to HP. The transition at lower energy associated to
the vanishing of M is continuous in the microcanonical ensemble with a negative
specific heat, while discontinuous in the canonical ensemble; the dash-dotted line
indicates the transition temperature in the canonical ensemble, derived using the
Maxwell construction). The second transition associated to the vanishing of P
is continuous in both ensembles.
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Fig. 5. Evolution of the temperature T versus the energy U in the case A = 2. The
symbols refer to MD results obtained by succesively cooling or warming a certain
initial configuration. Each simulation has been performed at constant total energy and
refers to a system of N = 4,000 particles integrated for a time ¢ = 10°. The solid
line indicating the transition energy has been estimated via a Maxwell construction
performed in the microcanonical ensemble (for details see [5]).

4 Dynamical Properties I: Out-of-equilibrium states

4.1 Metastable states

Around the critical energy, relaxation to equilibrium depends in a very sensitive
way on the initial conditions adopted. When we start with out-of-equilibrium
initial conditions in the ferromagnetic case, we find quasi-stationary (i.e. long
lived) nonequilibrium states. An example is represented by the so-called “water
bag” initial condition: all the particles clustered in a single point and the mo-
menta are distributed according to a flat distribution of finite width centered
around zero. These states have a lifetime which increases with the number of
particles N, and are therefore stationary in the continuum limit. In correspon-
dence of these metastable states, anomalous diffusion and Lévy walks [23], long
living correlations in p—space [24] and zero Lyapunov exponents [25] have been
found. In addition, these states are far from the equilibrium caloric curve around
the critical energy, showing a region of negative specific heat and a continuation
of the high temperature phase (linear T vs. U relation) into the low temperature
one. It is very intriguing that these out-of-equilibrium quasi-stationary states
indicate a caloric curve very similar to the one found in the region where one
gets a canonical first order phase transitions, but a continuous microcanonical
one, as discussed in section 3.3. In the latter case, however, the corresponding
states are stationary also at finite V. The coexistence of different states in the
continuum limit near the critical region is a purely microcanonical effect, and
arises after the inversion of the t — oo limit with the N — oo one [24,25,11].
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Similarly, the antiferromagnetic case where the particles are interacting through
repulsive terms presents unexpected dynamical properties in the out-of-equili-
brium thermodynamics. On the first sight, the thermodynamics seems to be
less interesting since no phase transition occurs as discussed above. However,
thermodynamical predictions are again in some cases in complete disagreement
with dynamical results leading in particular to a striking localization of energy.
This aspect, as we will show below, is of course, again, closely related to the
long range character of the interaction, since such dynamics is typically chaotic
and self-consistent: all particles give a contribution to the field acting on each of
them, and one calls this phenomenon, self-consistent chaos. In addition to the
toy model that we consider here, we do think that similar emergence of struc-
tures but more importantly similar dynamical stabilization of out-equilibrium
state could be encountered in other long range systems as we briefly describe at
the end of this section.

4.2 The dynamical emergence of the bicluster in the
antiferromagnetic case

In the antiferromagnetic case the intriguing properties are associated to the re-
gion of very small energies. To be more specific if an initial states with particles
evenly distributed on the circle (i.e. close to the ground state predicted by micro-
canonical or canonical thermodynamics) and with vanishingly small momenta is
prepared, this initial condition can lead to the formation of unstable states. This
process, discovered by chance, is now fully characterized in details [8,26-28].

As shown by Fig. 6, the density of particles is initially homogeneous. However
a localization of particles do appear at a given time, in two different points,
symmetrically located with respect to the center of the circle. This localized
state, that we call bicluster, is however unstable (as shown always by Fig. 6),
since both clusters are giving rise to two smaller localized groups of particles: this
is the reason for the appearance of the first chevron. However, also this state is
unstable, so that the first chevron disappears to give rise again to a localization
of energy in two points. This state enhances the formation of a chevron with
a smaller width and this phenomenon repeats until the width of the chevron is
so small that one do not distinguish anymore its destabilization: the bicluster is
therefore shown numerically to be dynamically stable.

As we have shown in Ref [26], the emergence of the bicluster is the signature
of shock waves present in the associated hydrodynamical equations. Indeed, we
found a striking agreement between the dynamics of the particles and a non
linear analysis of the associated Vlasov equation, mathematically justified [29]
in the infinite N limit, for the one particle distribution. The physical explana-
tion of this problem can be summarized as follows. Once the Hamiltonian has
been mapped to the Vlasov equation, it is possible to introduce a density and
a velocity field v(0,t). Neglecting the dispersion in momentum and relying on
usual non linear dynamics hierarchy, one ends up with dynamical equations for
the different orders. The first one corresponds to the linear dynamics and defines
the plasma frequency of order one. However, a second timescale appears and is
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Fig. 6. Short-time evolution of the particle density in grey scale: the darker the grey,
the higher the density. Starting from an initial condition with all the particles evenly
distributed on the circle, one observes a very rapid concentration of particles, followed
by the quasi periodic appearance of chevrons, that shrink as time increases.

related to the previous one by the relationship 7 = /e t,where e is the energy per
particle. When one considers initial conditions with a very small energy density,
the two time scales are very different and indeed clearly distinguishable by con-
sidering particle trajectories: a typical trajectory corresponds indeed to a very
fast motion with a very small amplitude, superimposed to a slow motion with a
large amplitude.

This suggests to average over the fast oscillations and this procedure leads
to the spatially forced Burgers equation

g—gjtu% =—%sin20 , (32)

once the average velocity u(8,7) = (v(8,t, 7)) is introduced. Due to the absence
of dissipative or diffusive terms, Equation (32) will support shock waves and this
can be related to the emergence of the bicluster. By applying the methods of
characteristics to solve Equation (32), one obtains

6
dr?
which is a pendulum-like equation.

Fig. 7 shows the trajectories, derived from Eq. (33), for particles evenly dis-
tributed on the ring initially. One clearly sees that two shock waves appear and

1
+55in20=0. (33)
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lead to an increase of the number of particles around two particular sites, which
depend on the initial conditions: this two sites correspond to the nucleation sites
of the bicluster. Because of the absence of a diffusive term, the shock wave starts
a spiral motion that explains the destabilization of the first bicluster and also
the existence of the two arms per cluster, i.e. the chevron.

Fig. 7. Five successive snapshots of the velocity profiles u(f, t) are shown including the
initially uniformly distributed in space with a small sinusoidal velocity profile.

This dynamical analysis allows an even more precise description, since the
methods of characteristics show that the trajectories correspond to the motions
of particles in the two wells periodic potential V(8,7) = cos26. This potential
is of mean field origin, since it represents the effect of all interacting particles.
Therefore, the particles will have an oscillatory motion in one of the two wells.
One understands thus that particle starting close to the minimum will collapse at
the same time, whereas a particle starting farther will have a larger oscillation
period. This is what is shown in Fig. 8 where trajectories are presented for
different starting positions. One sees that the period of recurrence of the chevrons
corresponds to half the period of oscillations of particles close to the minimum;
this fact is a direct consequence of the isochronism of the approximate harmonic
potential close to the minimum. The description could even go one step further
by computing the caustics, corresponding to the envelops of the characteristics.
They are shown also in Fig. 8 and attest the striking agreement between this
description and the real trajectories: the chevrons of Fig. 6 correspond to the
caustics.
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m/2

Fig. 8. Superposition of the caustics over the characteristics of particles evenly dis-
tributed between —7/2 and 7 /2 initially.

4.3 Thermodynamical predictions versus dynamical stabilization

If the above description is shown to be particularly accurate, it does not explain
why this state is thermodynamically chosen. Indeed, as shown before, the ther-
modynamical predictions correspond to the homogeneous state. This prediction
is easily shown [8] in the canonical ensemble using the Hubbard-Stratanovich
trick, and confirmed by Monte Carlo simulation [28]. However, as Molecular Dy-
namics simulations are performed at constant energy, it was important to derive
analytically the most probable state in the microcanonical ensemble. Since this
model does not present ensemble inequivalence, we can obtain the microcanoni-
cal results by employing the inverse Laplace Transform of the canonical partition
function. It is therefore essential to see why this bicluster state not predicted
thermodynamically is dynamically stable.

The underlying reason rely on the existence of the two very different timescales
and the idea is again to average over the very fast one. Instead of using the classi-
cal asymptotic expansion on the equation of motions, it is much more appropriate
to develop an adiabatic approximation which leads to an effective Hamiltonian
that describes very well the long time dynamics. The reason is that we are in-
terested in the statistical mechanics of this problem, and it is therefore essential
to preserve the Hamiltonian character.

The theory that we have developed relies on an application of adiabatic
theory, which in the case of the HMF model is rather elaborate and needs tedious
calculations [26] that we will not present here. On the contrary, we would like
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to present on a qualitative explanations of this phenomenon, using a nice (but
even too simple !) analogy.

This stabilization of unstable state could be described using the analogy with
the inverted pendulum, where the vertical unstable equilibrium position may be
rendered stable by the application of a small oscillating force. One therefore con-
siders a rigid rod free to rotate in a vertical plane and whose point-of-support is
made to vibrate vertically as shown by Fig. 9a. If the support oscillates vertically
above a certain frequency, one discovers the remarkable property that the verti-
cal position with the center of mass above its support point is stable (Fig. 9b).
This problem discussed initially by Kapitza [30] has strong similarities with the
present problem and allows a very simplified presentation of the technique.

: I a cos(wt)

I a cos(wt)

Fig. 9. Schematic picture of the inverted pendulum.

The equation of motion of the vibrating pendulum is

d*6 wd .
W+ (E—acost) sind =0 (34)

if one call wy the frequency of the pendulum, w the driving frequency of the
support and a the amplitude of excitation. Introducing a small parameter € =
wo/w, one sees that (34) derives from the Lagrangian

2
L= % (%) + (e* —acost) cosf . (35)
Here the two frequencies w and wpy define two different time scales, in close
analogy with the HMF model. Using the small parameter to renormalize the
amplitude excitation as A = a/e, and choosing the ansatz § = 0y(7) + £6:(t,¢€)
where 7 = €t, the Lagrangian equation for the function 61, leads to the solution
01 = — A costsinfy(7). This result not only simplifies the above ansatz, but more

importantly suggest to average the Lagrangian on the fast variable ¢ to obtain an

effective Lagrangian Lopp = (L), = 3 (%)2 + Vs where the averaged potential

is found to be
A2
Vers = —cosfy — 3 cos 26y + Cste . (36)
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It is now straightforward to show that the inverted position would be stable if
A% > 2 ie. if aw > V2wg. As the excitation amplitude a is usually small, this
condition emphasizes that the two time scales should be clearly different, for the
inverted position to be stable.

The procedure for the HMF model is analogous, but of course it implies a
series of tedious calculations. Since we would like to limit here to a pedagogical
presentation, we will skip such details that can be found in Ref. [26]. It is however
important to emphasize that the potential energy in the HMF model is self-
consistently determined and depend on the position of all particles. The magic
and the beauty is that, even if this is the potential energy of N particles, it is
possible to compute the statistical mechanics of the new effective Hamiltonian,
derived directly from the effective Lagrangian via the Legendre transform. The
main result is that the out-of-equilibrium state, (i.e. the bicluster shown in Fig. 6)
corresponds to a statistical equilibrium of the effective mean-field dynamics.

The present example represents presumably the simplest N-body system
where out-of-equilibrium dynamically stabilized states can be observed and ex-
plained in details. However, we believe that several systems with long range
interactions should exhibit behaviour similar to the ones here observed. More-
over, this model represents a paradigmatic example for other systems exhibiting
nonlinear interactions of rapid oscillations and a slower global motion. One of
this is the piston problem [31]: averaging techniques could be applied to the fast
motion of gas particles in a piston which itself has a slow motion [32]. Examples
can also be found in applied physics as for instance wave-particles interaction
in plasma physics [33], or the interaction of fast inertia gravity waves with the
vortical motion for the rotating Shallow Water model [34].

5 Dynamical Properties 1I: Lyapunov exponents

In this section, we discuss the chaotic features of the microscopic dynamics of
the HMF model. We mainly concentrate on the A = 0 case, presenting in details
the behavior of the Lyapunov exponents and the Kolmogorov-Sinai entropy both
for ferromagnetic and antiferromagnetic interactions. We also briefly discuss the
mechanism of chaos in the A # 0 case. The original motivation for the study
of the chaotic properties of HMF was to investigate the relation between phase
transitions, which are macroscopic phenomena, and microscopic dynamics [35]
with the purpose of finding dynamical signatures of the phase transitions [36].
Moreover, we wanted to check the scaling properties with the number of particles
of the Lyapunov spectrum in the presence of long range interactions [14].

5.1 The A = 0 case

In the A = 0 case, the Hamiltonian formulation of equation (19) is

éi = Pi (37)
pi=—Msin(0; —¢) . (38)
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The Largest Lyapunov Exponent (LLE) is defined as the limit

1 d()
e T0) (39)

where d(t) = \/ Z£1(60i)2 + (6pi)? is the Euclidean norm of the infinitesimal
disturbance at time ¢. Therefore, in order to obtain the time evolution of d(t),
one has to integrate also the linearized equations of motion along the reference
orbit

d d o?v

%591' =6p; , - 0p; =

dt i 90,90, °% - (40)

where the diagonal and off-diagonal terms of the Hessian are

0%V 1

8—0? = MCOS(GZ' — @) — N (41)
0%V 1 .,

m = —Ncos(()i—Qj) LR (42)

To calculate the largest Lyapunov exponent we have used the standard method
by Benettin et al [37]. In Fig. (10), we report the results obtained for four
different sizes of the system (ranging from N = 100 to N = 20, 000).

In panel (a), we plot the largest Lyapunov exponent as a function of U. As
expected, A; vanishes in the limit of very small and very large energies, where the
system is quasi-integrable. Indeed, the Hamiltonian reduces to weakly coupled
harmonic oscillators in the former case or to free rotators in the latter. For
U < 0.2, \; is small and has no N-dependence. Then it changes abruptly and a
region of “strong chaos” begins. It was observed [8] that between U = 0.2 and
U = 0.3 a different dynamical regime sets in and particles start to evaporate from
the main cluster, in analogie with what was reported in other models [36,38].
In the region of strong chaoticity, we observe a pronounced peak already for
N = 100 [39]. The peak persists and becomes broader for N = 20,000. The
location of the peak is slightly below the critical energy and depends weakly on
N.

In panel (b), we report the standard deviation of the kinetic energy per
particle X' computed from

E:%:W , (43)

where (o) indicates the time average. The theoretical prediction for X obtained
[40,41] from the formula

e D[ (B] an




314 T. Dauxois et al.

0.25
020 @ o
3o8% "fog

| (@)
0.10 - 1 oo ©

-

<

0.05 o o

L gQI (o)
0.00 @ L L 1 L L L 1 L L L 1
0.0 0.5 1.0 15

0.4

0.3
0.2

Fig. 10. Largest Lyapunov exponent LLE and kinetic energy fluctuations ¥ = ox /V N
as a function of U in the A = 0 ferromagnetic case for different N sizes. The theoretical
curve is shown as a full line, see text.

where M (T') is computed in the canonical ensemble, is also reported in figure
as a full line. Finite size effects are also present for the kinetic energy fluctu-
ations, especially for U > U,, but in general there is a good agreement with
the expected theoretical formula. The figure emphasizes that the behavior of
the Lyapunov exponent is strikingly correlated with X': in correspondence to the
peak in the LLE, we observe also a sharp maximum of the kinetic energy fluc-
tuations. The relation between the chaotic properties and the thermodynamics
of the system, namely the critical point, can be made more quantitative. An
analytical formula, relating (in the A = 0 model) the LLE to the second order
phase transition undergone by the system, has been obtained [40], by means
of the geometrical approach developed in Refs. [42,35]. Using a reformulation
of Hamiltonian dynamics in the language of Riemannian geometry, they have
found a general analytical expression for the LLE of a Hamiltonian many-body
system in terms of two quantities: the average (2 and the variance o of the

Ricci curvature kg = AV/N =1/N Eil %27‘;, where V is the potential energy
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and g; are the coordinates of the system. Since in the particular case of the HMF
model, we have

N
1 o%v 1 2K 1
-y =M= 41-2U- = 4
Nizzlaeg NN v N’ (45)

the two quantities {2y and o can be expressed in terms of average values and
fluctuations either of M? or of the kinetic energy K

1 2 1

o =(M*— — = (K 1-2U) — —

b = (M?) = = = —(K) +(1-2U) -
4

In definitive, in the HMF model we obtain a formula relating the LLE, a charac-
teristic dynamical quantity, to thermodynamical quantities like (M?) and o2,
or {K) and ok, which characterize the macroscopic phase transition. For U < U,
and U not to small, an approximation of the formula gives

OK
A X i X (47)
This is in agreement with the proportionality between LLE and fluctuations of
the kinetic energy found numerically in Fig. (10). This implies also a connection
between the LLE and the specific heat, which is an other quantity directly related
to the kinetic energy fluctuation. In fact the specific heat can be obtained from
X by means of the Lebowitz-Percus-Verlet formula [43]

1 o\’

In Fig. 11 we report the behavior of the specific heat as a function of U for a
system of N=500, and we compare with the theoretical estimate.

In the HMF model and for a rather moderate size of the systems it is possible
to calculate not only the LLE but all the Lyapunov exponents, and therefore the
Kolmogorov-Sinai entropy. We give first a succint definition of the spectrum of
Lyapunov exponents (for more details see [7]). Once the 2N-dimensional tangent
vector z = (660y,--- ,00N,0p1,- -+ ,dpN) is defined, with its dynamics given by
Egs. (40), one can formally integrate the motion in tangent space up to time ¢,
since the equations are linear,

(48)

z(t) = J'z(0) , (49)

where .J! is a 2N x 2N matrix that depends on time through the orbit 8;(t), p;(t).
The first k exponents of the spectrum Aq,...,\;, which are ordered from the
maximal to the minimal, are then given by

1
M+ 4 X)) = tlggo % InTeJE(JE)* (50)
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Fig. 11. Specific heat as a function of U in the A = 0 ferromagnetic case. The numerical
simulation at equilibrium for a system with N = 500 is compared to the expected
theoretical result (48).

where J} is the matrix ((J})* its transpose) that acts on the exterior product of
k vectors in the tangent space z' A---Az*, induced by Jt. The spectrum extends
up to £ =2 x N and in our Hamiltonian system obeys the pairing rule

Ai = —dang1—; for 1<i<2N. (51)

The numerical evaluation of the spectrum of the Lyapunov exponents is
a heavy computational task, in particular for the necessity to perform Gram-
Schmidt orthonormalizations of the Lyapunov eigenvectors in order to maintain
them mutually orthogonal during the time evolution. We have been able to
compute the complete Lyapunov spectrum for system sizes up to N = 100. In
Fig. 12, we report the positive part of the spectrum for different system sizes
and an energy U = 0.1 inside the weakly chaotic region. The negative part of
the spectrum is symmetric due to the pairing rule (51). The limit distribution
A(z), suggested for short range interactions,

A@) = lim A (N) (52)

i.e. obtained by plotting A; vs. i/N and letting N going to infinity, is found also
here for the IV values that we have been able to explore. At higher energies, this
scaling is not valid and a size-dependence is present [41].

The Kolmogorov-Sinai (K-S) entropy is, according to Pesin’s formula [7], the
sum of the positive Lyapunov exponents. In Fig. 13, we plot the entropy density
Sks/N as a function of U for different systems sizes.

As for the LLE, Sks/N shows a peak near the critical energy, a fast con-
vergence to a limiting value as N increases in the small energy limit, and a
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Fig. 12. Scaling of the positive part of the spectrum of Lyapunov exponents in the
A=0 ferromagnetic case for U = 0.1.

slow convergence to zero for U > U.. A comparison of the ferromagnetic and
antiferromagnetic cases is reported in Fig. 14. Here, for N=100, we plot as a
function of U the LLE and the Kolmogorov-Sinai entropy per particle Sks/N.
In the ferromagnetic and antiferromagnetic cases, the system is integrable in
the limits of small and large energies. The main difference between the ferro-
magnetic and the antiferromagnetic model appears at intermediate energies. In
fact, although both cases are chaotic (LLE and Skg/N are positive), in the
ferromagnetic system one observes a well defined peak just below the critical
energy, because the dynamics feels the presence of the phase transition. On the
other hand, we observe a smoother curve in the antiferromagnetic case. In the
low energy regime, it is possible to work out [12] a simple estimate A\; o VU,
which is fully confirmed for the ferromagnetic case in Fig. 15 for different sys-
tem sizes in the range N = 100, 20000. The same scaling law is also valid in the
antiferromagnetic case [44] and for the A =1 [9] HMF model.

At variance with the N-independent behavior observed at small energy,
strong finite size effects are present above the critical energy in the ferromagnetic
case and for all energies for the antiferromagnetic case. In Fig. 16(a), we show
that the LLE is positive and N-independent below the transition (see the values
U = 0.4,0.5), while it goes to zero with N above. We also report in the same
figure a calculation of the LLE using a random distribution of particle positions
; on the circle in Eq. (40) for the tangent vector. The agreement between the de-
terministic estimate and this random matrix calculation is very good. The LLE
scales as V *%, as indicated by the fit reported in figure. This agreement can be
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Fig. 13. Sks/N as a function of U in the A = 0 ferromagnetic case.Numerical cal-
culations for different sistems sizes ranging from N = 10 to N = 100 are shown. The
dashed line indicates the critical energy.

explained by means of an analytical result obtained for the LLE of product of
random matrices [45]. If the elements of the symplectic random matrix have zero
mean, the LLE scales with the power 2/3 of the perturbation. In our case, the
latter condition is satisfied and the perturbation is the magnetization M. Since
M scales as N *%, we get the right scaling of A\; with N. This proves that the
system is integrable for U > U, as N — oo. This result is also confirmed by the
analytical calculations of Ref. [40]. In the antiferromagnetic case, the LLE goes
to zero with the system size as N =5 for all values of U.

Interesting scaling laws have also been found for the Kolmogorov-Sinai en-
tropy in the ferromagnetic case: at small energies Sks/N oc U3/ with no size
dependence, and Sgs/N o< N~1/5 for overcritical energy densities. The latter
behavior has been found also in other models [46]. Concluding this section we
would like to stress that the finite value of chaotic measures close to the criti-
cal point is strongly related to kinetic fluctuations and can be considered as a
microscopic dynamical indication of the macroscopic equilibrium phase transi-
tion. This connection has been found also in other models and seems to be quite
general [35,36,47,48]

The behavior of the HMF model as a function of the range of the interac-
tion [13,4,6] and the dynamical features before equilibration [24,25] is discussed
in a separate chapter of this volume in connection to Tsallis nonextensive ther-
modynamics [11].
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Fig. 14. LLE and Skgs/N as a function of U in the A = 0 ferromagnetic and antifer-
romagnetic cases for N=100.

5.2 Mechanisms of chaos in the A # 0 case

For A = 0, the origin of chaos is related to the non autonomous character
of Eq. (19), since it is obvious that if the phase ¢ and the magnetization M
would become constant the dynamics of the system will reduce to that of an
integrable system. There are preliminary indications [17] that in the mean-field
limit N — oo, M and ¢ will become constant and A — 0 . It should be noticed
that this is true if the mean-field limit is taken before the limit £ — oo in the
definition of the maximal Lyapunov exponent, and numerical indications were
reported in ref. [25]. When A > 0 we expect a quite different situation: indeed,
even assuming that in the mean-field limit M and P and their respective phases
will become constant, the dynamics will eventually takes place in a 4 dimensional
phase space and chaos can in principle be observed.

As already shown in [9], for A = 1 and ¢ = 1, two different mechanisms of
chaos are present in the system for U < U, : one acting on the particles trapped
in the potential and another one, felt by the particles moving in proximity of the
separatrix. This second mechanism is well known and is related to the presence of
a chaotic layer situated around the separatrix. The origin of the first mechanism
is less clear, but presumably related to the erratic motion of the minimum of
the potential well, i.e. to the non autonomous character of the equations ruling
the dynamics of the single particle. Indications in this direction can be found by
performing the following numerical experiment. Let us prepare a system with
N = 200 and U = 0.87 (the critical energy is in this case U. ~ 2) with a
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Maxwellian velocity distribution and with all the particles organized in a single
cluster, then we will follow the trajectory of the system.

For an integration time ¢t < 2 x 108, the Lyapunov exponent has a value
A ~ 0.13. But when at time ¢t ~ 2 x 10%, one particle escapes from the cluster,
its value almost doubles (see Fig. 17). The escaping of the particle from the
cluster is associated to a decrease of the magnetization M and of the kinetic
energy K. This last effect is related to the negative specific heat regime: the
potential energy V4 is minimal when all the particles are trapped, if one escapes
then V4 increases and due to the energy conservation K decreases. As a matter
of fact, we can identify a “strong” chaos felt from the particles approaching the
separatrix and a “weak” chaos associated to the orbits trapped in the potential
well. We believe that the latter mechanism of chaotization should disappear (in
analogy with the A = 0 case) when the mean-field limit is taken before the
t — oo limit. Therefore we expect that for N — oo the only source of chaotic
behaviour should be related to the chaotic sea located around the separatrix. As
already noticed in [9], the degree of chaotization of a given system will depend
strongly on the initial condition (in particular in the mean-field limit). In the
latter limit, for initial condition prepared in a clustered configuration, we expect
A = 0, until one particle will not escape from the cluster.
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Fig. 15. Scaling properties of the LLE at low energies in the A = 0 ferromagnetic case.
No N-dependence is observed for U < 0.2. The dashed line indicates a power-law U*/2.
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Fig. 16. Scaling of the LLE vs N for the A = 0 ferromagnetic and antiferromagnetic
cases at various energies, see text. A power-law decreasing as N ~1/3 of LLE is ob-
served for overcritical energies in the ferromagnetic case and for all energies in the
antiferromagnetic one. See text for further details.

6 Conclusions

We have been discussing the dynamical properties of Hamiltonian Mean Fields
models in connection to their thermodynamics. This apparently simple class of
models has revealed a very rich and interesting variety of behaviours. Inequiv-
alence of ensembles, negative specific heat, metastable dynamical states and
chaotic dynamics are only a few examples. During the past years these models
have been of great help in understanding the connection between dynamics and
thermodynamics and the role played by long-range interactions. Such kind of
investigation is of extreme importance for self-gravitating systems and plasmas,
but also for phase transitions in finite systems such as atomic clusters or nuclei
and for the foundation of statistical mechanics. Several progresses have been
done during these years. This contribution, although not exhaustive, represents
an effort to summarize the main results achieved so far. We believe that the
issues which are still not completely clear will hopefully be understood in the
near future within a general theoretical framework.
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Fig. 17. Time evolution of the Largest Lyapunov Exponent (LLE) A1, of the magne-
tization M, and of the kinetic energy K are shown for a clustered initial condition for
the model with A =1 and e =1 at U = 0.87 and with N = 200.

7 Acknowledgements

We would like to warmly thank our collaborators Mickael Antoni, Julien Barré,
Freddy Bouchet, Marie-Christine Firpo, Francois Leyvraz and Constantino Tsal-
lis for fruitful interactions. One of us (A.T.) would also thank Prof. Ing. P.
Miraglino for giving him the opportunity to complete this paper.

References

1. T. Padhmanaban, Statistical mechanics of gravitating systems, in this volume.

2. P.-H. Chavanis, Statistical mechanics of two-dimensional vortices and three-

dimensional stellar systems, in this volume.

Elskens, in this volume.

F. Tamarit and C. Anteneodo, Physical Review Letters 84, 208 (2000)

5. J. Barré, D. Mukamel, S. Ruffo, Ensemble inequivalence in mean-field models of
magnetism, in this volume.

6. A. Campa, A. Giansanti, D. Moroni, Physical Review E 62, 303 (2000).

7. J.-P. Eckmann, D. Ruelle, Review of Modern Physics 57, 615 (1985).

8. S. Ruffo, in Transport and Plasma Physics, edited by S. Benkadda, Y. Elskens and
F. Doveil (World Scientific, Singapore, 1994), pp. 114-119; M. Antoni, S. Ruffo,
Physical Review E 52, 2361 (1995).

9. M. Antoni and A. Torcini, Physical Review E 57, R6233 (1998); A. Torcini and M.
Antoni, Physical Review E 59, 2746 (1999).

10. M. Antoni, S. Ruffo, A. Torcini, First and second order phase transitions for
a system with infinite-range attractive interaction, unpublished (2002), [cond-
mat/0206369).

-



11

12.
13.
14.
15.

16.

17.
18.

19.
20.

21.
22.

23.
24.
25.
26.

27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

42.

The Hamiltonian Mean Field Model 323

. C. Tsallis, A. Rapisarda, V. Latora and F. Baldovin Noneztensivity: from low-
dimensional maps to Hamiltonian systems, in this volume.

V. Latora, A. Rapisarda and S. Ruffo, Physical Review Letters 80, 692 (1998).
C. Anteneodo and C. Tsallis, Physical Review Letters 80, 5313 (1998).

R. Livi, A. Politi, S. Ruffo, Journal of Physics A 19, 2033 (1986).

D.H. Gross, Thermo-Statistics or Topology of the Microcanonical Entropy Surface,
in this volume.

M. Kac, G. Uhlenbeck and P.C. Hemmer, Journal Mathematical Physics (N.Y.) 4,
216 (1963); 4, 229 (1963); 5, 60 (1964).

S. Tanase-Nicola and J. Kurchan, Private Communication (2002).

D.H.E. Gross, Microcanonical thermodynamics, Phase transitions in “small” sys-
tems (World Scientific, Singapore, 2000).

J. Barré, PhD Thesis, ENS Lyon, unpublished (2002).

H. Yoshida, Physics Letters A 150, 262 (1990); R. I. McLachlan and P. Atela,
Nonlinearity 5, 541 (1992).

P. Hertel and W. Thirring, Annals of Physics 63, 520 (1971).

A. Compagner, C. Bruin, A. Roelse, Physical Review A 39, 5989 (1989); H.A.
Posch, H. Narnhofer, W. Thirring, Physical Review A 42, 1880 (1990).

V. Latora, A. Rapisarda and S. Ruffo, Physical Review Letters 83, 2104 (1999).
V. Latora, A. Rapisarda and C. Tsallis, Physical Review E 64, 056124-1 (2001).
V. Latora, A. Rapisarda and C. Tsallis, Physica A 305, 129 (2002).

J. Barré, F. Bouchet, T. Dauxois, S. Ruffo, Birth and long-time stabilization of
out-of-equilibrium coherent structures, submitted to European Physical Journal B
(2002).

J. Barré, F. Bouchet, T. Dauxois, S. Ruffo, submitted to Physical Review Letters
(2002).

T. Dauxois, P. Holdsworth, S. Ruffo, European Physical Journal B 16, 659 (2000).
W. Braun, K. Hepp, Communications in Mathematical Physics 56, 101 (1977).
P. L. Kapitza, in Collected Papers of P. L. Kapitza, edited by D. Ter Harr (Perg-
amon, London, 1965), pp 714, 726.

J. L. Lebowitz, J. Piasecki, Ya. Sinai ”Scaling dynamics of a massive piston in an
ideal gas” , in Hard ball systems and the Lorentz gas, 217-227, Encycl. Math. Sci.,
101, Springer, Berlin (2000).

Ya. Sinai, Theoretical and Mathematical Physics (in Russian), 121, 110 (1999).
M-C. Firpo, Etude dynamique et statistique de l’interaction onde-particule, PhD
Thesis, Université de Marseille (1999).

P. F. Embid, A. J. Majda, Communications in Partial Differential Equations 21,
619 (1996).

L. Casetti, M. Pettini, E.G.D. Cohen, Physics Reports 337, 237 (2000).

A. Bonasera, V. Latora and A. Rapisarda, Physical Review Letters 75, 3434 (1995).
G. Benettin, L. Galgani and J.M. Strelcyn, Physical Review A 14, 2338 (1976).
S.K. Nayak, R.Ramaswamy and C. Chakravarty, Physical Review E 51, 3376
(1995); V. Mehra, R. Ramaswamy, Physical Review E 56, 2508 (1997).

Y.Y. Yamaguchi, Progress of Theoretical Physics 95, 717 (1996).

M-C. Firpo, Physical Review E 57, 6599 (1998).

V. Latora, A. Rapisarda and S. Ruffo, Physica D 131, 38 (1999); Physica A 280,
81 (2000).

L. Casetti, C. Clementi and M. Pettini, Physical Review E 54, 5969 (1996); L.
Caiani, L. Casetti, C. Clementi and M. Pettini, Physical Review Letters 79, 4361,
(1997).



