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Abstract

Throughout the brain, neurons encode information in fundamental units of spikes. Each spike represents the combined thresholding
of synaptic inputs and intrinsic neuronal dynamics. Here, we address a basic question of spike train formation: how do perithreshold
synaptic inputs perturb the output of a spiking neuron? We recorded from single entorhinal principal cells in vitro and drove them to
spike steadily at �5 Hz (theta range) with direct current injection, then used a dynamic-clamp to superimpose strong excitatory
conductance inputs at varying rates. Neurons spiked most reliably when the input rate matched the intrinsic neuronal firing rate. We
also found a striking tendency of neurons to preserve their rates and coefficients of variation, independently of input rates. As
mechanisms for this rate maintenance, we show that the efficacy of the conductance inputs varied with the relationship of input rate to
neuronal firing rate, and with the arrival time of the input within the natural period. Using a novel method of spike classification, we
developed a minimal Markov model that reproduced the measured statistics of the output spike trains and thus allowed us to identify
and compare contributions to the rate maintenance and resonance. We suggest that the strength of rate maintenance may be used
as a new categorization scheme for neuronal response and note that individual intrinsic spiking mechanisms may play a significant
role in forming the rhythmic spike trains of activated neurons; in the entorhinal cortex, individual pacemakers may dominate
production of the regional theta rhythm.

Introduction

A basic question of neuroscience concerns the procedure of neural
coding: what does a spike train represent? While neural responses are
assumed to represent inputs in some sense, the precise details of that
coding procedure are unknown. Rate, temporal or synchrony codes
have been suggested (Theunissen & Miller, 1995; Eggermont, 1998;
Shadlen & Movshon, 1999; Tiesinga et al., 2008) in which spiking
rate, detailed timing or coordination between action potentials act to
encode aspects of inputs, including stimulus intensity (Oswald et al.,
2007), timing (Chase & Young, 2006), texture (Wolfe et al., 2008) or
pitch (Tramo et al., 2005).

Individual spike times represent integration of hundreds to
thousands of synaptic inputs combined in space and time, which are
modulated by intrinsic neuronal dynamics, transformed by an
unpredictable spike threshold, and integrated differently in various
populations of neurons. In many cortical neurons, maintained spiking

requires a maintained drive (Cowan & Wilson, 1994), while in other
cells, such as cerebellar Purkinje cells, output is driven primarily by
an intrinsic pacemaker within the neuron itself (Hausser & Clark,
1997). In principle, a spike train could result from only the input, only
a cell’s intrinsic mechanisms or anything between. Understanding the
balance between synaptic and intrinsic mechanisms in forming the
output of a neuron is critical for understanding how a neural circuit
functions.
It is also unclear how integration affects encoding within an active

network. Many studies demonstrate the effects of specific membrane
conductances on neuronal firing characteristics (Klink & Alonso,
1993; White et al., 1998; Brumberg et al., 2000; Dorval & White,
2005; Gu et al., 2005; Haas et al., 2006). Studies using single neurons
driven with time-varying inputs (Mainen & Sejnowski, 1995; Tateno
& Robinson, 2006) and studies varying parameters of computational
models (Schreiber et al., 2009) have demonstrated a link between
intrinsic properties – including subthreshold resonance and supra-
threshold frequency preference – and spiking reliability (Haas &
White, 2002; Hunter & Milton, 2003; Schreiber et al., 2004a).
However, some reliability studies found that in order to elicit a highly
reproducible response, inputs need to be overwhelmingly large,
driving membrane fluctuations up to 25 mV in amplitude. Phase–
response curves and similar approaches have been used to quantify the
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effects of temporally sparse inputs on spike times (Reyes & Fetz,
1993b; Netoff et al., 2005; Ermentrout & Saunders, 2006).
In this study, we address the question of whether intrinsic

mechanisms or input timings dominate the formation of a rhythmic
spike train – in essence, whether a neuron’s internal pacemaker can
be hijacked by faster or slower input. With experimental data, we
show that cortical neurons employ several mechanisms to maintain
their average firing rates in the face of strong drive, indicating that
intrinsic dynamics, rather than inputs, prevail on the formation of a
spike train. While rate is preserved, neurons respond differently to
input trains of varying speeds, resonating to some inputs but ignoring
others. Our results imply that for a steadily spiking neuron, the
malleability of its responses to input is an essential component of
neuronal coding.
To provide explanations of experimental observations, it is often

useful to develop models. This is typically implemented by matching
suitable sets of differential equations to biophysical mechanisms.
However, it is not always possible to ensure extrapolations from such
models, especially if one wishes to keep the number of variables
small. Therefore, we instead developed a data-driven minimal Markov
model, which reproduces the relevant observed correlations and
provides insight on how rate is maintained. This type of simple
stochastic model can be fruitfully extrapolated as a testing ground for
many neuronal types.

Materials and methods

Electrophysiological recordings

All experiments were conducted as approved by the UCSD Institu-
tional Animal Care and Use Committee. Young (14- to 21-day-old)
Long–Evans rats were anesthetized by overexposure to CO2 and
decapitated. The brain was quickly removed and immersed in cold
(0 �C) oxygenated artificial cerebral spinal fluid (ACSF; in mm: NaCl
126; KCl 3; NaH2PO4 1.25; MgSO4 2; NaHCO3 26; glucose 10;
CaCl2 2; buffered to pH 7.4 with 95 ⁄ 5% O2 ⁄ CO2). Horizontal slices
were prepared using a Vibratome cutter (TPI). Slices were allowed to
recover for 1 h prior to recording in a holding chamber at room
temperature, continuously bathed in oxygenated ACSF. Slices were
transferred to an immersion chamber (RC-27L; Warner Instruments)
and visualized with IR-DIC optics (Zeiss Axioskop 2FS Plus, Dage
CCD100), maintained at 34 �C (TC-344B; Warner). Electrodes
of resistance 4 – 6 MX were pulled on a horizontal puller (Sutter
Instruments) and filled with a recording solution (in mm: KGluconate
135; KCl 4; NaCl 2; HEPES 10; EGTA 0.2; MgATP 4; GTP-tris 0.3;
phosphocreatine-tris 10). Excitatory synaptic transmission was
blocked by 6-cyano-2,3-dihydroxy-7-nitroquinoxaline acid (CNQX;
10 lm) and d-2-Amino-5-phosphonovaleric acid (d(-)-APV) (50 lm),
produced by Sigma (St Louis, MO, USA).
We obtained whole-cell recordings from superficial entorhinal

cortical (EC) layer II neurons, selected by their oblong cell bodies, as
well as particular characteristics of their electrophysiological
responses to long current steps – a prominent (> 30%) sag in response
to both depolarizing and hyperpolarizing current injections (Alonso &
Klink, 1993), as well as an early first spike in response to
suprathreshold stimuli (Haas & White, 2002). Recordings were made
in current-clamp mode. Intracellular signals were amplified
(Axoclamp 2B; Molecular Devices), low-pass filtered (eight-pole
Butterworth at 5 kHz) and digitized at 10 kHz with a DAQ card (NI
PCI-6035E) controlled by lab-made software created in LabView
(National Instruments). Series and input resistances, and resting
potentials, were monitored throughout each experiment; data from

cells with variations > 25% in those parameters were discarded.
We compensated for series and access resistance, which was typically
20 – 40 MX.
In parallel, we recorded from and stimulated neurons with a real-

time Linux-based dynamic clamp (Dorval et al., 2001). In dynamic-
clamp mode, a current was injected that varied with cellular voltage
and time and was recalculated at each acquisition time step (0.1 ms).
In this manner it was possible to mimic a synaptic conductance
input, rather than command a voltage or current input, to the cell.
We delivered excitatory synaptic inputs as double exponential
waveforms S(t) governed by an ordinary differential equation of
the form dS=dt ¼ aT ðV Þ � ð1� SÞ � bS, with a = 0.2ms and
b = 5ms. T represents neurotransmitter in the synapse as a function
of Vpre, the presynaptic voltage train (to simplify, we used square
pulses rising from )100 to +10 mV for 2 ms at the input times, as
presynaptic spikes): T ðVpreÞ ¼ 1=1þ e�ðVpre�VtÞ=Vs (Vt = 0 mV,
Vs = 5 mV). The total injected synaptic current was then
Isyn ¼ gsynS � ðVm � VsynÞ, with synaptic conductance gsyn = 2 nS,
membrane potential Vm and synaptic reversal potential Vsyn = 0 mV.
Synaptic inputs were added to the current injected through the
amplifier; the DC amplitude of the injected current was chosen to
elicit steady spiking at �5 Hz.
Data were discarded from any cells in which the cell health or

recording degraded or failed before having recorded the full set of
time-rescaled stimulations for all six inputs (roughly 1 h); this
yielded a dataset of six neurons. From the six neurons, the average
rest potential was )63.7 ± 4.6 mV, without correction for junction
potential. The times of the conductance inputs were taken from six
sets of inputs – one regular input with coefficient of variation
(standard deviation divided by the mean) CV = 0, and five different
sets of spike times as previously recorded from a cell depolarized
with current injection only. To mimic the range of natural variability
of cellular spiking, the CV values of these ‘quasi-regular’ sets
covered the range from 0.05 to 0.45, with mean CV = 0.16. Each
train of inputs was delivered repeatedly with temporal scalings
chosen such that the input intervals would range between one-third
and three times the unperturbed interspike interval (ISI) of the
recorded neuron. The baseline current injected to the cell was
maintained through all input sets. For a total of six neurons, with six
input trains and five to nine (mean 7.19) compressions of each input
for each neuron, we delivered a total of 259 inputs, each of 1 min
duration. Inputs with different compressions were delivered in
random order, to minimize any effects of rate accommodation.
Offline analysis was performed in Matlab (Mathworks). Errors are
reported as standard deviations (SD) or standard errors of the mean
(SEM) where indicated.

ISI-distance

To assess the reliability or similarity between input and output for
different input firing rates, we employed a slightly modified version
of the ISI-distance, a novel method that has the advantage of being
parameter free and time scale independent (Kreuz et al., 2007,
2009).
First, we form a temporal measure of the firing rate of the first

spike train tx
i . At each moment in time, the ISI is taken as

xISIðtÞ ¼ minðtx
i tx

i > tÞ �maxðtx
i tx

i < t
�� Þ tx

1 < t < tx
M

��
and likewise for the second spike train ty

j . The ISI-ratio between
xISI and yISI is then formed and normalized:
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IðtÞ ¼ xISIðtÞ=yISIðtÞ � 1 if xISIðtÞ � yISIðtÞ
�ðyISIðtÞ=xISIðtÞ � 1Þ else.

�

This measure becomes zero at moments when both cells are firing at
the same rate, and approaches )1 or 1, respectively, if the firing rate of
the first (or second) train is infinitely high and the other infinitely low.

A measure of spike train distance is derived by averaging the value
of the ISI-ratio over time:

D�I ¼
1

T

ZT

t¼0

dtIðtÞ

������
������:

Note that here, in a variation of the original measure (Kreuz et al.,
2007), the absolute value is applied to the whole integral, which yields
a measure of frequency mismatch. The original measure is an upper
bound to this new variant D�I ; the measures are equal when the ISI-
ratios are always positive or always negative (e.g. for periodic spike
trains with CV = 0). This usage also allows us to compute the
expected values of D�I ; for periodic spike trains differing only by a
constant frequency mismatch, and thus to assess the extent to which
differences between input and output cannot be explained as a
consequence of pure frequency mismatch.

Spike classification

Spike times were determined as the time when the voltage crossed a
fixed threshold value (defined as the minimum value plus half the
data range) from below. We classified output spikes into categories
of natural, perturbed and forced according to whether they were not
preceded, not immediately preceded, or immediately preceded,
respectively, by an input. Interestingly, we were able to perform
this classification using information from the output voltage trace
only (cf. Fig. 4A), a strategy that may be very useful for recordings
in which only the output, but not the input, is accessible. To start
with, the output voltage trace within each ISI was low-pass filtered
by a moving average of 10 time steps (1 ms). Within each ISI, the
voltage signal was scanned for a transition from concavity to
convexity (i.e. a change of sign from positive to negative of the
second derivative), which marked the occurrence of a synaptic input
(e.g. at 0.33 s and at 0.61 s in Fig. 4A). If there was no such
transition within an ISI (i.e. membrane voltage was concave up for
the entire interval), the spike terminating the interval was classified
as natural (e.g. the second spike in Fig. 4A). To distinguish between
perturbed and forced spikes, the voltage signal between the last
transition and the following output spike was examined. In case of a
voltage decrease, the following spike was categorized as perturbed
(e.g. the third spike in Fig. 4A); otherwise, it was considered to be a
forced spike (e.g. the first and the fourth spikes in Fig. 4A). Inputs
were subsequently classified as forcing when they preceded a forced
spike, perturbing if they were the last input within an ISI but did not
trigger an immediate response, or as neutral if they were not the last
input within an ISI.

Results

Overall statistics: rate, coefficient of variation and resonance

First, we carefully determined a reasonable dynamic range for our
experiments, performed on single cortical neurons in vitro. To
parameterize this range, we drove spiking with long injections of
varying amplitudes of direct current injection, as a proxy for the

activation of internal dynamics and ionic currents underlying regular
spiking, in current-clamp recordings. We found that we could easily
drive these neurons to fire at 20+ Hz (Fig. 1; further data not shown).
The CV of the ISI distribution was overall inverse to firing rate; for
rates of 1–2 Hz, CV of firing approached 1, while for rates closer to
20 Hz, CV was �0.2.
We chose 5 Hz as a target rate for further experiments for several

reasons: first, 5 Hz is within the physiologically and behaviorally
relevant theta range of frequencies (Fyhn et al., 2004; Buzsaki, 2005;
Hasselmo & Brandon, 2008). Second, it is the lowest rate at which
firing is still fairly regular; frequencies below 5 Hz were too irregular
to quantify a meaningful value of ISI. At higher frequencies,
sensitivity to input is inverse to firing rate (Reyes & Fetz, 1993a).
Thus, 5 Hz is a range in which neurons are maximally sensitive to
input while firing regularly – enough above spiking threshold to fire,
but not so far that sensitivity to input is reduced. To elicit spikes near
5 Hz, we used inputs of 229 ± 28 pA (mean ± SEM, n = 6). The
average CV of unperturbed firing in the cells to which we later
delivered conductance inputs was 0.28 ± 0.03 (mean ± SEM, n = 36).
Thus, we drove neurons with direct current to a weakly active range,
firing near 5 Hz, with plenty of interspike time and dynamic range
remaining to respond to synaptic inputs.
Once we stimulated each neuron to fire near 5 Hz, we added strong

synaptic inputs via a dynamic clamp on top of the depolarizing
current, with input rates varying from one-third to three times the
firing rate of the stimulated neuron. These inputs differed from those
used in previous studies of reliability in that they were temporally
discrete instead of continuous; also, we did not zero-mean them, in
order to not constrain neural spike rates (i.e. artificially lower rates for
our faster inputs by subtracting DC current). A similar paradigm was
used in earlier experiments (Reyes & Fetz, 1993a; Gutkin et al., 2005)
to predict modulation of firing times and rates in response to varied
sizes of temporally sparse inputs, but these studies sought to avoid
entrainment. In contrast, we used only one input strength but varied
input rate, seeking to test entrainment specifically. We aimed to test the
assumption that strong inputs can more strongly modulate, or ‘hijack’,
neuronal firing.
We initially tested several conductances for our synaptic inputs and

settled on a final strength of 2 nS, which drove spikes about half of the
time. To broadly test the overall efficacy of the synaptic inputs (which
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Fig. 1. Firing characteristics of entorhinal stellate cells. (A) When depolarized
to spike by long (> 1 s) injections of direct current of various amplitudes
(x-axis), cortical cells spike with mean rates up to tens of Hz. (B)
Corresponding coefficients of variation (standard deviation ⁄ mean) of spiking
are higher for low spiking rates. In both panels, data shown were collected from
n = 6 neurons. We performed subsequent experiments on cells driven by DC
input to spike at �5 Hz, the rate at which firing was fairly regular and neurons
were sensitive to input.
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will be addressed in a more detailed manner below), we totaled the
percentage of spikes preceded by an input within 20 ms and found that
this was about 51%. As a null hypothesis test, we computed the
percentage of spikes preceded by inputs within 20 ms in shuffled spike
trains; this fraction was close to 10%. For the inputs that failed to
immediately elicit a spike, the average evoked excitatory postsynaptic
potential (EPSP) was 4.9 ± 1.7 mV (mean ± SD, n = 804, measured
from baseline to peak). Because these �5 mV inputs were delivered to
neurons that were already supra-threshold and firing steadily, and
often drove spikes directly, we qualify them as strong (Destexhe et al.,
2003); our inputs were twice as large as the perturbations used to test
phase–response curves, without directly driving spikes, in a similar
paradigm (Netoff et al., 2005), and correspond to the largest of inputs
used in other similar studies (Reyes & Fetz, 1993b). These results
confirm that we provided a strong (but not overwhelming) synaptic
input to the spiking neurons.
These choices of firing rate and input size were critical – our intent

was to allow inputs to interact with intrinsic dynamics, rather than
overpower or overdrive neurons with either the direct current injection
or the synaptic conductance inputs.
Subsequently, we delivered six different trains of conductance

inputs to each of the six neurons and repeated each of those input
trains using different temporal compressions (Fig. 2; see Materials and
methods), resulting in 259 input presentations in total. One of these
trains was periodic, and the rest had coefficients of variation varying
from 0.05 to 0.45, which spans the natural variability in spike times as
discussed above.
We plotted the mean output interspike intervals (ISIs) of the

driven neurons against the mean input interconductance intervals
(ICIs; Fig. 3A). For each stimulus presentation, we normalized both
input ICIs and output ISIs to the ISIs of the unperturbed neuron
(driven with only direct current injection and no synaptic input; cf.
the top trace in Fig. 2). Over the six neurons used, the mean
unperturbed ISI was 189 ± 41 ms (mean ± SEM). We found that
despite the strong synaptic inputs, neurons generally maintained
their natural firing rates for both slower and faster inputs (Fig. 3A).
To quantify the effect of input rate on the neuronal firing rate, we
measured the slope of a linear fit to the normalized response rates
for each of the temporally scaled repetitions of one input, for each
neuron. For quasi-regular inputs, the average slope was 0.14 ± 0.06

(P > 0.1, mean ± SEM, n = 6 neurons), over a range of input rates
varying from about one-third of each neuron’s unperturbed rate to
three times the neuronal rate. For perfectly regular inputs, the slope
was 0.11 ± 0.05 (P > 0.1, mean ± SEM, n = 6 neurons). Differ-
ences in slopes between responses to periodic and quasi-regular
inputs were not statistically significant (P > 0.1, Student’s t-test).
Responses to perfectly regular inputs were slightly faster overall
than responses to quasi-regular inputs: the ratio of each cell’s overall
mean rate in response to periodic stimuli to its mean rate for quasi-
regular stimuli was 0.82 ± 0.04 (mean ± SEM, n = 6, P < 0.01,
Student’s t-test).
Similar to the rate maintenance, despite the strong and varied inputs,

cells maintained their individual CV (Fig. 3B); while individual cells
fired with different coefficients of variation, each cell tended to
maintain its own CV when driven with varying rates of input (cf.
horizontal strata of various symbols in Fig. 3B). Input CV had little
overall effect on output CV: responses to any given input (in Fig. 3B
each input is represented by a different symbol) spanned almost the
whole range of output CV. Responses to perfectly regular inputs were
slightly less variable than responses to quasi-regular inputs: the ratio
of each cell’s CV, in response to periodic stimuli, to its CV for quasi-
regular stimuli was 0.87 ± 0.02 (mean ± SEM, n = 6, P < 0.05,
F distribution). Responses to periodic stimuli were, of course, still
much more variable than the input itself.
As an additional means of testing the overall effects of our input on

the output trains, we assessed the correspondence between input and
output spike trains by the ISI-distance D�I (Kreuz et al., 2007), which
measures the ratio of input ICIs to output ISIs and is inverse to
synchrony. Over the input speeds used, D�I was minimal (synchrony
was maximal) when input firing rates most closely matched the
unperturbed firing rate of the neurons (Fig. 3C), in a form of spiking
resonance. To measure the effectiveness of our stimuli in modulating
spike times, we compared the value of D�I to theoretical values
computed for pairs of strictly periodic spike trains with a frequency
mismatch (see Materials and methods). For very slow or fast inputs
(normalized ICIs furthest from 1), the value of D�I for our driven cells
was smaller than 0.3, corresponding to more-similar trains. In
comparison, mismatched periodic trains were less similar to each
other and reached values of D�I > 0:5. We also noted that even for
well-matched input rates (normalized ICI close to 1), D�I reaches a

A

↓

B
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D *

Fig. 2. Mean firing rate is preserved over varying rates of strong inputs. (A) Driven with a current input (black), neurons fire quasi-regularly (gray); in this example,
the mean ISI was 187 ± 12 ms (mean ± SEM). Conductance inputs (black) were superimposed on the same current input with rates slower (B, mean input interval of
346 ms), approximately matched (C, mean input interval of 169 ms), or faster (D, mean input interval of 124 ms) than the unperturbed neuronal rate (A). Most inputs
elicited a spike within 20 ms; when the input did not immediately elicit a spike, the average response (arrow) was 4.9 mV. Inputs arriving quickly after a spike
sometimes elicited a quick second spike or doublet (asterisk). Despite these strong inputs, neurons maintained their average intrinsic spiking intervals (B: 206 ms;
C: 170 ms; D: 160 ms when including the doublet, 168 ms excluding its interval). Scale bar is 40 mV, 200 ms.
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minimum of �0.09 but does not reach zero, as pairs of periodic trains
do; this indicates a residual effect of intrinsic variability in spike times
despite the resonance to strong inputs. We also observed a resonance
in reliability as a function of input CV, though due to their
construction and compression, our inputs did not sample the range
of coefficients of variation sufficiently to quantify this effect.

Time-dependent effects

To investigate possible mechanisms for the maintenance of intrinsic
firing rate, simultaneous with the resonance to input rate, we classified
spikes according to their response signatures to the input (see
Materials and methods) into categories of forced, perturbed and
natural spikes. Spike classification used solely the response voltage
traces to allow us to differentiate between spikes that were immedi-
ately forced by an input, spikes that followed an input with some
latency, and naturally occurring spikes (Fig. 4A). To confirm the
performance of our spike-classification algorithm, we then used the
input to plot the latency of the classified spikes against the relative
arrival time of inputs; indeed, spikes our algorithm classified as forced
had uniformly small (< 0.1 periods) latencies (Fig. 4B), while the
input-to-spike latencies of spikes we classified as perturbed were
widely distributed in both their input-to-spike latency and their arrival
time within the ISI.

Next we determined the effects of our input compressions on spike
type by binning the classified output spikes in their respective
categories, separated according to relative input rate (from fast to slow,
relative to the unperturbed ISI of the neuron). From this separation, we
saw one marked trend: the occurrence of natural spikes increased
monotonically as input rate decreased (Fig. 5A). In this case, neurons
spiked naturally in between input arrivals. Conversely, for fast inputs
neurons spiked naturally much less often.

We also classified the inputs according to their success in eliciting
an immediate spike into the categories of forcing, perturbing and
neutral (see Materials and methods), and binned them similarly by
relative input rate. Two effects from this separation emerged (Fig. 5B).
We found the highest fraction of forcing inputs for the resonance case,
where the rate of the input matched the rate of the unperturbed
neurons; this is again largely intuitive. For the fastest inputs the
fraction of neutral inputs is highest and, correspondingly, the
percentage of inputs that successfully forced an immediate spike is
decreased. This result indicates that neurons were overall less
responsive to faster inputs, even while the neurons maintained their
intrinsic rates of �5 Hz. For very slow inputs, the percentage of
forcing inputs is enhanced by episodes of 1:2 synchrony.
One potential mechanism for rate maintenance despite strong input

is via short-term memory, i.e. a dependence of any given ISI on the
previous spike type (forced, perturbed or natural). In order to isolate
the effect of single inputs from additional effects of subsequent inputs,
we looked at the length of natural ISIs (which are undisturbed by
input, and thus reflect intrinsic dynamics) following either a forced or
a perturbed spike. Natural ISIs following a forced spike (e.g. Fig. 2B,
second and second-to-last ISIs) were significantly longer (mean
normalized ISI = 1.02, corresponding to an increase of �4 ms for a
200-ms theta cycle; P < 0.001) than following a perturbed spike
(mean normalized ISI = 0.98), indicating a memory effect and a
potential contributor to rate maintenance. Here we have corrected for
the differences in arrival times of perturbed spikes, which arrive later
after the previous input than forced spikes, as this could also affect the
occurrence of natural spikes.
To visualize the temporal dependence of input influence during rate

maintenance, we computed the probability of forcing inputs over input
arrival times within the ISI (Fig. 6A; we will indicate this distribution
in our model as the probability Q). As expected, inputs arriving very
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Fig. 3. Mean interspike interval (ISI) and individual CV for each cell remained constant when driven by strong inputs of varying speeds, while simultaneously
resonating to inputs of matched speed. (A) Neuronal ISI plotted against input interconductance interval (ICI); for each cell, both ISI and ICI are normalized to the ISI
of the unperturbed neuron (cf. Fig. 2A). Different inputs are coded by symbols, with the responses to perfectly periodic inputs marked by filled circles. The black line
is a linear fit (slope 0.11) to the lumped data over all neurons and inputs. (B) Coefficient of variation of the ISIs for each cell, plotted against input ICI. Responses to
perfectly periodic inputs (dots) are overall less variable than responses to quasi-regular inputs. The ratio of the average neuronal CV for perfectly periodic inputs to
the average CV for quasi-regular inputs was 0.87 ± 0.02 (mean ± SEM, n = 6). (C) Modified ISI-distance D�I (see Materials and methods) between input and output
spike trains (mean and SEM) plotted against binned input ICIs. A resonance effect was seen: neurons followed the input most reliably (smallest D�I ) when the firing
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values for a pure frequency mismatch.
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quickly after a spike are least likely to force another spike, and inputs
arriving latest within the ISI are more likely to force immediate spikes,
with a maximal probability at the natural ISI. In between these two
extremes we observed a very pronounced peak in the probability of an
input forcing a quick second spike, or doublet, centered at a
normalized input arrival time of �0.07 of the natural ISI following
a spike (this is 10 - 20 ms for a cell spiking at �5 Hz). Correspond-
ingly, the probability of an input eliciting a perturbed spike was lower
during this ‘doublet window’. Neutral inputs, which failed to elicit
either a forced or perturbed spike, decreased in probability with
elapsed time, except for a similar small dip corresponding to the
doublet peak. We also looked at the latency distributions of perturbed
spikes over different input arrival times [Fig. 6B; in our modeling, this
will be the latency distribution R(Dp)]. The mean latency for
perturbing inputs generally decreased with input arrival time, to a
plateau latency of 0.3 (normalized); latency peaked during the doublet
window.

Modeling

In order to test whether we could reproduce the neuron’s behavior
using only these basic probabilities (cf. Fig. 6) as ingredients, we built

a simple stochastic model that is schematically described in Fig. 7. We
used two streams taken from our experiments: the input (ICIs), in
exactly the same order as delivered during the experimental recordings
(Fig. 8A); and neuronal ISIs, drawn randomly from the distribution
P(t) of intervals recorded from unperturbed neurons (Fig. 8B). The
model proceeded as follows:
We start with an output spike, at time tout, and seek to determine the

next output spike time tout+1. Let t
e
out+1 denote the expected time of a

possible next natural output spike, drawn from the distribution P(t).
First we consider the next input, arriving at time tin. If tin > teout+1, the
input is too late; the next output spike, tout+1 is taken as emitted at
time teout+1, and is considered of natural type. Alternatively, if
tin < teout+1, an input arrives before a natural spike would have arrived;
then the next output spike is taken as forced with probability
Q(tin ) tout) or as perturbed with probability 1 ) Q(tin ) tout)
(Fig. 6A). In the former case, the forced spike tout+1 is elicited at
time tin + Df , where Df is the measured latency of forced spikes
(cf. Fig. 4B). In the latter case, the latency of a potential output
spike Dp is chosen from the probability distribution R(Dp|tin ) tout)
(Fig. 6B, the latencies of perturbed spikes); the expected spike time
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teout+1 = tin + Dp is also compared with the time of the next input tin+1,
and forced or further delayed in a similar manner if tin+1 arrives before
the perturbed spike at tin + Dp. Having thus determined the next spike
time tout+1, we then proceed from one output spike to the next until the
experimental input stream has ended.

We compared the ISI distributions from the simulation and the
experimental data. As shown in Fig. 8C, the distribution of simulated
outputs reproduces the measured ISI distribution (black lines) reason-
ably well. Quantifying the overlap of the two distributions using
Receiver-Operator-Characteristics (Hanley & McNeil, 1982) yields a
value of 0.99, a highly significant similarity (P-value < 0.001). Our
simulations reproduced the simultaneous rate maintenance (Fig. 8D)
and the resonance effects of the experiments (Fig. 8E).

In the experimental data we distinguished three different input types
(cf. Figs 5B and 6A), while in the streaming model we can only
distinguish a priori whether an input forces an immediate spike or
not (Fig. 7, dashed green lines). The reason is causality: whether a not-
forcing input subsequently becomes a neutral or a perturbing
input depends on whether the next randomly drawn input appears
before or after the next randomly selected output spike. However,
for the simulation we can evaluate post hoc the relative fractions of
perturbed and neutral spikes. In the simulation, the fraction of
perturbing inputs was overestimated by only 12%, which, given the
simplifying assumptions, serves as another indication that the model
captures the essential features of the data very well.

In the temporal probabilities of input types (Fig. 6A) we noted a
distinct peak in probability of forcing a spike near normalized t = 0.07
of the natural ISI. We hypothesized that this doublet peak would likely
account for the slightly elevated probability of short ISIs in our
simulations, and might account in part for the rate maintenance in
output. To test this hypothesis, we reran our simulations after altering
the probabilities of Fig. 6A: first, we artificially removed the doublet
peak, by sending the probability of forcing a spike smoothly to zero
for smaller elapsed arrival times (Fig. 6A, cyan line). As expected, this
had the effect of diminishing the elevated probability of short ISIs in
the output stream (Fig. 8C, cyan line). Second, we ran another
simulation with temporally flattened response probabilities, where the
response probabilities were set to their average over input arrival time
(Fig. 6A, magenta). This model produced a larger number of short
ISIs than found in the original data (Fig. 8C, magenta). Both altered
models produced fewer long ISIs than were present in the original
data. These are two simple examples of how such a model can be used
to explore contributions of specific response attributes; many others
are conceivable.
Removing the doublet peak also diminished or eliminated the rate

maintenance and resonance effects. For both the experimental data and
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Fig. 7. Flowchart of the minimal Markov model that determines the time of
the next output spike using only the previous output spike, the actual sequence
of inputs and experimentally estimated probabilities. For each spike time tout, a
next natural spike teout + 1 is chosen from the experimental distribution of
natural ISIs, and an input time is determined from the stream of input intervals
used in experiments. The next spike time tout + 1 is then determined according
to the distributions and probabilities derived from the experimental results.
There are three possible output loops – one for the forced spikes, one for natural
spikes and one for perturbed spikes. The last loop incorporates the next input; if
an additional input occurs before the perturbed spike, the spike type is
reconsidered with the new input time. The whole procedure is iterated until the
sequence of inputs has ended.
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the output stream formed by simulating the experimental response
properties, strong quasi-regular inputs varying in speed from one-third
to three times the unperturbed neuronal rate had a slope of 0.14
(Fig. 8D). However, after smoothing away the doublet peak as above,
the slope between input rate and output rate in our simulations was
increased by 72%, to 0.24. In contrast, using flattened response
probabilities resulted in a small decrease in slope, to 0.12. Moreover,
the original streaming simulation matched the resonance feature of the
experiments (Fig. 8E; the minimum in D�I was 0.06 for the simula-
tions), while both altered simulations failed to resonate to a single
input speed. Thus, we conclude that the temporal response profiles of
cortical cells (Fig. 6A) are finely tuned and shaped by the doublet
window and by other contributing intrinsic effects (e.g. ionic and post-
spike currents) to preserve the overall rate, while varying timings of
individual spikes within a train in response to inputs.

Discussion

To investigate the interplay between intrinsic mechanisms and
synaptic input in the formation of a neural spike train, and to address
how two neurons each firing quasi-regularly at theta rates might
coordinate their firing, we delivered sets of sparsely timed, strong
excitatory synaptic conductance inputs to spiking neurons in vitro. We
varied the relative rate of the inputs, from roughly one-third to three
times the ISI of the unperturbed neurons. We found that although these
inputs were strong and elicited spikes on average 51% of the time (or
�5 mV PSPs when they failed to elicit a spike), the average ISI of the
output remained fairly constant, while input varied over orders of
magnitude. Simultaneously, neurons resonated only to inputs with
matched arrival rate. By classifying spikes into three categories
according to their response to the input, we showed that overall
neuronal responsiveness varies with input speed, to preserve the mean
intrinsic rates in the presence of strong inputs. We also showed, and

verified with a minimal model, that response probability is finely tuned
within the natural ISI, and showed how this tuning helps the neuron to
maintain its rate as it modulates the timings of individual spikes within
a train.
The question of what a neural code represents is an open and

evolving field of study (Eggermont, 1998; Shadlen & Movshon, 1999;
Hong et al., 2008; Wang et al., 2008). Our results suggest the internal
pacemaker of a neuron has a dominant effect in the formation of its
spike train. Intrinsic conductances within the cell, which shape its
response to the average intensity of an input, thus potentially exert
considerable influence on spike timing and the neural code it
represents (Schreiber et al., 2004b). In this manner, the unique set
of ionic conductances, such as Ih, IA, IT, or various forms of after-
hyperpolarizing or after-depolarizing currents, within each neuron or
class of neurons endow each individual neuron with unique coding
properties (Fig. 6); after-hyperpolarizing currents in particular can
shape the doublet window we observed. Further, the maintenance of
rate (Fig. 3A), simultaneous with resonance to input rate (Fig. 3C),
implies that while a neuron works to preserve its output rate, the type
and timing of its responses to its inputs is the crucial information-
bearing component of the neural code.
As a neuron works to maintain its mean firing rate, we found that it

shifts its coding properties: input–output reliability, overall probability
of response and response type (forced or perturbed) in time, and the
proportions of natural spikes amid the forced spikes (Fig. 5). In
particular, even as a neuron maintains spiking at a non-saturated rate,
it exhibits short-term fatigue when inputs drive it too often, and
becomes less responsive to that input. This shift in spiking response
further suggests an input-dependent difference in coding properties
(Haas et al., 2006); in this case, even as it responds unreliably to too-
fast or too-slow input, a neuron applies different rules (Fig. 6) to
when, how and to which inputs it responds. Our results suggest an
ability of activated principal cells to differentially pass along
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information while maintaining their firing rate within a network
rhythm, in a form of nested encoding.

We found a period of elevated probability to force a second spike
immediately, in the 10–20-ms time window following a spike, and our
modeling showed that this doublet peak is a crucial component of rate
maintenance. We saw a doublet window both for forced spikes, and
for perturbed spikes. Further, perturbed latencies were longest just
after a spike (Fig. 6B) – thus, following a spike or a doublet, another
spike was highly unlikely. A doublet spike, in combination with the
observed refractoriness to spiking following the doublet peak, may
serve as a temporal ‘reset button’ for subsequent inputs and spike
times. The doublet may arise from after-depolarizations following
spikes; subsequent after-hyperpolarization currents following a set of
doublet spikes may then be summed or enhanced, preventing a triplet
spike, and contributing to rate maintenance by prolonging the next ISI.
Removing this effect would correspond to diminished rate mainte-
nance, as seen in our modeling. For neurons spiking around theta
frequency, this lends an error tolerance for input arrival times – even if
an informationally important input arrived just a bit too late (i.e. after a
spike) at a cycle peak, it can still evoke a second spike within a
window much smaller than the theta cycle time, while keeping overall
spiking within the theta range. This effect also spreads out the
expected spiking times and synchrony of neurons spiking in a theta
rhythm. Furthermore, a doublet peak is likely to have pronounced
effects for a postsynaptic neuron, either by simple summation or by
various forms of synaptic plasticity associated with short time
intervals.

We observed a resonance in reliability for matched firing rates
(Fig. 3C), whereby neurons most reliably pass on the inputs with
which they are already most synchronized. In this case, neurons firing
at a common rate of theta are more likely to pass on a more faithful
representation of each other’s inputs, and more likely to form a
coherent group rhythm. These results are complementary to other
studies in which neurons responded with resonance to various forms
of frequency content of input (Mainen & Sejnowski, 1995; Hunter
et al., 1998; Haas & White, 2002; Hunter & Milton, 2003; Schreiber
et al., 2004a).

Many studies of network behavior or synchrony employ relatively
weak inputs or coupling strengths, in part for simplicity and in part with
the assumption that stronger inputs will result in a simple scenario of
output simply following or relaying input (Ermentrout & Kleinfeld,
2001). Other studies indicated that stronger inputs exert larger
influences on individual spike times (Reyes & Fetz, 1993b). However,
our results suggest that this may not be the case over longer timescales
of inputs and spikes, whether rate-matched or rate-mismatched.
Instead, we find that even for relatively strong synaptic input, a cell
that is depolarized or excited to the level of quasi-regular spiking will
produce a spike train formed largely according to its intrinsic
conductances and dynamics, rather than simply following a strong
input, even in the resonant case – our ISI-distance never fell to zero. In
the EC, these results imply that the intrinsic pacemakers of individual
neurons may be a dominating factor in the regional theta rhythm.

We do not expect this to be uniformly true across the brain; thus,
various cell types could be classified by this characteristic, the strength
of the internal pacemaker. Indeed, the allegiance of a neuron to either
its intrinsic rate or an input rhythm may serve as a novel way to assess
rhythmogenesis in different areas of the brain.

Moreover, it is also important to construct models to mimic the
neuronal response, as they allow testing and understanding of the role
of each ingredient in neural dynamics. We have shown that all of the
above response features are reproduced by a simple stochastic
Markov-type model, which we constructed by incorporating minimal

probabilistic information extracted from the experimental data.
Although it is highly desirable to put this heuristic model on a more
firm ground by establishing connections with the underlying biophys-
ical processes, the model proved useful for identifying relevant
response properties that are involved in the neural spiking activity; its
simplicity is one of its merits. Indeed, the model reproduces the
observed resonance and simultaneous rate maintenance while using
only one set of probabilities, and without taking into account neuronal,
input or speed variability. In Fig. 8C, we note that the major
inaccuracy of the stochastic model is a shift towards slightly smaller
ISIs of the simulations with respect to the experimental data. This can
be presumably attributed to the absence, in the model, of any explicit
mechanism accounting for the fatigue of the neuron; indeed, our
experimental results point towards a longer-term memory effect, of
longer natural ISIs following forced spikes. We are confident that
incorporating this mechanism into the stochastic model would
improve it; however, this would also lead to a more complex and
specific model, whereas here we mainly aimed for generality. In
particular, we would like to stress once more that our approach based
on the construction of a data-driven Markov model can be used to test
the responses predicted by first-principle models within a very broad
range of applications.
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