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We study the nature of the synchronization transition in spatially extended systems by discussing a simple
stochastic model. An analytic argument is put forward showing that, in the limit of discontinuous processes, the
transition belongs to the directed percolati@P) universality class. The analysis is complemented by a
detailed investigation of the dependence of the first passage time for the amplitude of the difference field on the
adopted threshold. We find the existence of a critical threshold separating the regime controlled by linear
mechanisms from that controlled by collective phenomena. As a result of this analysis, we conclude that the
synchronization transition belongs to the DP class also in continuous models. The conclusions are supported by
numerical checks on coupled map lattices too.
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[. INTRODUCTION tems into a nonequilibrium phase-transition problem.
In analogy to low-dimensional systems, various coupling

Synchronization in dynamical systems has recently beschemes have already been considered. For instance, “sto-
come the subject of an intensive research activity for varioughastic synchronization” has been studied in coupled map
reasons that range from the application to transmission dgttices (CMLs), by adding the same spatiotemporal noise
information to the spontaenous onset of coherent behaviok(X.t) to different trajectoriesu;(x,t) and ux(x,t), of the
and also because it is one of the mechanisms controlling théame systerfi8], according to the following scheme:
degree of order present in a chaotic evolution. Most of the 2 )
attention has been, so far, focused on the behavior of low- Y% i+ D =fluix, )+ Viui(x, )]+ oé(x.1), 1=1.2,
dimensional systems. As a result of these investigations, sev- )
eral kinds of synchronizations have been identifige most |\ here
important being phase and complete synchronizateomd
the corresponding transition scenarios charactefiizéd 5 e €

More recently, the interest has shifted towards high- Voauxh=su(x+ 1) +zu(x— 1) —eu(xt)  (2)
dimensional chaos and, specifically, towards the behavior of
extended systems, a context in which an overall picture igs the shorthand notation for the discretized Laplacian opera-
still lacking. In this paper, we devote our interest to completeior (¢ plays the role of a diffusion constarand f[x] is a
synchronization in lattice systems. This kind of synchronizamap of the unit interval able to generate chaotic behavior.
tion has been introduced and studied into two different setMoreover, o is the amplitude of the forcing ternx is an
ups. In the former one, identical copies of a given systeninteger index labeling the lattice sitesjs a discrete time
(with different initial internal statesconverge to the same variable and the noise term is assumed to be boundedand
trajectory, when forced with the same random signal. Thiscorrelated in space and time, i.€5(x,t)£(y,S))> 6 6y s.
so-called stochastic, synchronization can occur only if theéSynchronization is possible when the differenegx,t)
dynamics resulting from the stochastic forcing becomes lin=|u;(x,t) — u,(x,t)| between simultaneous configurations
early stable, i.e., the maximum Lyapunov exponent is negaef the two systems converges everywhere to zero. The sta-
tive [2—6]. In the latter setup, two identical systems arebility coefficient of the solutiorw(x,t)=0 is usually called
coupled together: if the coupling strength is strong enoughthe transverse Lyapunov expondfiLE). In the context of
both eventually follow the same, chaotic, trajectory. This isstochastic synchronization, the evolution of a snwe(k,t)
the so-called chaotic synchronization. For it to be observededuces to the tangent dynamics of the single CML, so that
it is sufficient that the transverse Lyapunov exponent is negathe TLE coincides with the maximum Lyapunov exponent of
tive [7]. Therefore, in low-dimensional systems, the synchrothe noise-affected dynamics. Accordingly, synchronization
nization transition can always be reduced to a linear stabilitycan arise only when the stochastic forcing induces a negative
problem. maximum Lyapunov exponent. This is possible if the prob-

On the other hand, recent numerical investigatif$i9]  ability distribution of the state variable mostly concentrates
indicate that the synchronization scenario in spatially exdin the region of the interval where the map acts as a contrac-
tended dynamical systems exhibits more complex and inteition.
esting features. In fact, the addition of the spatial structure Alternatively, one can study the behavior of two directly
may turn the linear stability problem of low-dimensional sys-coupled systemg9]:
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Uy (X, t+ 1):(1_g)f[ul(x,t)Jrviul(X,t)]jLgf[uz(x,t) points where|w(x)| is larger than some small fixed thres-
hold) is the appropriate order parameter corresponding to the
+V2uy(x,1)], fraction of active sites in DP.
In this case, one cannot follow the same derivation as
Up(X,t+1)=(1— o) FUs(X,t) + V2u,(x,1) ]+ o f[uy(X,t) above, because even close to the critical point, the evolution
) equation forw(x,t) cannot be linearized, since it is precisely
+Vaui(x,t]. (3 the nonlinear effects which guarantee a propagation of finite-

amplitude perturbations in the presence of a negative TLE. It
At variance with the previous case, the coupling strength is worth recalling that in the formulation of Reggeon field
modifies the evolution law ofv(x,t), by adding a stabilizing  theory, the DP transition is described by the effective equa-
term, while it leaves unaffected the dynamics of the fullytion [12-14
synchronized regime. Accordingly, the TLE may become

negative, while the maximum Lyapunov exponent, un- aip(x,) =D V2p(x,t) + Cyp(X,t) — Cop2(X,1)
changed, remains positive. R ' ’ ’
While the negativity of the TLE is always a necessary +\p(x,t) p(x,t), (6)

condition to observe synchronization in spatially extended

systems, for smooth enough dynamical systems, it proves inere,(x t) is the density of active sites ag>0. Behind
be sufficient too. In fact, the study of stochastic and chaoti¢ne gimilarity between this and EG), one should notice the
synchronization, carried on in Ref&] and[9], respectively, ¢,ci) difference in the noise amplitude: the square-root ver-
have shown that synchronization occurs as soon as the TLE s jinear dependence pnis indeed responsible for turning
be(_:omes_ negatlve_and, correspo_ndmgly,_ the propagation Vese N critical behavior into a DP-like one. In this paper, we
locity of f|n|te-§\mpl|tude perturbation vanishes. Ir_l particular, plan to explain why the presence of a discontinuity a
Ahlers and Pikovsky{9] argue that the dynamics of the gyong nonlinearity may lead to the effective equatids).
coarse-grained absolute value of the difference field is To this aim, in Sec. Il we introduce a simple random muilti-
descri_bed by the following stochastic partial differential plier (RM) model as an effective equation for the time evo-
equation: lution of the difference variable/(x,t) for discontinuous and
strongly nonlinear CMLs. This model was originally intro-
duced in Ref[15] to account for the mechanism of propa-
gation of information in stable chaotic systems. We analyze
WOt p(xb), (4) it.s phase 'd.iagram, and we 'allso discuss how the syr?ch.ronliza—
tion transition may be modified when a true discontinuity in
the dynamics is changed into a strongly nonlinear continuous
where D>0, c3>0 and the Gaussian noise termis &  mapping. The relation between the RM model and the DP
correlated in space and time, i.gzn(xt)n(y,s))*8(x  mean-field equatiof) is analyzed in Sec. Ill.
—y)d(t—s). This equation is formally equivalent to the  There is a further basic question that will be addressed
mean-field equation of the class of multiplicative noisehere. All microscopic models that are known to exhibit a DP
(MN) nonequilibrium critical phenomenfd0]. By a Hopf-  critical behavior are defined by referring to discrete and finite
Cole transformatior(x,t)=—In \7v(x,t), the above equation sState variables, such as the probabilistic cellular automaton
can be transformed intd.1] model proposed by Domany and KinZé6]. In such cases,
the so-called “absorbing state” can be unambiguously iden-
tified. For instance, in the cellular automaton of Héf], a
1 A . .
ah(x,t)= DVZh(x,t)—D[Vh(x,t)]Z—(cl— _) sequence of “0”s can only.change from its boundarigss
2 is the reason they are defined as contact procesiseshe
context of synchronization, the dynamical variable is con-
tinuous and the conditiomv(x,t)=0 is never exactly ful-
filled at any finite time, even in a system of finite size. As a
describing the critical behavior associated with the depinningonsequence, in numerical experimd@$] one has to fix a
transition of a Kardar-Parisi-Zhan@KPZ) interface from a small, but somehow arbitrary, threshold value, below which
hard substrate. Numerical analysis confirms that the criticathe trajectories are assumed to be synchronized. The same
exponents evaluated for the two different coupling schemesumerical simulations show that, independently of the dy-
are both compatible with those predicted for the MN model.namical rule, when the space averagewgk,t) decreases
On the other hand, it has been observed that in the pre®elow a threshold valu®©(10 %) it does not grow again.
ence of strong and localized nonlinearities, the nonsynchraHowever, one canna priori exclude that a large fluctuation
nized regime may coexist with a negative TLEJ]. In this  of some local multiplier drives the system out of this weakly
case, the transition does occur when the propagation velocitgbsorbing state. On the contrary, it looks plausible to assume
of finite-amplitude perturbations vanishes, while its critical that in an infinite system such a large fluctuation occurs with
properties turn out to belong to the class of directed percoprobability one. In Sec. IV we tackle the problem of the
lation (DP). Such an equivalence has been found by noticingexistence of an effective absorbing state even in the presence
that the fraction of nonsynchronized sitédefined as those of a continuous state variable. The study of the first passage

AW(X,t) =D V2W(X,t)+CcW(X,t) — CaW3(x,t)

+cge” 2"+ p(x,t) (5)
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time required for the space average of the difference variablgy(x,t+ 1)

w(X,t) to go through a series of decreasing thresholds clari-

fies that, contrary to intuition, it is possible to assign an B 1, w.p. p=av(xt)
effective finite “measure” to the synchronized, i.e., absorb- ~lav(x,t), wp. 1-p

ing, state. Finally, conclusions are drawn in Sec. V.

it v(xt)>A,

w(x,t+1)

Il. RANDOM MULTIPLIER MODEL: DEFINITION
AND PHASE DIAGRAM =

v(x,t)/A, w.p. p=aA
PP if v(x,H)<A, (10

av(x,t), wp. 1-p
In this section, we introduce the RM model with the aim '
of closely reproducing the synchronization transition occurWherea andA replace (1-20)/a; anda,/(1—-20), while

ring in Coup|ed piecewise linear maps of the type Wp _iS a Sh_ort_hand notation fOf “with probability." Only _
positive multipliers are assumed in order to guarantee a posi-

tive definedw(x,t) (simulations do confirm that the sign
xlaq, 0O=x<a, does not play a relevant rgleFinally, periodic boundary
conditions are assumed on a lattice of sizeln what fol-
lows, space and time are expressed in arbitrary lattice units,
(X—ay—ay)lay, aytasxs<l, while the difference variable/(x,t) and the control param-
etersa and A are dimensionless quantities.

The advantage of playing with this model is that it explic-
where 0<a;<1 and O<ap,<1-—a;. For anya,>0, the ity avoids the possibly subtle correlation that may be gener-
map is continuous with a highly expanding middle branchated during the deterministic evolution of the CML, and
(whena,<1). In the limit a,=0, f(x) reduces to the dis- thereby spoiling the asymptotic behavior of the observables

f(x)=4 1-(x—aplay, a;sx<a;+a, (7)

continuous Bernoulli map with expansion factorrd/ we are interested in. Besides the probabilistic, rather than
In the bidirectional synchronizatiorsetup(3), the corre-  deterministic, choice of the amplification factor, the only
sponding TLE ig9] other difference between the stochastic mod€) and the

original set of two coupled CMLs is the distribution of the
amplification factors that is dichotomic in the former case.

A =Ay+In(1-20), 8 We see no reason why this difference should affect the tran-
sition scenario.

) ) _ Moreover, in order to maximize propagation effe(tsat
where\, is the maximum Lyapunov exponent of the single, 5re responsible for the propagation of finite-size perturba-
uncoupled, chain. Therefore, a linear stability analysis '”d'"tions) we shall restrict to the case=2/3 (the so called
cates that a small deviatiow(x,t) =|u;(x,t) = ux(x.t)| IS «gemocratic” coupling. Some rough numerical analyses do
contracted wherr>(1—1/\y)/2. However, this is not the ot indeed, reveal qualitative changes wheris varied
whole story even in the absence of multiplier fluctuations,;,qund 2/3.
because wheneven(x,t) andu,(x,t) fall on different sides The most general way of testing the stability of the syn-
of the map discontinuityw(x,t) becomes at once of order 1, cpronized phase is by monitoring the evolution of a droplet
being amplified by a factor close tovi(x,t). The probabil- 4t the unsynchronized phase. By denoting whift) the

ity of such events depends on the probability density of theyrgpjet size, i.e., the number of unsynchronized sites, at time
variablesu; : in the case of a sufficiently smooth distribution ¢ the propagation velocity can be defined as
across the discontinuity, the probability is, to a leading order,

proportional tow itself [17]. The same qualitative behavior N(t)—N(0)

also occurs fora,>0, except that now, whew<a,, the vFEIimT. (1)
amplification factor cannot be larger than<{20) a,. More- t—oo

over, the probability of such amplifications does no longer

depend onw. A negative TLE[the maximum Lyapunov exponent of model

In the following, instead of determining the local dynam- (10)] implies that any infinitesimal perturbation does decay.
ics of w from the actual evolution afi,(x,t) andu,(x,t), we  In spite of this linear stability, in Ref15] it has been shown
prefer to write a self-contained equation, where the occathat vg can be positive, implying that the unsynchronized
sional amplifications follow from a purely stochastic dynam-phase sustains itself and invades the synchronized one. By
ics that simulates the CML. More precisely, we introduce theperforming detailed simulations for different values of the
model parametersa and A, we have been able to construct the

phase diagram plotted in Fig. 1. The solid line, along which
ve=0, separates the synchronized from the unsynchronized
v(x,t)=(1+V§)W(x,t), 9 phasegshaded region The dashed line, along which the TLE
is equal to 0, splits the unsynchronized phase into a linearly
stable(l) and unstablel() region. In the former onénding
with approximately al\ = A ~0.15), the nonlinear amplification
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FIG. 1. Phase diagram of the RM model. In the two shaded q_4 =
regions ( andll) the synchronized phase is unstable; in fact, above 10 107 a- a,

the solid linev>0. Along the dashed line, the TLE changes sign, . o
so that regiori corresponds to the linearly stable, but nonlinearly ~ FIG- 2. Power law scaling behavior in the RM model. In all
unstable regime, whilél corresponds the linearly unstable region. 9raPhs, the dashed lines correspond to the expected scaling behav-
Above A=A, the TLE vanishes together with. . ior [DP_|n (@), (b), and(c?, and MN m(d_)]. (a) Absorption time as

a function of system size foA=0. Triangles corresponds @
mechanism prevails over the linear contraction induced by~ 0-6070, squares @=0.6063, and circles ta=0.6051.(b) Den-

the negative TLE. Abové ., the TLE changes sign exactly sity of unsynchronized sites as a function of time fo+0.1. The
whereo, vanishe.s too ¢ five solid lines correspond t@rom top to bottorh a=0.591, 0.59,

Numerical analysis of stochastic synchronization in a0'58955’ 0.5893, and 0.5890, respectivéd). Asymptotic density

. ...of unsynchronized sites as a function of the distance from criticality.
CML [8] sqggests that \_Nhen the TLE vanls.hes. together_ \.Nmbircles correspond tA =0.1 and squares th=0.2. (d) Density of
ve, the critical properties of the synchronization transition

h f the MN cl hile th ition is DP-lik unsynchronized sites as a function of time fde=0.2. The five
are those of the class, while the transition Is K€ s0lid lines correspond téfrom top to bottom a=0.568, 0.5675,

whenever Onl_y vgnishes(the T!_E.rema}ining pegati\)e 0.5668, 0.5664, and 0.5662. All the graphs are plotted in doubly
Before entering into a quantitative discussion about th§ogarithmic scales.

nature of the transition in the present model, it is worth no-

ticing a difference between regimesndll. The linear in-  transition and the DP critical phenomenon, we have investi-
stability in Il ensures that any finite perturbation of a syn-gated the scaling behavior in the vicinity of the transition. In
chronized state remains finite forever independently of theop it is known that, at criticality, the dependence of the

chain length. On the other hand, ina finite perturbation densityp(t) ont andL is described by the scaling relation
eventually dies in a finite chain. The reason why the synchrof1 4]

nized regime can nevertheless be considered unstable is that

the average life time of the perturbation diverges exponen- t

tially with the chain length. This is a typical property of p(t)ZL‘szg(—Z), (12
systems in the DP universality class, and it can be traced L

back to the peculiar nature of the “square root” noise ampli-yhere js the so-called dynamical exponent accounting for

tude in E_q._(6) [18]. . . . . the dependence of the average timeeeded folp to vanish
A preliminary numerical analysis of the critical properties , .t the system sizé [19];

of the RM model forA=0 and 0.01 has already been pub-

lished in Ref.[15]. Here we both perform more accurate ~L% a=a,. (13
simulations and extend the previous study to larger values

(A=0.1and 0.2in order to find a signature of the change of Since for small¢=t/L? the scaling function behaves as
critical behavior. In all cases is chosen to be the control g(6)~ 6~ °, the exponens turns out to describe the power-
parameter, while the averagéaver different noise realiza- law decay ofp(t):

tions) densityp(t) of unsynchronized sites will be the order _s

parameter. The definition g requires one to fix a small p()~t"% a=ac. (14

thresholdW to discriminate between synchronizge(x,1) Finally, the exponenB characterizes the scaling behavior of

<W] and unsynchronizefw(x,t)>W] sites. In prlnmple, the saturated density of active siteg as a function of the

p(t) depends oV, both because the perturbation reaCheSdistance from the critical value:

different thresholds at different times and resurgencies can

occur. A numerical analysis, however, indicates that, in prac- po~(a—ay)?, a>a.. (15)

tice, if W is chosen on the order or smaller than™¥ho

appreciable differences are observed. We shall come back ta analogy with usual nonequilibrium phase transitianss,

this problem in Sec. IV, to provide a more sound justificationand 8 are expected to characterize all critical properties of

for the adopted procedure. the synchronization transition as well. In fact, simple dimen-
In order to test the relationship between synchronizatiorsional arguments show that the exponents ruling the power

046217-4



RELATIONSHIP BETWEEN DIRECTED PERCOLATION . .. PHYSICAL REVIEW &7, 046217 (2003

TABLE |. Numerical results concerning tte §, and 8 exponents of the RM model are compared with
the best available estimates. Values &grindicate our best estimates of the critical point. Errors have been
estimated as the maximum deviation from linearity in the log-log plot that it is used to extract the scaling law.
The asterisk indicates a value compatible with the theoretically predictedzerie5 (see the text

A=0 A=0.01 A=0.1 A=0.2 DP MN
z 1.56=0.06 1.58£0.02 1.54-0.06 1.5* 1.580745% 106 1.53£0.07
1) 0.155£0.005 0.150.01 0.1590.002 1.2:0.1 0.1594646x10 %  1.10+0.05
B 0.24+0.02 0.2720.01 0.272:0.01 1.8£0.1 0.276486:6x10 %  1.70+0.05
ac 0.6083 . .. 0.6®. .. 0.58%. .. 0.56@ ...
law divergence exhibited by space- and time-correlation 1
functions(while approaching the critical poinare linked to &' (x)= W[gv(xvt)_<§v>]! (18
the previous ones by the standard relations
where
V==, Vi=ﬂ. (16)
6 z 1-v(x,t), w.p. p=av(x,t)
& (X t)= (19

a—1lov(xt), wp. 1-
Some of the scaling behaviors have been plotted in Fig. 2 to ( Jo(xt) P P

show the quality of the results, while a complete summary o
the exponents are reported in Table |, together with the best
known estimates for the DR20] and the MN[21] class. (A 1\ 22

The dynamical exponent has been estimated bg/ averaging (6)=(2a=Dv—a’v?, 20
the behavior of relatively small systenisom L=2" to L
=219 over a large number of noise realizatiofwf order 0%(v) =(&)—(&,)?=a—3a%?+3a%°
10%). In order to minimize finite-size effects, the exponefits —5a%y?. (21)
and B have been estimated from the time evolution of a
single system of sizé =2, relying on the large size 0 |t we now introduce the coarse grained varialiéx,t)
reduce statistical fluctuations. In the MN context we have not_ w(x,t) (where the bar denotes an average over a suitable
been able to estimatethrough the measure of the averageS ace,-time cal we have that u(x.0)=p(xt)
synchronization time, but we verified, through finite size->P A . AL =P
scaling[Eq. (12)], that the value of the dynamical exponent +(e/2)V7p(x.1) so that Eq(17) yields
is compatible with the theoretical prediction.

Interestingly, similar results are obtained by adopting a ap(x)=aeV2p(x,t) +(2a=1)p(x,0) ~a%p*(x,t)
different order parameter, i.e., the space averaged difference (ae)?
variable w(t) =(w(x,t)),. Also in this case, botHw(t)) +aZep(x,t)V2p(x,t)+ y [VZp(x,1)]?
(where(-) denotes an ensemble averpgad the absorption
time 7;, defined as the average time required ¥aft) to £
become smaller than some thresh@itiare found to follow +g| p(X, 1)+ EVZP(XI) n(X.t), (22
the same critical scaling laws. The application of coarse-

graining suggests that the space average IS the natural Ohere, according to the central limit theor¢g®], the coarse
der parameter in the context of both equilibrium and non

ilibri itical t " ‘grained noise termy(x,t) is Gaussian and correlated in
equilibrium criical transitions. time and space. According to standard renormalization-group
arguments[14,12,13 the terms of order\2p)? andpV?p

IIl. FROM THE RM MODEL TO THE DP FIELD can be shown to be irrelevant, as well as the terms of order
EQUATION higher than or equal tp and \'VZp appearing in the noise

mplitudeg[ p+ (£/2)V?p].
From the definition(21) of g and after discarding the ir-
relevant terms, the above equation reduces to

In this section we investigate the connection between thé'
RM model and the DP field equatid6). Let us first consider
the simple cas& =0 that corresponds to a discontinuous but
otherwise uniformly contracting local map. E@.0) can be dup(x ) =asV2p(x,t) + (2a— 1) p(x,t) — a2p?(x,t)
recast as

+vap(x,t) n(x,t), (23
w(x,t+1)=2av(x,t)—a2?(x,t)+g(v) & (x,t), (17)
which is nothing but Eq(6), thus confirming the numerical
where ¢’ (x,t) is a zero-averagé-correlated noise with unit indications that the synchronization transition in discontinu-
variance. In fact, ous CMLs can be traced back to a DP nonequilibrium phase
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transition. However, since the derivation of the DP Langevinvious case, we find that Eq23) still holds whenp(x,t)
equation is partly based on heuristic arguments, a more rig=A, while for p(x,t)<A it must be replaced by the equa-
orous analysis is still needed. tion
Let us now turn our attention to the more general case
A>0, which corresponds to a continuous local mapping. p(
According to Eq.(10), we now have to deal with two differ-

ae
Xt == (2-al)V2p(x,t) + (2a~1-a%A)p(x,1)

ent kinds of noise, depending whethg(x,t)>A or v(X,t) Fh(w)n(x,0), (24)
<A. By repeating the same formal derivation as in the prewhere
|
a
h(w)=p(x,t) \/K—3a2+(2+5A)a3—(3+ 2A)Aa*+(1—-A?)Aad. (25)
|

Accordingly, in Eq.(24), the noise amplitude is proportional 1L 1fa
to the field itself, so that one should be led to the naive [lw(t)]|q= T E wil(t) (28
conclusion that the DP critical behavior is destroyed as soon =1

asA is finite, or, equivalently, thaany CML system charac- to become smaller than some thresh@ldor the first time.

terized by a continuous local mapping cannot exhibit a DP-At variance with Refs[23,24, we do not care if the evolu-

like synchronization transition. However, the simulations de'tion of the perturbation is non monotonous: as we shall see,

scribed in Sec. Il suggest that DP-like transition can still beIn this context, the analysis does not only remain meaningful
found for small but finite values ak. In the next sections but even mor,e it allows one to identify the reason for the,
we _shall_prgsent theoretical arguments supporting such Nixistence of a,DP-Iike scenario even in the context of the
merical findings. continuous model.

At variance with the standard Lyapunov exponent, the

IV. FIRST PASSAGE TIMES FSLE does depend on the choice of the ngimparticular,

. . . . on theq value in Eq.(28)]. This circumstance is often con-
In this section we clarify the problem of how and when it sidered as a difficulty, hindering a proper definition of FSLE;

is possible _to observe a .DP'"!(.e scenario ir) models like th‘?/ve prefer to see it as an indication of a richer class of phe-
RM one, with no clearly identifiable absorbing state. As al'nomena associated with the evolution of finite-amplitude

ready noted in Rei[lS]_, in any f|n|t_e_ systenof Ien_gth L) . perturbations. It has been noticed in Sec. Il that the “natural”
thgre always exists a finite propabll|ty for a generic configu- rder parameter of the DP transition is the spatial average of
ration to be contrgpte_d .forever,. €., ?bsorbed- A lower boun e state vector. Accordingly, we have decided, in the present
to such a probability i¢in the discontinuous cake context, to fixqg=1 (that corresponds to performing an arith-
metic averageand to drop, for the sake of simplicity, the

% L
dependence oqg.
_ _ n
P_Lll (I=wyah) |, (26 The FSLEA (W) can be introduced by first fixing a se-
quence of decreasing threshoMs, n=0,1,2...,
where W,
W =r, r<l1, (29
Wy = maxw(x,0). (27 n-1
) and by then defining
However, since the null statey(x,t)=0, is reached in an Inr
infinite time, this configuration cannot be attained with per- A(W,) = — , (30)
. ; . . o T(Wh+1) — 7(Wp)
fect accuracy in numerical simulations and one is, in fact,
obliged to fix a small but finite threshold. where the dependence on the “discretizationt lis left im-

The best way we have found to characterize the deperpiicit. In the limit r—1, the definition becomes
dence of the perturbation evolution on its size is through an
indicator closely related to the finite-size Lyapunov exponent
(FSLE) introduced in Ref[23]. With reference to a pertur- A(W)=
bation initially set equal to Tw(x,0)=1, x=1,...L],
we introduce thefirst passage timer,(W), defined as the In the further limit W—0, A(W) reduces to the usual
(ensemblg average time required by thgth norm of the Lyapunov exponent, independently of the adoptegvalue.
state vectom(t), WhenA=0, A=Ina.

dr(w) |1t

d(Inw) (3Y)
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A. Uncoupled limit .
In the uncoupled limite =0, each site converges inde- 3
pendently to the synchronized stdi@s long asa<<1). In
spite of the low dimensionality of the problem, even in this
case, an analytic expression for the FSLE can be obtained
only at the expense of introducing further approximations.

41
We shall see that the resulting expression can be nevertheless 2x10

profitably used even in the coupled regime.
By settingr=a and restricting ourselves to the cade
=0, it easy to showsee the Appendijxthat

T(anl) +1

T(Wn): 1_W 1
n

(32

wherer(Wy) =0, W,=a". By inserting Eq(32) in Eq. (30)
one obtains

AW, = 2, 33
( n)—mna- (33

Equation(32) implies that, forn— o,
7(W,)~n+ng=InW,Ina+n,. (34

By inserting Eq.(34) into Eq. (33) and recalling that\
=Ina (for A=0), we obtain

1-aWw, \
1+anyW,+ (a/N )W, In W,

A(W,)= (39

As we are interested in describing the region whevg
<1, and owing to relative smallness @fa<n;), this equa-
tion can be further simplified to

A(W)= (36)

1+ boW—b,WinW’

0 ;:‘ L 1 L 1 L " 1 " 1 L
0 10 20 30 0 10 20 30

-In W

-InW

FIG. 3. Numerical data for the first passage tifiegt pane) and
the FSLE(right panel at the critical point are fitted with Eq$37)
and (36) (full lines). Circles refer to A=0.01, L=256, a,
=0.6055; and squares tb=0, L=128, anda,=0.6063.

B. General case and scaling arguments

In the coupled case, we have not been able to derive an
analytical expression for the FSLE. Nevertheless, a compari-
son with the numerical results has revealed that Bf.and
(37) describe in a reasonable way the dependence afd 7
on W even in the continuous model. However, whilestill
denotes the standard Lyapunov exponent of the process and
can thus be computed independently, nbyy b, andb,
have to be determined by fitting the numerical data. We have
also preferred to keep the term proportionabtp(relevant
only for relatively largeW values, since its presence guar-
antees a much better reproduction of the numerical data. In
Fig. 3(@), we see that Eq.37) provides a good parametriza-
tion of the numerically determined-values over a wide
range of thresholds, both in the discontinuous and continuous
models(see the solid curvesin panel(b) we notice that,
although the theoretical expressi86) does not provide an

where we have also dropped the unnecessary dependence&jually good description of the FSLE, it is nevertheless able
the indexn. In theW—0 limit, the leading correction to the  to pinpoint the crossover towards the small-amplitude behav-
standard Lyapunov exponent is provided by the term proporior of the perturbation. We will see that the possibility of

tional to b;. From the structure of Eq36), it is natural to
interpret the inverse df; as the critical threshol@/, , below

identifing the largest scal@efined by 14,) over which the
linearized dynamicg&described by the standard Lyapunov ex-

which the dynamics of the uncoupled system is dominateghonen; sets in represents a crucial point of our analysis.

by the maximum Lyapunov exponent
From Eq.(36) and by integrating Eq(31), it is also pos-

It is now natural to ask to what extent E@7) is able to
account for the scaling behavior in the vicinity of the transi-

sible to derive an analytic expression for the first passaggon. By replacingp with W in Eq. (12) andt with the first

time 7(W),

(W)= f A(W)~Ld(In W)

1
wx[an‘i‘(b0+bl)W_b1W|nW]+b2, (37)

passage time, one expects that, at criticality,

W=L"%g(t/L?). (39
Inversion of this equation leads to
(W) =L%g~{(WL%). (39)

whereb, is the integration constant. In principle, one could Before mutually comparing the two expressiof®) and

imagine of determiningo, by imposing 7(1)=b,—bq/\
equal to 0, since the evolution starts precisely fra1.

(39), it should be first stressed that they have been introduced
to address different questions. On the one hand,(&g.is

However, we cannot expect our perturbative formula to dean approximate expression introduced to account for the
scribe correctly the initial part of the contraction process.crossover towards thé/ range where the dynamics is con-

Therefore,b, must be determined independently.

trolled by linear mechanisms and no scaling behavior should
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L (W,~L"?. In a model like the cellular automaton con-
sidered by Domany and Kinz¢lL6], absorption in a finite
system occurs when all sites collapse onto the absorbing
state: this means that the minimal meaningful density that
can be considered is,,=1/L. In the present contexiV,
plays the role ofp,,: below W, the critical behavior is
dominated by the linearly stable dynamics. The difference
between the two systems lies in the scaling dependence of
the maximal resolution oh. SinceW, decreases faster than
1/L this means that, e.g., the scaling rangeMi@ris wider in
the present model than in finite-state systems.

Finally, we comment about the reason why the range of
validity of the linear stability analysis can eventually vanish

even in models like the continuous RM, where every pertur-
FIG. 4. Finite-size scaling behavior at the critical points of both Pation locally smaller tham\ should behave linearly. The

b, andb, for A=0 anda,=0.6063(left pane} andA=0.01 and '€ason is that(W) is defined as the average first-passage
a,=0.6055(right pane). The dashed lines indicate the best power time: even if the perturbation is homogeneously small, ig
law fit. Left: b, (circles scales as.>7® while b, (triangles scales ~ Sufficiently large some occasional amplification may occur
asL'%® Right: b, (squares scales ad.*®2 while b, (diamondy  and drive, on the average, the system out of the linear region.
scales a$. 1%, It is only belowW, that such sporadic resurgencies are suf-
ficiently rare not to modify the stable linear behavior signifi-
be expected. On the other hand, E89) is a rigorous but cantly.
implicit statement about the scaling region only.
Compatibility between Eqs(37) and (39) requires a
proper dependence bf, b;, andb, on the systems size,
namely,

V. CONCLUSIONS AND OPEN PROBLEMS

In this paper we have expounded a partially rigorous ar-
gument to show why the synchronization transition in spa-

bo=—N[Dg—D1(1+ 5zInL)JLAL+9), (40)  tially extended systems may belong to the DP universality

class. Although our theoretical considerations are restricted

b= — b L2+ (41) to the disconti_nuous RM model, a scaling arjglysis of the
' first-passage time(W) suggests that the transition belongs

B to the DP class also in a finite parameter region of the con-
by =b,L" (42 tinuous model. Since direct numerical simulations in the

more physical class of CMLs have been basically restricted
to discontinuous maps, we find it wise to test the validity of
our conclusions also in the context of continuous, though
highly-nonlinear maps. Accordingly, we have considered two
lattices of maps coupled as in E@®); the local map is cho-
sen similar to those defined by E{,), namely,

whereb,, b;, andb, are suitable positive constants. By
inserting Eq.(42) into Eq. (37), one finds that

InW 7R z6_ T z6 57\ 1L R
(W) = ——— LWL~ B, WL In(WL>) +b,],

(43

X/ozl, O$X<al

from which we see that the first term in the r.h.s. is the only

one which does not follow the required scaling 1&89). In 1-(X—ay)(l-az)lay,

fact, (INnW)/\, accounts for the linearly stable behavior in a agt ay(X—ay— ay), g+ ar<x<l1,

regime where a finite-state mod@aluch as, e.g., the famous (44)

Domany-Kinzel mode[16]) would be otherwise character-

ized by a perfect absorptiaavhen a configuration of all 0’'s  with a;=1/2.7, #3=0.07, anda,=0.1. The reason for this

is attainedl. choice is that in Ref[25] it has been shown that in such a
In order to test the correctness of the whole picture, wanodel (for the same parameter values amg<0.013[26])

have studied the dependencelafandb, on L. In Fig. 4, nonlinear effects prevail over linear ones. In fact, it was ob-

their behavior is plotted at criticality for the discontinuous served that the propagation velocity of finite-amplitude

and the continuous model: both quantities show a googberturbationgsee Eq.(11)] is larger than the propagation

agreement with the power law divergence predicted by Eqvelocity v, of infinitesimal perturbatior{for a definition of

(42) [z~1.58 andz(1+ 8)~1.82]. As for the last parameter v, , see Refs[27,28). For instance, for,=4x10 * and

by, given its involved dependence arand the approximate e=2/3, v, =0.4184, while v=0.5805. In this regime,

character of Eq(43), we can only claim that its dependence upon varying the coupling strength synchronization arises

is qualitatively consistent with the theoretical prediction.through a continuous phase transition accompanied by a

One of the most important results of our study is the objecnegative transverse Lyapunov exponent and a vanisihing

tive identification of a threshol®V.=1//b,|, below which  at the critical pointor,=0.177% . . . . As can beappreciated

linear stability analysis holds and its scaling dependence om Fig. 5, where we have plotted the space averaged differ-
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107 . . . . . Finally, since it is known that finite-size Lyapunov expo-

i ] nents do depend on the norm, it might be worth considering
g values different from 1, in order to check to what extent the
universality of the transition is preserved when different av-
eraging procedures are adopted to assess the amplitude of the
global perturbation. In particular, sincg=~ (corresponding
to the maximum normtakes care only of the extreme fluc-
tuations of a perturbation field, it is not totally obvious that
the behavior of the corresponding first passage time follows
exactly the above described scenario.

<w(t)>[

10° ¢+ 10
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) ) ) APPENDIX: FIRST PASSAGE TIMES IN THE
ence variablew(t) versus time for different values of the DISCONTINUOUS UNCOUPLED RM MODEL

control parameter, the critical decay rate &=0.158
+0.01, fully compatible with the expectation for a DP tran- I this appendix we report the analytical calculation of the
sition. We are thus reinforced in the conjecture that the DHirst passage time whesn=0 andA=0, to prove Eq(32).
scenario is robust and not just restricted to the highly nongeSince W,=a" and w(0)=1, we have alsor(W;)=0. In
neric case of discontinuous maps. order to compute the first passage time through a threshold
The crucial difficulty to determine the universality class Wy, We need to know the average time needed to pass from
for the synchronization transition is that the order paramete¥V,-1 to W,,. With a probability I-aW,_, this can occur
(the difference fieltd can be arbitrarily small. This casts in one time step, if the amplification mechanism is not acti-
doubts on the very definition of the zero-difference field as a/ated and the synchronization error is contracted by a factor
truly absorbing state. In fact, in a previous pafis], it was @ On the other hand, with probabiligW, 1, the amplifi-
speculated that the DP scaling behavior might be restricted teation resets the state variable to the value 1. In this case, one
a finite range. The analysis carried on in this paper clarifie$las to wait for the synchronization error to shrink back to the
that the synchronization transition genuinely belongs to théth threshold, which, by definition, occurs in an average time
DP universality class: this has been understood from an ob#s,—;. At this point, the error can either shrink W, or be
jective identification of the threshold/,, below which the reset again to 1, to start again the process. Altogether,
dynamics is really controlled by linear mechanisms and thus
corresponds to an effective contraction. The parametrization

of #(W) introduced to describe the single-map case has 7(Wn)= T(Wn_1) +1X(1=aWy_y)+(2+7(Wy—y)

greatly helped to unveil the overall scenario since it has clari- X (1—aW,_p)aW,_;+(3+27(W,_,)
fied that the basic effect of the diffusive coupling is to renor- 5
malize the parameters definingW) [see Eq.(37)]. Here, X(1—-aWp-1)(@Wh-1)“+ ...

the parameter valud€ particularW,) have been inferred by

fitting the numerical data; in the future, it will be desirable to =7(Wn-2) +(1-aWh-y)

find an analytic, though approximate, way of performing the * .

renormalization. X {[1+i+i7(W,_1)](@aW, 1)}
Once we have concluded that synchronization arises 1=0

through a DP-like transition in a finite parameter region, it is =7(W,_)+(1—a"

natural to ask how this scenario crosses over to the standard

transition characterized by a vanishing of the Lyapunov ex- -~ , ~ ,

ponent and by the KPZ critical exponents. With reference to X1 2 (@) H[n( Wy +112 i@, (A1)
Fig. 1, this question amounts to investigating the region =0 =0

around the multicritical poinA .. A purely numerical analy- . . .

sis of this region is not feasible in this model, as it would SUMMINg up the series, one obtains

require considering systems too large to be effectively
handled. We are currently studying this problem in a differ- (W )41
ent context, where preliminary studies indicate the possibil- (W)= S (A2)
ity to draw quantitative conclusions. 1-a"
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