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Discrete Synaptic Events Induce Global Oscillations in Balanced Neural Networks
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Despite the fact that neural dynamics is triggered by discrete synaptic events, the neural response is
usually obtained within the diffusion approximation representing the synaptic inputs as Gaussian noise. We
derive a mean-field formalism encompassing synaptic shot noise for sparse balanced neural networks. For
low (high) excitatory drive (inhibitory feedback) global oscillations emerge via continuous or hysteretic
transitions, correctly predicted by our approach, but not from the diffusion approximation. At sufficiently
low in-degrees the nature of these global oscillations changes from drift driven to cluster activation.
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Introduction—In several contexts the discrete nature of
stochastic events should be taken into account to correctly
predict the system dynamics. A typical example is repre-
sented by shot noise, which is conveyed by pulses and is
therefore discontinous, at variance with white noise, which
is associated to thermal fluctuations and is continuous [1].
The inclusion of shot noise is fundamental to fully
characterize the emergent phenomena in many fields of
physics ranging from mesoscopic conductors [2] to driven
granular gases [3].

The discrete nature of the events is an innate character-
istic also of the neural dynamics, where a neuron receives
inputs from other neurons via electrical pulses, that
manifest as postsynaptic potentials (PSPs). The PSPs
stimulating a neuron in the cortex are usually assumed
to be uncorrelated with small amplitudes and high arrival
rates. Therefore, the mean-field (MF) neural dynamics has
been examined within the framework of the diffusion
approximation (DA) [4,5] by treating synaptic inputs as
a continuous Gaussian process.

However, several experiments have shown that rare PSPs
of large amplitude can have a fundamental impact on the
cortical activity [6,7] and that synaptic weight distributions
display a long tail toward large amplitudes [8-10].
Furthermore, networks of inhibitory neurons with low
connectivity (in-degree K ~ 30-80) have been identified
in the cat visual cortex [11] and in the rat hippocampus [12],
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where they are believed to be at the origin of global
oscillations (GOs) in the y band [13]. Moreover, the cortical
connectivity is definitely more sparse in primates than in
rodents as recently shown [14].

These experimental evidences call for the development of
a MF formalism able to incorporate the effect of discrete
synaptic events for diluted random neural networks.
Population based formalisms, taking into account synaptic
shot noise, have been previously developed for integrate-
and-fire models [15-18]. However, such approaches are
limited to stationary solutions and cannot describe the
emergence of oscillatory behaviors.

In this Letter, we introduce a complete mean-field (CMF)
approach for balanced neural networks [19,20], taking into
account the sparseness of the network and the discreteness
of the synaptic pulses, able to reproduce all the possible
dynamical states. For simplicity, but without any loss of
generality, we consider inhibitory balanced networks sub-
ject to an external excitatory drive [21-24].

Firstly, we illustrate that the DA fails in reproducing
oscillatory dynamics in spiking neural networks for suffi-
ciently low excitatory drive (high inhibitory feedback) by
considering conductance- and current-based models.
However, this regime is correctly reproduced by an MF
approach whenever the sparse and discrete synaptic inputs
are taken into account. Further, for quadratic integrate-and-
fire (QIF) [25,26] networks via the CMF approach we
obtain a complete bifurcation diagram encompassing asyn-
chronous regimes (ARs) and oscillatory regimes (ORs),
where individual neurons spike irregularly. The CMF
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reveals subcritical and supercritical Hopf bifurcations from
the AR to the OR as well as a region of coexistence of these
two phases not captured by the DA [27]. Event-driven
simulations of large QIF networks confirm the scenario
predicted within the CMF theory. Furthermore, we show
that the GOs, induced by discrete synaptic events can
emerge due to two different mechanisms: cluster activation
at sufficiently small K and drift driven at larger K.

Balanced network—As a prototype of a dynamically
balanced system we consider a sparse inhibitory network
made of N pulse-coupled neurons whose membrane
potentials evolve according to the equations

N
bi(t):F(Ui)+I_gzzeji5(l—t§-n)), (1)
j=1 n

where I represents an external dc current, g the synaptic
coupling, and the last term the inhibitory synaptic current.
The latter is the linear superposition of instantaneous

inhibitory PSPs emitted at times tﬁ”) from the presynaptic
neurons connected to neuron i. €;; is the adjacency matrix
of the random network with entries 1 (0) if the connection
from node j to i exists (or not), and we assume the same in-
degree K =) ;e; for all neurons. We consider two
paradigmatic models of spiking neuron: the QIF with
F(v) = v? [23-25,28,29], which is a current-based model
of class I excitability, and the Morris-Lecar (ML) [30], a
conductance-based model representing a class II excitable
membrane [31]. The dc current and the synaptic coupling
are assumed to scale as [ = io\/f and g:go/\/f as
usually done in order to ensure a self-sustained balanced
state for sufficiently large K [19,22-24,39.40].

Mean-field description—For a sufficiently sparse net-
work with K < N, the spike trains emitted by K presy-
naptic neurons can be assumed to be uncorrelated and
Poissonian [20,21]; therefore the MF dynamics of a generic
neuron can be represented in terms of the following
Langevin equation:

V(1) = F(V) +1-gS(1), (2)

where S(f) is a Poissonian train of & spikes with rate
R(#) = Ku(t), and uv(t) the population firing rate self-
consistently estimated. Usually the Poissonian spike
trains are approximated within the DA [4,5] as S(7) =
R(1) + \/R(1)&(1), where &(1) is a Gaussian white noise
term. However, the DA can fail in reproducing the neural
dynamics. Indeed, as shown in Fig. 1(a) for a sparse ML
network, by employing the DA in (2) one obtains an
asynchronous dynamics (blue curve), while the network
evolution, characterized by GOs with frequency f. =~
18 Hz (black dots), can be recovered only by explicitly
taking into account the Poissonian spike trains in (2)
(red line).
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FIG. 1. Population firing rate v(¢) versus time for ML (a) and

QIF (b) models. Black circles refer to network simulations, blue
(red) solid line to diffusive (shot-noise) Langevin results obtained
by integrating Eq. (2). In (b) magenta (green) dashed line denotes
the DA (shot-noise) MF approximation resulting from the
integration of Eq. (3) [Eq. (4)] for the QIF model; more details
in [31]. The parameters for the ML model are K = 20, i, = 0.1,
go =5, and network size N = 20000. Other parameters are
reported in the Supplemental Material [31]. For the QIF model
K =200, iy =0.16, gy = 4, and N = 80000 [41].

In the MF framework the population dynamics is usually
described in terms of the membrane potential probability
distribution function P(V, t), whose time evolution for the
QIF model is given [according to (2)] by the continuity
equation,

o,P(V,t)+ ay[(V2+1)P(V,1)] = R(t)AP(V,T), (3)

with boundary condition limy_ V?P(V,t) = v(t) and
where AP(V,T)=[P(V',1)=P(V,t)] with VT =V 4 g.
By assuming that g is sufficiently small we can expand the
latter term as AP(V, 1) = >°%_,(g”/p!)oyP(V,1), and by
limiting to the first two terms in this expansion we recover
the DA corresponding to the following Fokker-Planck
equation (FPE) [42]:

,P(V,t)+ 0, {[V*+A()|P(V,t)} =D(t)o3 P(V,1), (4)

where A(t) = VK[iy — gov(t)] and D(t) = g3v()/2. The
DA can give incorrect predictions for the QIF model, as
well. Indeed, as shown in Fig. 1(b) the network dynamics is
oscillatory with f. ~ 40 Hz (black circles). This evolution
is correctly captured by the MF equation (3) (green dashed
line) and by the Langevin equation (2) driven by shot noise
(red solid line). On the contrary, the FPE (4) (dashed
magenta line) and the diffusive Langevin formulation (blue
solid line) converge to a stable fixed point corresponding to
asynchronous dynamics. Therefore, to reproduce the col-
lective dynamical regimes observable in the network it is
necessary to consider the continuity equation (3). In this
respect we have developed a CMF formalism encompass-
ing synaptic shot noise to identify the various possible
regimes displayed by (3) and to analyze their stability.
The QIF model evolution can be transformed into that of
a phase oscillator, the so-called @ neuron [25,32], by
introducing the phase variable § = 2 arctan V. However,
this transformation has the drawback that even uncoupled
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neurons are associated to a nonflat distribution of the
phases, thus rendering it quite difficult to distinguish
asynchronous from partially synchronized regimes [43,44].
A more appropriate phase transformation to analyze
the synchronization phenomena is the following,
w = 2arctan (V/+/I) € [~ x], which leads to a uniformly
rotating phase in the absence of incoming pulses for
suprathreshold neurons with 7 > 0 [31].

By considering the probability distribution of the
phases w(y,t) = P(V,t)(I + V?)/(2V/1), Eq. (3) can be
rewritten in terms of the so-called Kuramoto-Daido order
parameters z, [33,34] by expanding in Fourier space the
distribution as w(y,1) = (2z) "' > ® _z,e”™, with zo=1
and z_, = z,. After laborious but straightforward calcu-
lations, one obtains the following evolution equations,

+0o0
by = 20V Iy 4 K|S Ian(@)zn =), 6)
m=0

where n = 1,2,3, ..., a = g/VI = g/ (\/ipK*'*), and the
explicit expressions for 1, (a) are reported in [31].

The firing rate can be self-consistently determined by the
flux at the firing threshold limy_,o, V2P(V,t) =2/Iw(x,1),
as follows:

v="2VIw(z1) = gRe<1 + 2i(—1)k2k>. (6)
=1

The dynamics of the system (5) and (6) is controlled by
only two parameters: K and a. Thus, we can limit to derive
a bidimensional phase diagram in the plane (iy/g3, K), that
will comprehensively cover the entire diversity of the
macroscopic regimes observable in the network. In par-
ticular, we have estimated the stationary solutions of
Egs. (5) and (6) by truncating the Fourier expansion
in (5) to M > 100 modes in order to guarantee a numerical
accuracy of O(107'2) for all the parameter values. The
linear stability of the asynchronous state joined to the
derivation of the corresponding amplitude equations (via a
weakly nonlinear approach) has allowed us to identify the
Hopf bifurcation (HB) line where the oscillatory dynamics
emerges together with the supercritical or subcritical nature
of the bifurcations (for more details, see Sec. S3 in [31]).
The HB line obtained via the CMF (within the DA) is
reported as an orange (black) line in Fig. 2(a). While the
HBs are always supercritical within the DA, the HBs
induced by the shot noise can be either supercritical (solid
orange line) or subcritical (dashed orange line), thus
allowing for regions where AR and OR coexist; see
Fig. 2(b). A peculiarity of the CMF results is that the
HB line is reentrant; thus, in a certain range of iy/g5 we
have an AR only within a finite interval of in-degrees
and GOs at sufficiently small and large K [as shown in
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FIG. 2. (a) Phase diagram for the QIF network in the plane
(io/g3,K). The black solid line is the supercritical HB line
obtained within the DA, the orange solid (dashed) line is the
supercritical (subcritical) HB line given by the CMF, the symbols
refer to numerical estimations of the HBs and SNBs. The green
(blue) circles denote HBs obtained by performing quasiadiabatic
simulations by varying K (iy) for constant i, (K) values, the
magenta stars indicate SNBs. For more details, see Ref. [31]. (b),
(c) Average order parameter p, versus i, (K) for quasiadiabatic
simulations. Black circles refer to decreasing (increasing) i, (K),
while red circles refer to increasing i;. The blue dashed line in
(b) denotes the subcritical HB given by the CMF, and the magenta
dot-dashed line denotes the numerically estimated SNB. The two
green dashed lines in (c) indicate the HBs given by the CMF. In
the insets in (b) and (c) the population firing rates /() versus time
are reported for the states indicated by the corresponding colored
filled circles. In the insets in (b) the results for the CMF (5) are
also shown as green solid lines. The values of p, in (b) [(c)] refer
to K = 100 (ip = 0.00055) averaged over five network realiza-
tions, with N = 80000, for 30 s following a transient of 20 s. For
all data, gy =1 [41].

Fig. 2(c)]. As explained in the following, these two
oscillatory regimes are due to different mechanisms.

Furthermore, there is a dramatic difference among the
2 MF approaches at small i (large gy): within the DA GOs
are observable only above a critical K diverging to infinity
for iy/g3 — 0, while for the CMF analysis GOs are present
at any K value for iy/g3 < 0.00029.

Network simulations—In order to verify the CMF
predictions we have performed essentially exact numerical
simulations of QIF networks, according to (1), by employ-
ing an event-driven integration scheme [35], which allowed
us to follow the network dynamics for long times, up to
50-100 sec, for system of sizes N = 10000 — 80000 [31].
In particular, to characterize the macroscopic evolution of
the network we measured the indicator introduced in [45]

p = (6%/62)'/2, where 62 = (12) — (v;)* and oy is the
standard deviation of the mean membrane potential
vV =3"¥, v;/N, with = ((-)) denoting an ensemble (a time)

average. A coherent (asynchronous) macroscopic activity is
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characterized by a value of p remaining finite (vanishing as
p « N~'/2) for N = oo [24,46]. The actual value of p is
related to the level of synchronization among the neurons:
perfect synchrony to p = 1.

A finite size analysis of the order parameter p, averaged
over several different network realizations has allowed us to
identify the HBs and the saddle-node bifurcations (SNBs)
of limit cycles displayed in Fig. 2 [31]. In particular, in
Fig. 2(a) green (blue) circles refer to HBs identified via
quasiadiabatic simulations by varying K (i) for constant i,
(K) values, while the magenta stars indicate SNBs.
Numerical simulations are in good agreement with the
CMF results and allowed us also the identification of a
coexistence region for asynchronous and oscillatory col-
lective dynamics. A hysteretic transition from AR to OR
obtained by varying quasiadiabatically i, is displayed in
Fig. 2(b); the coexistence region can be clearly identified
between the subcritical HB (blue dashed line) and the SNB
(magenta dashed line). Two coexisting solutions are
reported in the insets of Fig. 2(b) confirming the good
agrement between CMF (green lines) and the network
simulations (red and black lines). Furthermore, as shown in
Fig. 2(c) for sufficiently small iy/gj values GOs are
observable at small (K <30) and large (K > 200) in-
degrees, while the AR is present only at intermediate in-
degrees (K €[40:180]). The dynamics in these three
intervals is visualized by reporting in the insets of
Fig. 2(c) the firing rates v(¢) at K = 10 (black line), K =
60 (blue line), and K = 210 (green line).

In large part of the phase diagram (namely, for
io/g5 < 0.2), both in the AR and OR we observe an
irregular firing activity of the neurons associated to mean
coefficient of variations CV ~ O(1) [36], as expected in
sparse balanced networks.

Two kinds of GO—As previously mentioned, we can
identify two classes of GOs induced by discrete synaptic
events in the interval iy/g3 € [0.00036:0.00070]. Their
difference is already clear by considering the MF mem-
brane potential evolution V(#) given by the following
zeroth-order Langevin equation for the QIF:

Vo(t) = V3 + VKlig — gov(t)] = V3 + A1), (7)

where current fluctuations have been neglected and v/(z) is
the population firing induced by the shot noise. Whenever
A < 0 (A > 0) the QIF model displays excitable dynamics
(periodic firing) [26]. The GOs reported in the insets of
Fig. 2(c) for K = 10 [K = 210] are characterized by A(¢)
always negative [positive for large part of the oscillation
period] as shown in Fig. 3(a) [Fig. 3(b)] (lower panels).
Therefore, for K = 10 [K = 210] V(¢) displays subthresh-
old oscillations [large excursions from negative to positive
values driven by A(7) > 0] as shown in the upper panel of
Fig. 3(a) [Fig. 3(b)].
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FIG. 3. (a),(b) Lower panels: effective input current A() versus
time. Red lines (black dots) refer to CMF (network simulations)
results. Upper panels: membrane potential evolution in time.
Black lines (other colors) refer to V() (single neuron dynamics).
(c) Frequency of the GOs f. (black circles) versus K. The red
solid line refers to f(). Green vertical dashed lines have the same
meaning as in Fig. 2(c). Data correspond to iy/g3 = 0.00055
(with gy =20), to K=10 (a) and K =210 (b), network
simulations to N = 80000 [41].

As shown in Fig. 2(c), the low (high) in-degree GOs are
characterized by a low (high) level of coherence among the
neurons; this is confirmed by the evolution of the mem-
brane potentials v;(¢) of four generic neurons reported in
Figs. 3(a) and 3(b). In both cases the neurons spike
irregularly [47]; however, for K = 210 the single neurons
v;(t) essentially follow the MF evolution V(¢), while for
K = 10 their dynamics is quite uncorrelated.

These behaviors can be explained by two different
mechanisms once it is noticed that for both cases the
GO frequency f is extremely close to the firing frequency
of an isolated neuron f, = 1/T, = \/I/x; see Fig. 3(c).
This suggests that at a first approximation the GOs are due
to the neurons not receiving any inhibitory PSP from reset
to threshold. For low K, whenever a neuron fires large
amplitude inhibitory PSPs are delivered. These induce a
transient synchronization in the K postsynaptic neurons
and a subgroup, not receiving further PSPs, can eventually
reach threshold together at a time ~7. This transient
synchronizing effect of small clusters of neurons (termed
cluster activation [48]) is at the basis of the GOs observable
for K = 10 in Fig. 2(c). For increasing K, the amplitude of
the PSPs decreases; therefore, above some critical in-
degree (K ~30 in this case) a single inhibitory PSP is
no longer able to induce a sufficiently strong synchronizing
effect on the postsynaptic neurons and the dynamics
becomes asynchronous [as shown in Fig. 2(c)].

For larger K, the postsynaptic neurons receive several
small inhibitory PSPs at each population burst; whenever K
is sufficiently large a non-negligible part of the neurons can
get synchronized by the discharge of inhibitory PSPs. As
shown in Fig. 3(b), the time courses of the membrane
potentials are now extremely coherent by approaching the
threshold, where fluctuations lead to irregular firing of the
neurons. However, a sufficient percentage of neurons drift
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driven is always able to fire together with a period ~T,
giving rise to the GOs.

Conclusions—We have shown that the macroscopic
phase diagram of balanced networks is strongly influenced
by the discreteness and the finite amplitude of PSPs. In
particular, we have developed a CMF formalism by
including Poissonian shot noise which reproduces quite
well the network simulations, at variance with the DA. This
scenario is robust and extends beyond instantaneous
synapses to exponentially decaying PSPs, as shown in
Fig. S4 in [31].

Our analysis of balanced inhibitory networks has revealed
the existence of two kinds of GOs induced by discrete
synaptic events, thus completing the previous scenario based
on the DA [21,27]. Furthermore, we have shown that GOs
can emerge even in extremely sparse inhibitory networks
with frequencies going from 1-2 Hz (6 band) to 100 Hz
(y band), thus providing theoretical support for the suppo-
sition reported in [13] that the y oscillations observed in the
hippocampus are generated by subnetworks of interneurons
with low in-degrees K ~ 30-80 [12].

The CMF approach is valid in sparse networks for
K < N. Whenever K ~ O(N) the correlations among the
spike trains reaching the neuron should be taken into
account, an extension of the CMF in this direction will
be worth future investigations. The effect of finite N
fluctuations has been analyzed in globally coupled QIF
networks [51,52]; it will be interesting to extend such
approach to random networks. Finally, the CMF formalism
can be generalized to neural systems with delay and
synaptic kinetics as shown in Sec. S3.G in [31]; this will
be the subject of future studies.
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