
 

Reduction Methodology for Fluctuation Driven Population Dynamics

Denis S. Goldobin ,1,2 Matteo di Volo,3 and Alessandro Torcini 3,4,5,*

1Institute of Continuous Media Mechanics, Ural Branch of RAS, Acad. Korolev Street 1, 614013 Perm, Russia
2Department of Theoretical Physics, Perm State University, Bukirev Street 15, 614990 Perm, Russia
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Lorentzian distributions have been largely employed in statistical mechanics to obtain exact results for
heterogeneous systems. Analytic continuation of these results is impossible even for slightly deformed
Lorentzian distributions due to the divergence of all the moments (cumulants). We have solved this problem
by introducing a “pseudocumulants” expansion. This allows us to develop a reduction methodology for
heterogeneous spiking neural networks subject to extrinsic and endogenous fluctuations, thus obtaining a
unified mean-field formulation encompassing quenched and dynamical sources of disorder.
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Introduction.—The Lorentzian distribution (LD) is the
second most important stable distribution for statistical
physics (after the Gaussian) [1]. It is expressible in a simple
analytic form: LðyÞ ¼ f½π−1Δ�=½Δ2 þ ðy − y0Þ2�g, where
y0 is the peak location and Δ is the half-width at half-
maximum (HWHM). In particular, for a system with
random heterogeneities distributed according to an LD,
the average observables can be estimated exactly via the
residue theorem [2].
This approach has found a wide application in physics:

from quantum optics, where it was first employed to
account exactly for the presence of heterogeneities in laser
emissions [2,3], to condensed matter, where it was possible
to obtain exact results for the Anderson localization in three
dimensions [4] by assuming an LD for the potential
disorder within the Lloyd model [5]. Furthermore, a
Lorentzian formulation makes it possible to obtain exact
results for the collective dynamics of heterogeneous oscil-
lators in various contexts [6,7]. Moreover, LDs emerge
naturally for the phases of self-sustained oscillators driven
by common noise [8,9].
More recently, the Ott-Antonsen (OA) ansatz [10,11]

yielded closed mean-field (MF) equations for the dynamics
of the synchronization order parameter for globally coupled
phase oscillators on the basis of a wrapped LD of their
phases. The nature of these phase elements can vary from
biological and chemical oscillators [12,13] to super-
conducting Josephson junctions [14,15] and directional
elements like active rotators [16,17] or magnetic
moments [18].
A very important recent achievement has been the

application of the OA ansatz to heterogeneous globally
coupled networks of spiking neurons—specifically,

of quadratic integrate-and-fire (QIF) neurons [19,20]. In
particular, this formulation makes it possible to derive a
closed low-dimensional set of macroscopic equations
describing exactly the evolution of the population firing
rate and of the mean membrane potential [21]. In the very
last years the Montbrió-Pazó-Roxin (MPR) model [21]
is emerging as a representative of a new generation of
neural mass models able to successfully reproduce relevant
features of neural dynamics [22–33].
However, the OA ansatz (as the MPR model) is unable to

capture the role of random fluctuations naturally present in
real systems. In brain circuits, the neurons are sparsely
connected and in vivo the presence of noise is unavoid-
able [34]. These different sources of fluctuations are at the
origin of fundamental aspects of neural dynamics such as
the balance among excitation and inhibition [35,36] and the
emergence of collective behaviors [37]. The inclusion of
these ingredients in MF models has been so far limited to
homogeneous neural populations [38–43]. The main scope
of this Letter is to fill such a gap by developing a unified
MF formalism for heterogeneous noisy neural networks
encompassing quenched and dynamical disorders.
Furthermore, in this Letter we introduce a general

reduction methodology for dealing with deviations from
the LD on the real axis. This approach is based on
the expansion of the characteristic function in terms of
“pseudocumulants,” thus avoiding the divergences related
to the expansion in conventional moments or cumulants.
The implementation and benefits of this formulation are
demonstrated for heterogeneous populations of QIF neu-
rons in the presence of extrinsic and endogenous noise
sources, where the conditions for an LD of the membrane
potentials [21] are violated as in [44,45]. In particular, we
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will derive a hierarchy of low-dimensional MF models for
noisy globally coupled populations and deterministic
sparse random networks, with a particular emphasis on
the emergence of fluctuation driven collective oscillations
(COs). For all these realistic setups, we will show that our
formulation reproduces quantitatively the network dynam-
ics, while the MPR model fails to give even a qualitative
picture.
Heterogeneous populations of QIF neurons.—Let us

consider a globally coupled network of N heterogeneous
QIF neurons, whose membrane potentials fVjg, with
j ¼ 1;…; N, evolve as

_Vj ¼ V2
j þ Ij; Ij ¼ I0 þ ηj þ JjsðtÞ þ σjξjðtÞ; ð1Þ

where I0 is the external dc current, ηj the neural excitability,
and JjsðtÞ the recurrent input due to the neural activity sðtÞ
mediated by the synaptic coupling Jj. Furthermore, each
neuron is subject to an additive Gaussian noise of ampli-
tude σj ¼ σðηj; JjÞ, where hξjðtÞξlðt0Þi ¼ 2δjlδðt − t0Þ and
hξji ¼ 0. The jth neuron emits a spike whenever the
membrane potential Vj reaches þ∞, and it is immediately
reset at −∞ [46]. For instantaneous synapses, in the limit
N → ∞, the activity of the network sðtÞ will coincide with
the population firing rate rðtÞ [21]. Furthermore, we
assume that the parameters ηj (Jj) are distributed according
to an LD gðηÞ [hðJÞ] with median η0 (J0) and HWHM
Δη (ΔJ).
In the thermodynamic limit, the population dynamics

can be characterized in terms of the probability density
function (PDF) wðV; tjxÞ with x ¼ ðη; JÞ, which obeys the
following Fokker-Planck equation (FPE):

∂twðV;tjxÞþ∂V ½ðV2þIxÞwðV;tjxÞ�¼σ2x∂2
VwðV;tjxÞ; ð2Þ

where Ix ≡ I0 þ ηþ JrðtÞ. In [21], the authors made the
ansatz such that, for any initial PDF wðV; 0jxÞ, the solution
of Eq. (2) in the absence of noise converges to an LD
wðV; tjxÞ ¼ ax=fπ½a2x þ ðV − vxÞ2�g, where vx is the mean
membrane potential and rxðtÞ ¼ limV→∞V2wðV; tjxÞ ¼
ðax=πÞ the firing rate for the x subpopulation. This
Lorentzian ansatz has been shown to correspond to the
OA ansatz for phase oscillators [21] and, joined with the
assumption that the parameters η and J are independent and
Lorentzian distributed, leads to the derivation of exact low-
dimensional macroscopic evolution equations for globally
coupled deterministic QIF networks.
Characteristic function and pseudocumulants.—In order

to extend the MPR approach [21] to noisy systems, we
introduce the characteristic function for Vx, i.e., the Fourier
transform of its PDF, namely

F xðkÞ ¼ heikVxi ¼ p:v:
Z þ∞

−∞
eikVxwðVx; tjxÞdVx:

In this framework, the FPE [Eq. (2)] can be rewritten as

∂tF x ¼ ik½IxF x − ∂2
kF x� − σ2xk2F x: ð3Þ

For more details, see [47]. Under the assumption that
F xðk; tÞ is an analytic function of the parameters x, one can
estimate the average characteristic function for the popu-
lation Fðk; tÞ ¼ R

dη
R
dJF xðk; tÞgðηÞhðJÞ and the corres-

ponding FPE via the residue theorem, with the caution that
different contours have to be chosen for positive (upper
half-plane) and negative (lower half-plane) k. Hence, the
FPE is given by

∂tF ¼ ik½H0F − ∂2
kF� − jkjD0F − S20k

2F; ð4Þ

where H0 ¼ I0 þ η0 þ J0r, D0 ¼ Δη þ ΔJr, and S20 ¼
σ2½η0þiΔηsignðkÞ;J0þiΔJsignðkÞ� ¼ N R þ iN I . For the logarithm

of the characteristic function FðkÞ ¼ eΦðkÞ, one obtains the
following evolution equation:

∂tΦ ¼ ik½H0 − ∂2
kΦ − ð∂kΦÞ2� − jkjD0 − S20k

2: ð5Þ

In this context, the Lorentzian ansatz amounts to set
ΦL ¼ ikv − ajkj [51]. By substituting ΦL in Eq. (5) for
S0 ¼ 0, one gets

_v ¼ H0 þ v2 − a2; _a ¼ 2avþD0; ð6Þ

which coincides with the two dimensional MF model found
in [21] with r ¼ a=π.
In order to consider deviations from the LD, we analyze

the following general polynomial form for Φ:

Φ ¼ −ajkj þ ikv −
X∞
n¼2

qnjkjn þ ipnjkjn−1k
n

: ð7Þ

The terms entering in the above expression are dictated by
the symmetry of the characteristic function F xðkÞ for real-
valued Vx, which is invariant for a change of sign of k
joined to the complex conjugation. For this characteristic
function, neither moments nor cumulants can be deter-
mined [48]. Therefore, we will introduce the notion of
“pseudocumulants,” defined as follows:

W1 ≡ a − iv; Wn ≡ qn þ ipn: ð8Þ
By inserting the expansion [Eq. (7)] in Eq. (5), one gets the
evolution equations for the pseudocumulants, namely

_Wm ¼ ðD0 − iH0Þδ1m þ 2ðN R þ iN IÞδ2m

þ im

�
−mWmþ1 þ

Xm
n¼1

WnWmþ1−n

�
; ð9Þ

where for simplicity we assumed k > 0. It can be shown
[47] that the modulus of the pseudocumulants scales as
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jWmj ∝ jS0j2ðm−1Þ with the noise amplitude; therefore, it is
justified to consider an expansion limited to the first two
pseudocumulants. In this case, one obtains the following
MF equations:

_r ¼ ðΔη þ ΔJrþ p2Þ=π þ 2rv; ð10aÞ

_v ¼ I0 þ η0 þ J0r − π2r2 þ v2 þ q2; ð10bÞ

_q2 ¼ 2N R þ 4ðp3 þ q2v − πp2rÞ; ð10cÞ

_p2 ¼ 2N I þ 4ð−q3 þ πq2rþ p2vÞ: ð10dÞ

As we will show in the following, this four dimensional
model (with the simple closure q3 ¼ p3 ¼ 0) is able to
accurately reproduce the macroscopic dynamics of noisy
globally coupled and deterministic sparse QIF networks.
Therefore, the MF model [Eq. (10)] represents an extension
of the MPR model to systems subject to extrinsic and/or
endogenous noise sources.
As shown in [47], the definitions of r¼limV→∞V2wðV;tÞ

and v ¼ p:v:
Rþ∞
−∞ VwðV; tÞdV in terms of wðV; tÞ reported

in [21] for the LD are notmodified by considering corrective
terms fqn; png of any order. Furthermore, q2 (p2) can be
interpreted as an analog of kurtosis (skewness) for a distorted
Gaussian distribution [47].
Globally coupled network with extrinsic noise.—To

show the quality of the MF formulation [Eq. (10)], let
us consider a globally coupled network of QIF neurons,
each subject to an independent additive Gaussian noise
term of amplitude σ (i.e.,N R ¼ σ2,N I ¼ 0). In this setup,
the model [Eq. (10)] is able to reproduce the macroscopic
dynamics of the network in different dynamical regimes
relevant for neural systems.
Let us first consider the asynchronous dynamics, which

corresponds to a fixed point solution ðr̄; v̄; q̄2; p̄2Þ for
Eq. (10). As shown in Figs. 1(a) and 1(b), in the
asynchronous state (AS), the MF model [Eq. (10)] repro-
duces quite well the population firing rate and the mean
membrane potential obtained by the network simulations,
while the deviations from the MPR model (dashed magenta
lines) become appreciable for noise amplitudes σ̃≡
ðσ=σ�Þ ∼Oð1Þ, where σ� represents a reference noise scale
defined in [47]. Furthermore, the corrections q2 and p2

scale as ∝ σ̃2 as expected [see Figs. 1(c) and 1(d)]. The
truncation to the second order of the expansion [Eq. (9)],
which leads to Eq. (10), is largely justified in the
whole range of noise amplitude here considered. Indeed,
as displayed in Fig. 1(e), jW1j ∼Oð10−2Þ and jW2j∼
Oð10−4Þ, while the moduli of the other pseudocumulants
are definitely smaller (for more details, see [47]).
For lower levels of heterogeneity, one can observe the

emergence of noise induced COs. The analysis of the
bifurcation diagram of the MF model [Eq. (10)] in the plane
ðσ̃;ΔJÞ reveals the existence of three dynamical states:

asynchronous, oscillatory, and a regime of coexistence of
the AS and COs. In particular, a large heterogeneity ΔJ
prevents the occurrence of COs, which are instead pro-
moted by strong noise. As shown in Fig. 1(f), the regimes
are delimited by bifurcation lines, that is, COs emerge via
subcritical Hopf bifurcations from the AS (black solid line)
and disappear via a saddle-node bifurcation of limit cycles
(red solid line). The dynamical regimes induced by noise
cannot be captured by the MPR model, which would
predict only the AS corresponding to σ̃ ¼ 0.
Let us focus on a specific cut in the plane ðσ̃;ΔJÞ;

namely, we fix ΔJ ¼ 0.01 [green dashed line in Fig. 1(f)].
In this case, the MF reveals that the AS loses stability in
favor of noise driven COs at σ̃HB ≃ 0.393 due to a
subcritical Hopf bifurcation and that COs can survive
down to σ̃SN ≃ 0.068, where they disappear via a saddle-
node bifurcation. These transitions can be characterized in
terms of the standard deviation Σv of the mean membrane
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FIG. 1. (a)–(e) Asynchronous Dynamics. Stationary values r̄
(a), v̄ (b), p̄2 (c), q̄2 (d), and jWnj (e) versus the rescaled noise
amplitude σ̃ ¼ σ=σ� [47]. (a),(b) Symbols refer to network
simulations with N ¼ 16 000, solid line to the MF model
[Eq. (10)], dashed-dotted (green) lines are the values of r̄ and
v̄ for the MPR model. In (c),(d), the dashed red lines refer to a
quadratic fit to the data. In (e), the symbols from top to bottom
denote jW1j, jW2j, jW3j, and jW4j. Other parameters:
I0 ¼ 0.000 1, J0 ¼ −0.1, ΔJ ¼ 0.1, σ� ¼ 0.004 58. (f),(g) Emer-
gence of COs. (f) Bifurcation diagram in the plane ðσ̃;ΔJÞ: the
magenta (blue) solid line denotes subcritical Hopf bifurcations
from the AS to COs (saddle-node bifurcations of limit cycles).
The horizontal green dashed line corresponds to the case studied
in (g). (g) Standard deviations Σv obtained for quasiadiabatic
variation of σ̃. Lines (symbols) refer to MF (network) simula-
tions: black (red) lines and right (left) triangles are obtained by
increasing (decreasing) σ. Solid (dashed) lines refer to the
pseudocumulant reduction [Eq. (9)] arrested to the second (third)
order. In the inset are reported r and v versus time for σ ¼ 0.143:
dots refer to network simulations with N ¼ 32000 and lines to
MF results. Other parameters: I0 ¼ 0.38, J0 ¼ −6.3, ΔJ ¼ 0.01,
σ� ¼ 0.014, η0 ¼ Δη ¼ 0. Bifurcation lines in (f) have been
obtained by employing the software XPP AUTO [52].
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potential, which is zero (finite) in the AS (CO regime) in
the thermodynamic limit. We report in Fig. 1(g) Σv versus σ̃
as obtained from adiabatic simulations of the MF (solid and
dashed lines) and of the network with N ¼ 64 000 (tri-
angles). Apart from the finite time and size effects that
prevent the vanishing of Σv in the AS, the network
simulations reveal the same dynamical behaviors as the
MF. Furthermore, as shown in the inset of panel (g), the
model [Eq. (10)] is able to accurately reproduce the time
evolution of v and r also during COs for moderate noise
amplitudes (namely, σ̃ ¼ 0.143). However, at larger noise
amplitudes, in order to obtain a good quantitative agree-
ment between MF and network simulations, one should
extend the pseudocumulant reduction [Eq. (9)] to the third
order [dashed lines in panel (g)].
Sparse networks exhibiting endogenous fluctuations.—

Let us now consider a sparse network characterized by
randomly distributed in degrees kj. As shown in [44,53],
the quenched disorder in the synaptic inputs can be
rephrased in terms of heterogeneous synaptic couplings.
In particular, by assuming an LD for the kj with median K
and HWHM Δk ¼ Δ0K, we can hypothesize for the MF
formulation that the neurons are fully coupled but with
Lorentzian distributed couplings Jj ¼ ðJ0kj=KÞ with
median J0 and HWHM ΔJ ¼ jJ0jΔ0. Furthermore, to
evaluate the fluctuations in the synaptic inputs, we can
assume at an MF level that each neuron j receives kj
Poissonian spike trains characterized by a rate r [38]. This
amounts to having an average synaptic input JjrðtÞ with
Gaussian fluctuations of variance σ2j ¼ ½J20kjrðtÞ=2K2�.
Therefore, each neuron j will be subject to a noise of
intensity σ2j ¼ ðjJ0Jjj=2KÞrðtÞ; thus, N R ¼ ðJ20r=2KÞ
and N I ¼ −ðJ20Δ0r=2KÞ ¼ −Δ0N R.
For this random network, we report in Fig. 2(a) a

bifurcation diagram in the plane ðjJ0j; I0Þ estimated for
the MF model [Eq. (10)]. We find the same three dynamical
regimes observed in the globally coupled case but differ-
ently arranged and separated by different bifurcation lines.
In particular, the AS emerges for sufficiently large excita-
tory drive I0, where most neurons are suprathreshold and
the dynamics is essentially mean driven [54]. The coupling
strength jJ0j controls the amplitude of current fluctuations;
indeed, for increasing jJ0j fluctuation, driven COs emerge
via supercritical Hopf bifurcations (black solid line). For
even larger coupling beyond a subcritical Hopf bifurcation
(red solid line), a coexistence among the AS and CO can be
observed. However, the nature of this AS is different
from that at low jJ0j: this is a fluctuation driven regime,
where excitatory drive and recurrent inhibition tend to
balance [35,36].
As shown in Figs. 2(b) and 2(c), network simulations are

in good agreement with the MF predictions for low and
high dc currents, which can be appreciated by comparing
the standard deviations Σv obtained for networks of

different sizes with the findings of the model [Eq. (10)].
Furthermore, at intermediate coupling, the oscillations of r
and v in the network are very well captured by the MF
dynamics [see Figs. 2(d) and (e)]. However, as shown in
panel (b) for I0 ¼ 0.19, the amplitudes of the COs are
slightly overestimated by the MF at sufficiently large
jJ0j > 4.5. No discrepancies are observable in panel
(c) for the same range of jJ0j. As shown in [47], this is
due to the fact that the rescaled noise amplitudes are
definitely smaller in this latter case.
As shown in [44], the MPR model, even with the

inclusion of the quenched disorder due to the hetero-
geneous in degrees, is unable to predict the oscillatory
and coexistence regimes displayed by the sparse inhibitory
network. Therefore, it is fundamental to take in account
corrections to the Lorentzian ansatz due to endogenous
fluctuations. Indeed, as shown in Figs. 2(d) and (e), the
evolution of r and v is clearly guided by that of the
corrective terms p2 and q2 displaying regular oscillations.
Conclusions.—A fundamental aspect that renders the LD

difficult to employ in a perturbative approach is that all
moments and cumulants diverge. However, to cure this
aspect, one can introduce an expansion in “pseudocumu-
lants” of the characteristic function. As we have shown, this
expansion can be fruitfully applied to build in full
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FIG. 2. Sparse Networks. (a) Bifurcation diagram in the plane
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Hopf bifurcations from the AS to COs. The magenta dashed
(green dot-dashed) line indicates the case examined in panel
(b) for I0 ¼ 0.19 [panel (c) for I0 ¼ 0.50]. (b),(c) Σv obtained for
quasiadiabatic variation of jJ0j. Solid line (colored symbols)
refers to MF (network) results: black (red) lines and right (left)
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colors denote different network sizes: namely, N ¼ 10 000
(black), 15 000 (red), and 20 000 (magenta). The values are
averaged over eight random realizations of the network. For J0 ¼
−3.7 and I0 ¼ 0.19, the MF evolution of r (p2) and v (q2) is
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respectively. In (d),(e), the symbols refer to network simulations
with N ¼ 40 000. In all panels, the parameters are K ¼ 4000,
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generality a hierarchy of low-dimensional neural mass
models able to reproduce, with the desired accuracy, firing
rate and mean membrane potential evolutions for hetero-
geneous spiking neural networks in the presence of
extrinsic and intrinsic fluctuations.
One key feature of the MPR formulation, as of our

reduction methodology, is the ability of these MF models to
capture transient synchronization properties and oscillatory
dynamics present in the spiking networks [22,26,27,32] but
that are lost in usual rate models, e.g., Wilson-Cowan [55].
However, our MF formulation can encompass further
fundamental aspects of brain circuits beyond heterogeneity
as sparseness in the synaptic connections and background
noise [34] not envisioned in theMPRmodel. Therefore, our
mass model is able to reproduce spiking network dynamics
induced by various noise sources, which cannot be pre-
dicted within the MPR framework developed for globally
coupled deterministic populations.
MF formulations for heterogeneous networks subject to

extrinsic noise have been examined in the context of the
circular cumulants expansion [43,45,56,57]. However, any
finite truncation of this expansion leads to a divergence of
the population firing rate [57]. Our formulation does not
suffer from these strong limitations and even the definitions
of the macroscopic observables are not modified by
considering higher order corrective terms [47].
In order to clarify the limits of applicability of our

formulation, we have introduced in [47] a reference noise
scale up to which a good quantitative agreement between
network simulations and the MF model [Eq. (10)] should
be expected. Furthermore, preliminary results suggest that
our approach can be extended also to noisy homogeneous
networks displaying sustained firing activities [47].
Potentially, the introduced framework can be fruitfully

applied to generalize previous results obtained for many
body systems with LD heterogeneities [2,5,58].
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