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Abstract
A regime of coexistence of asynchronous and clustered dynamics is analysed for globally coupled
homogeneous and heterogeneous inhibitory networks of quadratic integrate-and-fire (QIF)
neurons subject to Gaussian noise. The analysis is based on accurate extensive simulations and
complemented by a mean-field description in terms of low-dimensional next generation neural
mass models for heterogeneously distributed synaptic couplings. The asynchronous regime is
observable at low noise and becomes unstable via a sub-critical Hopf bifurcation at sufficiently
large noise. This gives rise to a coexistence region between the asynchronous and the clustered
regime. The clustered phase is characterised by population bursts in the γ-range (30–120 Hz),
where neurons are split in two equally populated clusters firing in alternation. This clustering
behaviour is quite peculiar: despite the global activity being essentially periodic, single neurons
display switching between the two clusters due to heterogeneity and/or noise.

1. Introduction

Since the pioneering studies of Winfree synchronisation phenomena in biological populations are usually
addressed in the context of coupled oscillators [1]: synchronisation is associated to the emergence of an
unique group of oscillators displaying a coherent dynamics [2]. Besides this phenomenology, one can
observe also clustering phenomena, where the population breaks down in groups of elements displaying
some sort of coherent evolution [3].

A paradigmatic complex system where these phenomena have been largely investigated are brain circuits.
In this framework synchronisation among a group of neurons can induce the emergences of collective
oscillations (COs) [4, 5]. In this context, the existence of inhibitory interactions is fundamental in order to
promote fast collective oscillatory behaviours in several areas of the brain, in particular in the hippocampus
and the neocortex [6, 7].

In real systems, and in particular in brain circuits, noise is unavoidable, therefore many analyses have
been devoted to its influence on coherent dynamics. In particular, a common noise source can induce
synchronisation and clustering phenomena, as shown for globally coupled or even uncoupled limit-cycle
oscillators [8–11]. This peculiar synchronisation induced by common noise is referred in neurophysiology as
‘reliability’ [12].

But also for the case of independent noise, clustering phenomena have been reported for heterogenous
excitable systems with random coupling strengths for sufficiently broad distributions of the couplings [13].
Furthermore, clustering instabilities have been shown to affect the synchronised regime in homogeneous
inhibitory networks of spiking neurons subject to additive noise [5].
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In this paper, we analyse in details the role of noise in promoting a regime of coexistence among clustered
and asynchronous dynamics in spiking neural networks. This is a particularly relevant regime, since brain
dynamics in the awake state is typically characterised by an asynchronous activity of the neurons. However,
oscillations in the γ-range (30–120 Hz) can occasionally emerge in relation with information processing,
behaviour and learning [14–17]. In particular, we consider an inhibitory spiking neural network of quadratic
integrate-and-fire (QIF) neurons [18] subject to Gaussian noise. The QIF model is quite general, since it
represents the normal form describing the dynamics of all class I neurons in proximity to a saddle-node on a
limit cycle bifurcation [19]. Furthermore, for heterogenous QIF networks exact low-dimensional mean-field
(neural mass) models can be derived in terms of experimentally measurable quantities such as the
population firing rate and the average membrane potential [20]. Recently, this approach has been extended
to encompass extrinsic and endogenous sources of fluctuations (noise) leading to a hierarchy of
low-dimensional neural mass models [21]. For his innovation with respect to classical neural mass models
(e.g. the Wilson–Cowan one) this class of mean-field models has been termed next generation neural mass
models (for the many possible applications in neural dynamics see [22]).

We will combine this mean-field analysis with accurate numerical simulations [23] to characterise at a
macroscopic and microscopic level the coexisting dynamical regimes, as well as the stability of the
asynchronous regime and the bifurcations associated to the emergence of the clustered state. To be more
specific, the paper is organised as follows. Section 2 is devoted to the introduction of the QIF network model
and the corresponding mean-field reduction methodology. The macroscopic and microscopic indicators
employed to characterise the coherence and regularity of the neuronal dynamics are presented in section 2.3
together with a new stability criterion for the asynchronous state in finite networks inspired by the basin
stability analysis [24]. The linear stability of the asynchronous solution of the neural mass models is
analytically evaluated for Gaussian noise in section 3 and for Lorentzian noise in appendix A. The
asynchronous and clustered dynamics are examined in details for heterogenous synaptic couplings in
section 4.1 by combining accurate network simulations and neural mass results. Spectral analysis of the
collective oscillations is reported in section 4.2 and a brief summary of the obtained results can be found in
section 5. Finally, appendix B is devoted to the investigation of the network dynamics for homogenous
synaptic couplings, appendix C reports details on the numerical simulations and in appendix D is discussed a
possible criterion to select the optimal integration time step in noisy systems.

2. Models and indicators

2.1. Network model
We consider an inhibitory population of N globally coupled QIF neurons [25], whose membrane potential
evolution is described by the following set of equations

V̇i = V2
i + ηi +

Ji
N

N∑
j=1

∑
n

δ
(
t− t(n)j

)
+
√
2σξi (t) i = 1, . . . ,N (1)

where Vi is the membrane potential of the ith neuron, Ji < 0 the inhibitory synaptic coupling strength and ηi
the neuronal excitability. Whenever a membrane potential Vj reaches infinity a spike is emitted and Vj is reset

to−∞. The nth spike-time of neuron j is denoted by t(n)j .
Each neuron is subject to a common synaptic current Ji s(t), where

s(t) =
1

N

N∑
j=1

∑
n

δ
(
t− t(n)j

)
(2)

represents the activity of the network, as well as to an independent noise term of amplitude
√
2σ, where ξi(t)

is a random Gaussian variable with
⟨
ξi(t)ξj(0)

⟩
= δijδ(t).

In the absence of synaptic couplings and of external noise, a QIF neuron displays excitable dynamics for
ηi < 0, while it behaves as an oscillator with period Ti = π/

√
ηi for positive ηi. For sake of simplicity we will

assume homogenous excitabilities, by fixing ηi = η0 = 4.2, thus all the uncoupled neurons will be
supra-threshold.

In the following we will consider either heterogeneous quenched random couplings following a
Lorentzian distribution (LD)

h(Ji) =
1

π

∆J

(Ji − J0)
2
+∆2

J

(3)

2
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or homogeneous couplings Ji ≡ J0.
In order to characterise the macroscopic behaviour of the network two indicators will be essential to

allow for a comparison with the mean-field formulation reported in the next subsection. One is the mean
network activity s(t) (2) and the other the mean membrane potential, defined as follows

v(t) =
1

N

N∑
i=1

Vi (t) . (4)

The identification of the spike-times is subject to some finite thresholding and the numerical integration
of the set of stochastic differential Equations equation (1) is explained in details in C. The model is
dimensionless, however to report the times (frequencies) in physical units, we will assume as a timescale for
our dynamics τm = 10 ms, corresponding to the membrane time constant.

2.2. Next generation neural mass model
In the recent years, it has been shown that an exact low-dimensional mean-field formulation can be
developed for fully coupled networks of heterogeneous QIF neurons, with Lorentzian distributed
heterogeneities [20, 26–28]. This mean-field (neural mass) model describes the macroscopic dynamics of the
network in the limit N→∞ in terms of the mean membrane potential v (4) and the population firing rate r,
which corresponds to the network activity s(t) (2). The main assumption of this approach is that the
distribution of the membrane potentials is also Lorentzian at any time [20].

This Lorentzian Ansatz (LA) is violated if the neurons are randomly connected and/or in presence of
noise. These more general cases can be treated by introducing a hierarchy of neural mass models taking in
account the distortions to the LD of the membrane potentials [21]. Here we will briefly report the main steps
to derive such mean-field formulation in the case of fully coupled inhibitory network of QIF neurons subject
to additive noise.

In full generality, we can assume that both parameters ηi (Ji) are distributed according to a LD g(η) (h(J))
with median η0 (J0) and half width at half maximum (HWHM)∆η (∆J). In the thermodynamic limit, the
network dynamics equation (1) can be characterised in terms of the probability density function (PDF)
p(V, t|x) with x= (η, J), which obeys the following Fokker–Planck equation (FPE):

∂tp(V, t|x)+ ∂V
[(
V2 + Ix

)
p(V, t|x)

]
= σ2∂2

Vp(V, t|x) , (5)

where Ix ≡ η+ Jr(t). In [20] the authors assumed that in the absence of noise the solution of equation (5)
converges to a LD for any initial PDF p(V,0|x), i.e. it becomes

p(V, t|x) = ax[
π
(
a2x +(V− vx)

2
)] , (6)

where vx is the mean membrane potential and

rx (t) = lim
V→∞

V2p(V, t|x) = ax
π

(7)

is the firing rate for the x-subpopulation. The above LA joined with the assumption that the parameters η
and J are independent and Lorentzian distributed lead to the derivation of exact low-dimensional neural
mass models for globally coupled deterministic QIF networks [20].

Following what was done in [20] and extending it to noisy systems [21], one can introduce the
characteristic function for Vx, i.e. the Fourier transform of its PDF, namely

Fx (k) = ⟨eikVx⟩= P.V.

ˆ +∞

−∞
eikVxp(Vx, t|x)dVx , (8)

where P.V. indicates the Cauchy principal value. In this framework the FPE equation (5) can be rewritten as

∂tFx = ik
[
IxFx − ∂2

kFx

]
−σ2k2Fx . (9)

Under the assumption that Fx(k, t) is an analytic function of the parameters x one can estimate the
characteristic function averaged over the heterogenous population

F(k, t) =

ˆ
dη

ˆ
dJFx (k, t)g(η)h(J)

3
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and via the residue theorem the corresponding FPE, namely

∂tF= ik
[
H0F− ∂2

kF
]
− |k|D0F−σ2k2F ; (10)

where H0 = η0 + J0r and D0 =∆η +∆Jr.
For the logarithm of the characteristic function, Φ(k, t) = ln(F(k, t)), one obtains the evolution equation

∂tΦ = ik
[
H0 − ∂2

kΦ− (∂kΦ)
2
]
− |k|D0 −σ2k2. (11)

In this context the LA amounts to ΦL = ikv− a|k|. By substituting ΦL in equation (11) for σ= 0 one gets

v̇=H0 + v2 − a2, ȧ= 2av+D0 , (12)

which coincides with the two dimensional exact MF reported in [20] with r= a/π.
In order to consider deviations from the LD, the authors of [21] analysed the following general

polynomial form for Φ

Φ =−a|k|+ ikv−
∞∑
n=2

qn|k|n + ipn|k|n−1k

n
. (13)

and introduced the notion of complex pseudo-cumulants, defined as follows

W1 ≡ a− iv , Wn ≡ qn + ipn. (14)

By inserting the expansion equation (13) in the equation (11) one gets the evolution equations for the
pseudo-cumulants, namely:

Ẇm = (D0 − iH0)δ1m + 2σ2δ2m + im
(
−mWm+1 +

∑m

n=1
WnWm+1−n

)
, (15)

where δij is the Kronecker delta function and for simplicity we assumed k> 0. It is important to notice that
the time-evolution ofWm depends only on the pseudo-cumulants up to the orderm+ 1, therefore the
hierarchy of equations can be easily truncated at themth order by settingWm+1 = 0. As shown in [21] the
modulus of the pseudo-cumulants scales as |Wm| ∝ σ2(m−1) with the noise amplitude, therefore it is justified
to consider an expansion limited to the first few pseudo-cumulants.

In this paper, we will consider (15) up to the third order to obtain the corresponding neural mass
model, i.e.

ṙ= 2rv+(∆η +∆Jr+ p2)π
−1 (16a)

v̇= η0 + J0r−π2r2 + v2 + q2 (16b)

q̇2 = 2σ2 + 4(p3 + q2v−π p2r) (16c)

ṗ2 = 4(−q3 +π q2r+ p2v) (16d)

q̇3 = 6(q3v−π rp3 − q2p2) (16e)

ṗ3 = 6(π rq3 + p3v)+ 3
(
q22 − p22

)
, (16f )

with the closure p4 = q4 = 0. The macroscopic variables r and v represent the population firing rate and the
mean membrane potential, while the terms q2,p2,q3,p3 take in account the dynamical modification of the
PDF of the membrane potentials with respect to a Lorentzian profile. Besides the third-order neural mass
models, we will also consider the second-order one, which can simply be obtained by considering
equations (16a)–(16d) by setting q3 = p3 ≡ 0

Since equation (16) is a set of deterministic ordinary differential equations, one can use standard
numerical methods to integrate them. In particular, we employed a 4th order Runge–Kutta method [29]. The
neural mass results will be compared with network simulations in the following and employed to initialise
the network in an asynchronous state (see, e.g. sections 2.3.2 and appendix D).

4
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2.3. Indicators
2.3.1. Macroscopic indicators
The evolution of the membrane potential of a neuron, in particular in the supra-threshold regime, can be
interpreted as the rotation of the phase of an oscillator and many models have been derived by employing
such an analogy. In terms of these phases the level of synchronisation of the oscillators (neurons) can be
measured in terms of macroscopic order parameters that we will introduce in the following.

For the QIF model, the membrane potential Vi of the ith neuron is usually mapped in the phase θi of an
oscillator via the following transformation

θi = 2arctan(Vi ) θi ∈ [−π : π), (17)

that leads from the QIF network equation (1) to the equivalent θ-neuron network [18]:

θ̇i = (1− cos(θi))+ (1+ cos(θi)

(
ηi +

Ji
N

N∑
i=1

∑
n

δ(t− t(n)j )+
√
2σξi(t)

)
. (18)

Unfortunately, the distribution of the phases P(θi) is not uniform even for uncoupled neurons, since
P(θi)∝ 1/θ̇i. This can therefore lead to apparent synchronisation phenomena in the θ-space in noisy
environments [30, 31].

In order to avoid such a problem, the phase θi of the ith neuron at a certain time t can be obtained simply
by interpolating linearly between the previous and the next spike time of the considered neuron, as follows

θi (t) := 2π
t− t(n)i

t(n+1)
i − t(n)i

−π with t(n)i ⩽ t< t(n+1)
i . (19)

where t(n)i is the time at which the nth spike is emitted by ith neuron.
Now that the phases have been defined, we can introduce suitable order parameters to measure the level

of phase synchronisation in the network [32–36], in particular we consider the so-called Kuramoto–Daido
order parameters

Zk = zke
iΨk =

∑N
n=1 e

i kθn

N
, (20)

where Zk is a complex number and zk andΨk are the corresponding modulus and phase. For k= 1 the usual
Kuramoto order parameter [32] is recovered. For a network of N oscillators one expects z1 ≃O(1/

√
N) in

the asynchronous regime and z1 will be finite (one) for a partially (fully) synchronised state. Unfortunately,
z1 is also exactly zero when the oscillators are equally divided in 2 perfectly synchronised clusters in
anti-phase. To characterise regimes presenting k clusters, Daido [33] introduced the parameters Zk. Indeed,
zk will be one whenever the system presents k clusters equally spaced in phase and equally populated, while zk
will approach zero for a sufficiently large network if the phases are evenly distributed over the whole interval.

To denote that the order parameters are estimated by employing the phases defined in terms of the
spiking times as in equation (19) we will use a super-script (s), while the lack of a super-script will denote the
use of the phases defined as in equation (17).

In the mean-field framework previously introduced in section 2.2, Zk can be obtained as follows [37]

Zk = zke
iΨk =

(
1− W2

2
(∂W1)

2
+

W3

3
(∂W1)

3
+

W2
2

8
(∂W1)

4
+ . . .

)(
1−W1

1+W1

)k

. (21)

Note that the corrections obtained from the higher order pseudo cumulantsWj, i.e. with j> 3, should be
negligible. In absence of noise and for the usual Kuramoto order parameter Z1 this reduces to the following
conformal transformation

Z1 =
1−W1

1+W1
, (22)

as shown in [20].
Another macroscopic indicator able to distinguish asynchronous regimes from oscillatory ones

characterised by a partial synchrony of the neurons is the variance Σv of the mean membrane potential v
estimated over a certain time window TW. This quantity is expected to be vanishing small Σv ≃O(1/N) in
the asynchronous regime and finite whenever COs are present.

5
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In order to identify the asynchronous and partially synchronised regime, since these are characterised by
definitely different values of Σv, we can define a threshold value Sθ and whenever Σv < Sθ (Σv ⩾ Sθ) the
dynamics will be identified as asynchronous (partially synchronised). The threshold value Sθ is usually
chosen as the mean of the values measured in the asynchronous and partially synchronised regimes, however
the identification of the regimes is quite insensitive to the exact value of Sθ.

Also the Kuramoto–Daido order parameter can be employed for this discrimination, and as we will see in
the following for the examined dynamics the most suitable indicator will be zs2.

2.3.2. Stability criterion
The considered model exhibits in a certain parameter interval a region of coexistence of two different
dynamical regimes: an asynchronous and a partially synchronous one. Our goal is to quantify the stability of
the asynchronous regime for the finite network by varying the noise intensity. Therefore, we have introduced
the following criterion inspired by the basin stability criterion [24], which has been applied in many different
contexts [38–42].

The main idea is to consider a solution of a system, perturb this solution several times with a magnitude
that is given by a parameter and let the dynamics evolve each time. Then one measures the fraction of how
often the system evolves back to a desired solution. Here, we proceed as follows: we initialise the values of the
membrane potentials {Vi } according to

Vi = tan

(
π

2

(2i −N− 1)

N+ 1

)
γ∆V +V0 i = {1,2, . . .,N} , (23)

with V0 = v∗ and∆V = π r∗, where (v∗, r∗) are the fixed point solution of the third-order neural mass model
equation (16). Note that for γ= 1 equation (23) will result in the Lorentzian distribution that is expected for
an asynchronous regime at equilibrium, while the extreme case γ= 0 fixes all the membrane potentials
Vi ≡ V0, i.e. it results in a fully synchronised initial state.

For different values of the parameter γ ⩽ 1 we simulate the system for a time Tt, after which we verify
whether the systems is asynchronous or partially synchronised. For each value of γ we repeat this procedure
M times for different noise realisations and count how many timesMc the system exhibits its asynchronous
state after the integration time Tt. Thus, we can measure the stability of the asynchronous state of the chosen
configuration via the following indicator

ρ=
Mc

M
. (24)

A completely stable (unstable) asynchronous regime will correspond to ρ= 1 (ρ= 0) for any value of γ.
However, in general ρ will be a function of γ. In the bistable regime, by decreasing the γ value one will
eventually observe a transition towards the partially synchronised regime. Thus, the value of γ where this
‘transition’ happens is a measure of the stability of the bistable system.

2.3.3. Characterisation of irregular spiking
As we will show in the following, the partially synchronised state is characterised by two clusters of neurons
firing in anti-phase. Furthermore, the neurons in each cluster do not remain in the same cluster over long
time periods. Instead they tend to switch from one cluster to the other, despite the collective dynamics being
always characterised by two clusters of neurons firing in alternation. Therefore the usual behaviour for a
neuron is to fire in correspondence with every second neuronal burst, but with irregularities in this
repetition. We want to introduce a measure of these irregularities in the sequence of spikes of the neurons.

In order to develop this measure we store the sets S = [s1 = (t1, i1), s2 = (t2, i2), s3 = . . .] of firing times
and firing neurons in the network for a certain time interval, where tj is the firing time and ij ∈ [1, . . .,N], the
index of the firing neuron. Moreover, we also store the bursting times bk at which the neuronal bursts occur.
These are identified by the maxima in the population firing rate r. As a convention we define the burst k as
the collection of all the spiking events occurring within the time interval

Bk =

[
bk−1 + bk

2
,
bk + bk+1

2

)
. (25)

thus the spike sm is emitted within the burst k if tm ∈ Bk.
The regular behaviour for a 2 cluster state would be that a neuron, which fires within the burst k, would

emit its next spike within the burst k+ 2. To analyse the eventual irregularity of the individual neurons we

create a ordered list Ki = {k(i)m } reporting the bursts within which the considered neuron i has fired during
the observation time interval T. The first two bursts k= 0 and k= 1 are employed to identify if the neuron

6
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belongs to the first or second cluster, i.e. k(i)0 = 1 (k(i)0 = 0) if the spike of neuron i occurred within B1 (B0).
Then, for each neuron we introduce a counter Ei of ‘early spikes’ in the following way: We go through the list

Ki of bursts to which neuron i has contributed and we increment Ei by one each time k(i)n+1 − k(i)n < 2. If we
had a total of B bursts in the considered time interval T, then the fraction of spikes that have been emitted
too early by the neuron i is

λE
i =

Ei
B
. (26)

In particular if a neuron would fire during each burst we will have λE
i = 1.

Similarly, the fraction of ‘late delivered spikes’ can be calculated by using a second counter Li that is

incremented by one each time k(i)n+1 − k(i)n > 2, which leads to define the following fraction of late spiking
neurons

λL
i =

Li
B
. (27)

Note that λL
i ⩽ 1

3 due to its definition, since the counter is incremented whenever k(i)n+1 − k(i)n is at least 3.
In summary, the percentage of times the spikes occur outside of the expected time-frames, i.e. the

percentage of irregular spikes, is

λi =
Ei + Li

B
= λL

i +λE
i . (28)

The number of neurons for which λi = 0 until the time t define the surviving neurons, i.e. those which fire
regularly every 2 bursts as expected. The fraction of surviving neurons S(t) until the time t can be defined as

S(t) =

∑
i∈N δ0,λi(t)

N
, (29)

where δ is the Kronecker delta, andN is the number of non-silent neurons. The silent neurons should be
removed from the count, since one always has λi = 0 for those neurons: a neuron that never spikes obviously
does not have any associated spike time in an unexpected time interval. For our analysis we considered
T= 55 s.

The survival probability S(t) is usually defined as [43] :

S(t) = 1− F(t) ;

where F(t) =
´ t
0 f(t

′)dt ′ is the cumulative distribution function and f (t) the PDF of the neuronal survival
times, i.e. the time until which the considered neuron fires regularly once every two bursts.

3. Linear stability analysis of the asynchronous state

In this section we analyse the stability of the asynchronous regimes within the neural mass formulation. For
the neural mass model equation (16), the asynchronous states correspond to fixed point solutions
(r∗,v∗,q∗2 ,p

∗
2 ,q

∗
3 ,p

∗
3 ). In particular, we will study the stability of these solutions by considering the

linearisation of equation (16) in proximity of the considered fixed points, namely

δṙ= 2(v∗δr+ r∗δv)+ (∆Jδr+ δp2)π
−1 (30a)

δv̇=
(
J0 − 2π2r∗

)
δr+ 2v∗δv+ δq2 (30b)

δq̇2 = 4(δp3 + q∗2δv+ v∗δq2 −π p∗2δr−π r∗δp2) (30c)

δṗ2 = 4(−δq3 +π q∗2δr+π r∗δq2 + p∗2δv+ v∗δp2) (30d)

δq̇3 = 6(q∗3δv+ v∗δq3 −π r∗δp3 −π p∗3δr− q∗2δp2 − p∗2δq2) (30e)

δṗ3 = 6(π r∗δq3 +π q∗3δr+ p∗3δv+ v∗δp3 + q∗2δq2 − p∗2δp2) . (30f )

3.1. Deterministic case
Let us start from the case in absence of noise. In this case the mean-field equations reduce to the exact
formulation reported in [20]

ṙ= 2rv+(∆η +∆Jr)π
−1 and v̇= η0 + J0r−π2r2 + v2. (31)

7
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Figure 1. (a) Macroscopic bi-dimensional phase-diagram (J0,σ) showing asynchronous, oscillatory and coexistence regimes. (b)
Fixed point solutions for the firing rate r∗ versus the noise amplitude σ for the 2nd and 3rd-order neural mass models. Fitting to
the data with the expression r(σ) = r(0)+ aσα are also reported. (c) Real part of the most unstable eigenvalues for the 2nd and
3rd-order neural mass model versus σ. (d) Real part of the most unstable eigenvalues for the 2nd and 3rd order neural mass
model versus σ for different level of heterogeneity∆η . In (a)–(c) the parameters are set to η0 = 4.2,∆η = 0, and∆J = 0.02, in
(b)–(d) J0 =−20.0, while∆J = 0 in (d).

The fixed point solutions can be obtained by solving the following equations

v∗ =− ∆η

2π r∗
− ∆J

2π
(32)

π2 (r∗)4 − J0 (r
∗)

3 −
(
η0 +

∆2
J

4π2

)
(r∗)2 − 2

∆J∆η

4π2
r∗ −

∆2
η

4π2
= 0 (33)

for the parameter values considered in this paper, namely inhibitory coupling J0 =−20, η0 = 4.2 and
∆J = 0.02 and 0⩽∆η ⩽ 0.30 the system exhibits 2 complex conjugate and 2 real solutions. Among the real
ones only one corresponds to a positive firing rate r∗ and is therefore physically acceptable.

The stability of such a solution can be obtained by analysing the linear evolution
(δr(t), δv(t)) = eλt(δr(0), δv(0)) in proximity of the physical fixed point solutions (r∗,v∗). This amounts to
solving second order characteristic equations for the eigenvalue problem associated to equation (30) with
p2 = q2 = p3 = q3 = 0, which gives the following result

λ± =

(
2v∗ +

∆J

2π

)
±

√
2J0r∗ − 4π2 (r∗)2 +

∆2
J

4π2
. (34)

For the chosen values of the parameters the square root in equation (34) is always purely imaginary.
Therefore the fixed point is a focus and, when inserting equation (32), the real part of the eigenvalues is
simply given by

Reλ=−∆η

π r∗
− ∆J

2π
. (35)

The focus is always stable, apart from the fully homogenous situation∆η =∆J = 0 in which case it becomes
marginally stable. The heterogeneities tend to stabilise the focus solutions. Therefore, even in the case of
homogeneous coupling∆J = 0, a small heterogeneity in the excitabilities measured by∆η is sufficient to
render the fixed point stable. This can be seen in the following for σ= 0 in figure 1(d).
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3.2. Gaussian noise
In presence of additive Gaussian noise of amplitude σ, we always observe a stable focus for sufficiently small
σ. However, these fixed points solutions get destabilised via a Hopf bifurcation at sufficiently large noise
giving rise to collective oscillations. This can be seen in figure 1(a), where we report a two dimensional
phase-diagram in the plane (J0,σ) obtained via quasi-adiabatic simulations of the 2nd and 3rd order neural
mass models for η0 = 4.2,∆η = 0, and∆J = 0.02 (for more details see appendix C). In particular, for

J0 < J(c)0 ≃−14.6 one observes a coexistence region for asynchronous (fixed point) and oscillatory solutions
bounded at large σ values by a sub-critical Hopf bifurcation and at low σ values by a saddle node bifurcation

of limit cycles [21]. At larger J0 > J(c)0 one has a direct transition from a fixed point to COs mediated by a
super-critical Hopf bifurcation and no more coexistence of these solutions.

Since we are interested in the coexistence regime, in the following we will consider J0 < J(c)0 (in most of
the cases J0 =−20). For these parameter values, the effect of noise is to induce an increase of the firing rate
r∗(σ) with respect to the case in absence of noise r∗(0). In particular, the correction to the deterministic
solution can be written as r∗(σ)≃ r∗(0)+ aσα. For the parameters previously specified, one obtains α≃ 2.5
for the 2nd-order neural mass model, while the growth is even faster for the third-order model with α≃ 2.7,
as evident from figure 1(b).

To analyse the stability of the fixed points we have identified the corresponding eigenvalues by solving the
associated characteristic polynomial, that can be of the 4th (6th) order depending if we consider the neural
mass model to the 2nd (3rd) order. The linear stability analysis reveals that the 4 eigenvalues for the 2nd
order neural mass are two complex conjugate pairs, whose real parts are definitely negative for σ= 0 and∆η

and/or∆J not zero, as evident from equation (35).
As shown in figure 1(c) for homogeneous currents (∆η = 0) and heterogenous synaptic couplings

(∆J = 0.02), noise destabilises the fixed point, since it leads to an increase of the real part of the maximal
eigenvalues. In particular, these two eigenvalues can cross the zero axis at a critical noise amplitude σH. Thus
indicating that the fixed point solution becomes unstable via a Hopf bifurcation giving raise to COs. For the
case shown in figure 1(c) we have σH ≃ 0.0243. The third order model displays 3 pairs of complex conjugates
eigenvalues, however the fixed point looses stability exactly at the same σH value via a Hopf bifurcation (see
figure 1(c)).

The effect of the noise on the stability of the foci is analogous for a network with homogenous couplings
(∆J = 0) and heterogeneous currents∆η > 0, as shown in figure 1(d).

4. Numerical results

In this section we will analyse and characterise the clustering transition induced by noise. In particular, we
will focus on heterogenous couplings, where we fix∆J = 0.02, in this case we will compare the results
obtained within the mean-field approach with network simulations. In appendix B, we will examine the
homogenous situation, where∆J = 0, by relying only on network simulations. Section 4.2 will be devoted to
the characterisation of the γ-oscillations emerging in the oscillatory regime for heterogenous and
homogenous synaptic couplings. If not specified otherwise we fix the parameters to the following values
J0 =−20, η0 = 4.2 and∆η = 0, and we consider an inhibitory network of size N= 200000 subject to
Gaussian additive noise.

4.1. Heterogeneous synaptic couplings
In section 3.2 we have shown that in the mean-field formulation the asynchrous regime remains stable up to
a noise of amplitude σH ≃ 0.0243, where it destabilises via a Hopf bifurcation. In this subsection we will
characterise such a transition and the observed regimes in full details.

4.1.1. The clustering transition
In order to understand if the transition is super- or sub-critical, we perform simulations by varying
quasi-adiabatically the noise amplitude σ (for details see appendix C) and by measuring for each value of σ
the variance Σv of the mean membrane potential.

As shown in figure 2(a), for the 2nd and 3rd order neural mass models we observe that starting from
σ= 0 and by increasing the noise amplitude, the variance Σv remains zero until a value near σH is reached, as
expected for a constant mean membrane potential (v= v∗). Afterwards it jumps to some finite value due to
the emergence of COs. Once the noise amplitude reaches σ= 0.03 the quasi-adiabatic simulations are then
continued by decreasing σ in steps of∆σ. In this case Σv stays finite down to values σSN ≃ 0.004 and then at
even smaller value of σ returns to zero. This scenario is typical for a sub-critical Hopf bifurcation,
characterised by the coexistence of oscillatory and stationary behaviours in the range σ ∈ [σSN,σH]. In
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Figure 2. (a) VarianceΣv of the mean membrane potential v versus noise amplitude σ obtained via quasi-adiabatic simulations.
The decrease or increase of σ performed during the adiabatic simulations is indicated by the direction of the triangles’ tip. The
dashed lines are meant for visual aid. (b) VarianceΣv versus N for the asynchronous dynamical state observable at σ= 0.012, the
power-law decay N−q is well fitted with an exponent q≃ 1.27 (cyan solid line). The parameters for the quasi-adiabatic
simulations are∆σ = 0.04

19
, tT = 20 s, tS = 25 s, for the neural mass we employed tT = 100 s to allow the system to better relax,

and the network size was fixed to N= 200000. Other parameters as in figures 1(b) and (c).

particular, at σSN one expects that the oscillatory solution will disappear via a saddle-node bifurcation of
limit cycles.

The network simulations agree quite well with those of the 3rd order neural mass model, apart some
finite-size effects that imply finite valuesO(1/N) for Σv even in the asynchronous regime and a backward
transition from the oscillatory to the asynchronous regime occurring at a larger noise amplitude, namely
σ ≃ 0.006, instead that at σSN . The scaling of the variance Σv with N is reported in figure 2(b), the observed
power-law decrease is even faster than expected from the central limit theorem for a purely asynchronous
regime. This is probably due to the fact that the macroscopic fixed point is in this case a focus, therefore
displaying transient oscillations that are excited by the finite size fluctuations, whose amplitude decrease
faster than 1/N.

In contrast, the 2nd order neural mass model displays clear differences with the 3rd order one and the
network simulations in the oscillatory regime for σ> 0.01 (see black triangles in figure 2(a)). This is
probably due to an instability of the 2nd order model at large noise amplitudes. Here, we have considered
very large network sizes N= 200000 to compare with the mean field results. The coexistence regime is
observable also for smaller system sizes, down to N= 10000, however it is limited to a smaller interval of
noise values due to the destabilising effect of finite size fluctuations.

4.1.2. Coexisting solutions
Let us now examine the macroscopic properties of the asynchronous and clustered regimes in the coexistence
region in more detail. In order to gain some insight we report the mean membrane potential v versus time
for the two regimes at σ = 0.00842 in figures 3(a) and (d). In the asynchronous state v is exactly constant for
the neural mass simulations, while it displays small erratic fluctuations when obtained from network
simulations. This is due to the fact that the stable fixed point is a focus, therefore the presence of finite-size
fluctuations excites continuously relaxation oscillations towards the focus. As shown in figure 3(d) v(t) is
periodically oscillating in the clustered regime and in this case the network simulations agree quite well with
the neural mass results obtained for both 2nd and 3rd order models.

It is interesting to examine the level of synchronisation in the two regimes as measured by the Kuramoto
order parameters z1 and z2, see figures 3(b), (c) and (e), (f). In the asynchronous state shown in panels (b)
and (c) the neural mass results give a finite value for z1 and z2, while for an asynchronous regime one would
expect zero values in the mean-field limit. The values of z1 and z2 obtained by the network simulations
oscillate in an irregular fashion slightly around the mean-field value. For what concerns the clustered regime,
the order parameters reveals periodic oscillations with the same period as v(t) and significant amplitudes. In
this case the neural mass and the network results essentially coincide as shown in panels (e) and (f).

In order to understand the reason why z1 and z2 have a finite value in the asynchronous regime let us
investigate the distribution of the phases as defined in equation (17). Histograms of these phases are shown
in figure 4 for the asynchronous and clustered regime. In the asynchronous regime the phases are not equally
distributed in [−π;+π] as expected they exhibit a peak around zero instead. This peak is much more
pronounced in the clustered regime, but there is no evidence of the two clusters. This is due to the fact that
the phase definition equation (17) is related to the membrane potential value, whose values also displays
similar unimodal PDFs (see the supplementary material for animations of the phase histograms from
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Figure 3. The mean membrane potential v(t) (a and (d) and the Kuramoto–Daido order parameters z1 (b and (e) and z2 (c and
(f) versus time. The data refer to the coexistence regime, namely σ = 0.00842, the asynchronous (clustered) state are reported on
the left (right). Other parameters as in figures 1(b) and (c).

Figure 4. Snapshots of the phases as calculated via the expression (17) displayed as a polar plot for asynchronous (blue) and
clustered (black) regimes. The insets show the histograms of the same data done over 100 bins. The data refer to a system size
N= 200000 and σ = 0.00842. Other parameters as in figures 1(b) and (c).

figure 4 and the corresponding membrane potential histograms), and not to the firing time of the
corresponding neuron, thus making this phase unsuitable to characterise the observed neural dynamics.

Let us now consider the distributions of the phases as obtained by the firing times via the definition
equation (19) for the asynchronous and oscillatory regimes. The results are shown in figure 5. Note that
animations of these histograms can be found in the Supplementary Material. In the asynchronous case, as
expected, the phases are uniformly distributed. The results for the oscillatory regimes reveal that the neurons
are arranged in two clusters in phase opposition (at a distance π) from one another. In this case we expect
that the Kuramoto order parameter zs1 (z

s
2) should be zero (order one) since the 2 clusters are in phase

opposition.
To get some more insight on these two dynamical states, we will examine the raster plots as a measure of

the microscopic network activity joined to the traces of the Kuramoto–Daido order parameters zk and zsk for
the macroscopic counterpart. These are shown in figure 6.

In the asynchronous regime, the raster plot in panel (a) does not display any structure and the
corresponding Kuramoto–Daido order parameters zsk, k= 1,2 estimated by the firing-times are ofO(1/

√
N)

as expected (see panel (b)). As shown in panel (b) the values of z1 and z2 are instead definitely finite due to
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Figure 5. Snapshots of the phases as calculated via the expression (19) displayed as a polar plot for asynchronous (blue) and
clustered (black) regimes. The insets show the histograms of the same data done over 100 bins. The data refer to a system size
N= 200000 and σ = 0.00842. Other parameters as in figures 1(b) and (c).

Figure 6. Raster plot (a and (d) and the corresponding order parameters zk and zsk (b and (e) versus time. In (c) the membrane
potential of three generic neurons are displayed. The results for the asynchronous (clustered) regime are shown in the left (right)
row. In the raster plot (d) the colour of the dots indicates in which cluster the corresponding neuron is at time t= 0 based on their
next spiking event. The data refer to a system size N= 200000 and σ = 0.00842. Other parameters as in figures 1(b) and (c).

the fact that the phases obtained via the transformation equation (17) are not uniformly distributed, even in
this regime.

In the clustered regime the raster plot (shown in panel (d)) reveals bursts of activity of the neurons
interrupted by a low activity phase. In each population burst roughly 50% of the neurons participate. In the
raster plot, the spiking times are visualised by red and blue coloured dots based on which cluster the
corresponding neuron belonged at time t= 0, for which we used the next spiking event of the corresponding
neuron. In the time window reported in panel (d) the clusters are apparently stable, however on a longer run
the two ensembles will mix up completely despite the macroscopic dynamics remaining always characterised
by two equally populated clusters. To exemplify these behaviours in panel (c) the membrane potential traces
for 3 characteristic neurons have been reported: the red (blue) neuron is always firing within the red (blue)
burst, while the black one is initially firing within the blue burst but then it skips 2 population bursts and
finally joins the red burst.

In panel (e) we report the corresponding Kuramoto–Daido order parameters versus time, the parameters
z1 and z2 display a periodic behaviour and attain the minimum value whenever a burst occurs, due to the
repulsive nature of the couplings. On the other hand, zs1 stays always close to zero as expected for two phase
clusters in phase opposition, while z2 has a constant finite value larger than 0.5 indicating that the
composition of the clusters is stable in time. The results reported in this Paragraph refer to a specific choice
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Figure 7. Stability indicator ρ versus 1− γ, where γ is the factor entering in (23). For each measurement of ρ we considered
M= 192 different realisations and each time we estimatedΣv from a time series of TW = 0.3 s after discarding a transient Tt = 16
s to evaluate if the system remains asynchronous or becomes clustered. The dashed line indicates ρ= 0.5, i.e. where the system has
an equal probability to move towards either the asynchronous or the clustered state. The data refer to a system size N= 32000,
other parameters as in figures 1(b) and (c).

of the noise amplitude, σ = 0.00842, however analogous results can be found in the whole coexistence
region, as we have verified (results not shown).

4.1.3. Stability of the asynchronous regime
In this Paragraph we will analyse the stability of the asynchronous state for increasing noise amplitude. For
this we will employ the stability indicator ρ= ρ(γ) introduced in equation (24) as a function of the
parameter γ controlling the initial distribution of the membrane potentials according to equation (23). The
value γ= 1 (γ= 0) corresponds to an initialisation of the neurons with membrane potentials distributed
according to the LD expected for the asynchronous case (with identical values of the membrane potentials
V0).

We have estimated the stability indicator ρ(λ) for a system size N= 32000 (due to cpu limits) and the
results are reported in Figure 7 for different noise amplitudes. For the noise amplitude σ= 0.0025, which is
smaller than σSN ≃ 0.004 and therefore outside the coexisting region, we observe that the asynchronous state
is stable for any γ-values, as expected. For larger noise amplitude σ > σSN, large perturbation of the
asynchronous distribution, as measured by 1− γ, can induce transitions towards the clustered regime with
some finite probability.

At noise amplitudes σ ⩾ 0.015, for sufficiently synchronised initial conditions, namely γ < 0.4, the
system has a probability of almost 100% to leave the asynchronous state, thus indicating a clear coexistence
of the 2 regimes. For σ ⩾ 0.023 (i.e. in proximity of the Hopf bifurcation identified in the mean-field
formulation σH = 0.0243) the probability to stay in the asynchronous case is smaller than 100% even for the
unperturbed initial conditions, corresponding to γ= 1, in this case we expect that by simulating for a longer
time period Tt we would actually measure ρ= 0.

In order to identify the critical noise amplitude above which the asynchronous state is unstable, we
measure the value γ̄ for which ρ(γ̄) crosses 1

2 for various noise amplitudes σ. Thus, this indicates that for
γ = γ̄ one has 50% of probability to end in the asynchronous or in the clustered state. For this we estimated
the indicator with more precision in proximity of ρ(γ̄)≈ 1

2 To this end we consideredM= 384 realisations
of the initial perturbed state for each value of γ, and we estimated via an interpolation the value γ̄. In
particular, we expect that the standard deviation of ρ(γ) will be maximal at exactly one half, therefore we
fitted such standard deviation to a Gaussian curve for different γ value and we extrapolated the value γ̄
where the curve attains its maximum.

In figure 8 we show the obtained values γ̄ as a function of noise amplitude σ (violet crosses), we observe
that γ̄ grows with the noise amplitude and approaches the value γ̄ = 1. To identify the critical noise
amplitude σc above which the system always ends up in the clustered regime for any γ value we have fitted
the numerical data with this function:

f(σ) = 1+ a
(
1− eb(σ−σc)

)
+ c(σ−σc) . (36)

By excluding from the fit the data where the threshold value ρ= 0.5 was not reached (green points) we obtain
the following parameter values a=−0.42(1), b= 376(28), c= 10.9(8) and σc = 0.02498(6). As you can see

13



New J. Phys. 26 (2024) 063017 Y Feld et al

Figure 8. γ̄ versus the noise amplitude σ. The green circles represent σ values for which ρ(σ) = 0.5 was never reached. The blue
solid line is a fit to the data (violet crosses) performed via the expression (36), the fit is employed to extrapolate the critical noise
value σc for which ρ(σc, γ̄ = 1) = 0.5. The vertical dashed line shows the mean-field prediction σH for the onset of COs.
Errorbars are omitted since the errors are smaller than symbol size. Other parameters as in figure 7 apart the number of different
realisations, that now isM= 384.

the fit works pretty well. The extrapolated critical value of the noise is in quite good agreement with the
mean-field result obtained from the linear stability analysis of the asynchronous state that indeed was
σH = 0.0243, the difference on the third significative digit can be due to finite-size and nonlinear effects.

In summary the new method here introduced to study the stability of the asynchronous regime works
reasonably well when compared with the linear stability analysis, that in the present case is feasible due to the
existence of low-dimensional mean-field formulations, but usually in a high dimensional network is quite
difficult to implement. Therefore, this new method can represent an useful alternative to the linear stability
analysis and it can find applications in many complex network systems. Furthermore, it gives also
information concerning the basins of attraction of the two regimes in the coexistence region, that the linear
stability analysis is unable to provide.

4.1.4. Characterisation of the clustered dynamics
In this Paragraph we would like to examine the clustered dynamics of the neurons in more details. In
particular, we wish to characterise the erratic behaviours that lead the neurons to deviate from a perfectly
locked evolution, where the neurons fire every second burst.

We will first examine the evolution in time of the fraction of surviving neurons S(t) (or survival
probability). As shown in figure 9, S(t) has an initial decay on the interval [0 : 30] s very well described by the
following function

g1 (t) = α1e
−
√
t, (37)

with α1 = 1.65(1). The initial decay of S(t) is followed at later times by an exponential tail of the form

g2 (t) = α2e
−β2t (38)

with α2 = 0.142(2) and β2 = 0.1026(3)Hz. The functions g1 and g2 are part of the same class of survival
probabilities associated to the so-called Weibull PDF [44]

fp(t) = pµptp−1e−(µt)p with p ∈ [0,+∞) µ > 0; (39)

where g1 (g2) corresponds to p= 1/2 (p= 1). For p< 1 the failure rate, the rate to emit a spike in an irregular
manner, decreases over time, since the neurons that displays an irregular spiking are eliminated from the
population of the regular spiking ones. The neurons remaining after this initial phase have a failure rate β2

that is constant over time, since their survival probability has an exponential profile, which typically emerges
due to some underlying random Poissonian process.

As we will see in the following for a homogeneous network S(t) is very well described by equation (38)
over the whole time interval. Thus suggesting that this decay is likely due to the action of the noise injected in
the system, since this is the only source of irregularity in the homogeneous case. While the initial decay
described by the function g1(t) should be related to the heterogeneous distribution of the synaptic couplings.
In summary, initially the neurons displaying failures in their periodic activity are the ones with Ji sufficiently
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Figure 9. Fraction of surviving neurons S(t) versus time in a semi-logarithmic scale. We fitted the data to the function g1(t) (37)
in the time interval [0 : 30] s and to the function g2(t) (38) in the interval [20 : 55] s. The inset shows the evolution over the first
10 seconds in a linear scale. In this case we have identified Nnone = 467 silent neurons. The data refer to a system size N= 200000
and σ = 0.00842 for the clustered regime. Other parameters as in figures 1(b) and (c).

Figure 10. Probability distribution function P(λ) of the fraction of irregular spikes λ for different time durations in
semi-logarithmic scale. The inset shows a zoom around the main peak. In this case we have removed from the estimation of the
PDF Nnone = 467 silent neurons. The data refer to a system size N= 200000 and σ = 0.00842 for the clustered regime. Other
parameters as in figure 1(b) and (c).

different from J0, while the successive decay involves neurons with coupling in proximity of Ji = J0. This
aspect will be further analysed in the following, where we will correlate in more details the irregular
evolution of the ith neuron to its synaptic coupling Ji.

Next, we examine the PDF P(λ) of the fraction λ of irregular spikes (28) emitted by each neuron. We
report P(λ) in figure 10 for increasing duration of the simulations and therefore for an increasing number of
population bursts.

From the figure it is evident that the PDF is converging to a limiting profile for longer duration of the
measurements. This asymptotic shape reveals a peak around λ≃ 0.0145 corresponding to the neurons
with couplings in proximity of Ji = J0 =−20, i.e. to the maximum of the LD of the synaptic couplings.
Furthermore, P(λ) reveals a clear discontinuity at λ= 1/3, whose origin will become clear in the following.

Let us now characterise in details how the fraction of irregularly emitted spikes of neuron i depends on its
synaptic coupling Ji. To this aim we have estimated λi, λE

i and λL
i for each neuron as well as the fraction ν i of

emitted spikes with respect to the total number of population bursts (ν i in absence of irregularity should
be 1

2 ). These quantities are shown versus the corresponding Ji as scatter plots in figure 11. It is important to
notice that the scatter plots actually look like smooth functions for all the considered indicators, not much
‘scatter’ visible. This suggests the existence of a functional relationship between the measure values and the
value J of the synaptic coupling.

For sufficiently small Ji ⩽−22.73 the neurons appear to be silent on the considered integration time
scale. As shown in panels (a and d), ν i is growing with the synaptic coupling, apart in the locking regions. On
the contrary, λL

i and λi have a non monotonic dependence on Ji, with a maximum at Ji =−21.44 where
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Figure 11. Scatter plots for ν i (a) and (b) and for the indicators λi (e) and (f), λL
i and λE

i (c) and (d) , measuring the fraction of
irregular spikes, versus the respective synaptic coupling Ji. The left panels are in linear scale, while the ones on the right side are
the same data reported in semi-logarithmic scale. The measurements correspond to the ones reported in figure 10 for a total of
2789 bursts.

these parameters reach the value of exactly 1
3 . λi displays a minimum at Ji = J0 =−20, where it attains

extremely small values (see panels (c and d) and (e and f)). For larger Ji essentially λi ≡ λE
i and they are both

increasing with Ji, again apart the locking intervals. As a general remark the irregularity in the periodic firing
of the neurons is due to early (late) delivered spike for Ji < J0 (Ji > J0).

Let us now try to understand the non monotonic behaviour of λ. The local maximum λL
i = λi =

1
3 at

Ji ⩽−22.73 corresponds to νi =
1
3 , which means that the corresponding neurons fire very regularly at every

3rd burst. The origin of the maximum is due to the fact that for smaller Ji the neurons are firing less and less,
thus the value of λL

i and λi should necessarily decrease, however for larger Ji the two parameters are also
decreasing. This is due to the fact that the regular behaviour occurs whenever the neurons fire exactly every
two spikes, and this state is approached by increasing Ji towards J0.

Indeed, for Ji = J0 the rate is exactly νi =
1
2 and at the same time λi, λL

i and λE
i become quite small and

close to zero (see the semi-logarithmic plots in panel (d)). In particular, from panel (f) it is evident that the
neurons contributing to the peak of P(λ) reported in figure 10 are those with Ji = J0, see the dashed orange
line indicating the value λ= 0.0145, where P(λ) attains its maximum.

It is interesting to notice that in the interval J ∈ [−15,−4.4] we have a perfect locking of the activity of
these neurons with the population bursting since ν= 1, and unsurprisingly, also λE = 1. The locking region
resembles an Arnold tongue 1:1, for J>−4.4 the locking is lost and ν and λ continues to increase. We have
indications that another locking region with ν= 2 emerges at quite large J, around 25⩽ J⩽ 29, however our
system size is too small to have a good statistics there.

Let us now come to the explanation of the discontinuity observed in figure 10 for the PDf P(λ) at λ≈ 1
3 .

This is due to the fact that the maximal value of λL is
1
3 , thus for λ < 1

3 to the P(λ) contribute both early and
late delivered spikes, while for λ > 1

3 the contribution to the irregularity is due only to early delivered spikes.
To get further insight on the microscopic dynamics induced by the synaptic couplings, we define a global

phase Φ similar to equation (19). However, instead of the spike times of the individual neurons we consider
here the population burst times bk:

Φ(t) = 2π
t− bk

bk+1 − bk
+ 2π k with bk ⩽ tbk+1. (40)

Moreover, Φ(t) can be employed to characterise the activity of the ith neuron with respect to the network
activity by defining the global phase difference associated to two successive spikes of neuron i:

∆Φi (n) = Φ
(
t(n+1)
i

)
−Φ

(
t(n)i

)
. (41)
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Figure 12.Mean (a) and variance (b) of the global phase difference∆Φi for each neuron reported as a scatter plot versus the
corresponding coupling Ji. The data have been obtained from the same measurements employed in figure 10.

In figure 12 we report the average and variance of∆Φi estimated over all the spike times of neuron i
versus the corresponding synaptic coupling Ji. A clear functional relationship emerges also in this case. As
expected, the value of the mean of∆Φi is 4π for Ji =−20 indicating that the neurons fire every second burst.
For Ji < J0 (Ji > J0)∆Φi grows (decreases) indicating that the neurons fire slower (faster). Moreover, the
phase locking at∆Φi = 2π for neurons with Ji ∈ [−15,−4.4] is also evident from panel (a).

The analysis of the variance of∆Φi reveals more interesting aspects. A variance close to zero suggests that
the corresponding neuron fires very regularly, i.e. basically with a constant firing rate. In contrast a high
variance indicates a distribution of the global phase differences∆Φi exhibiting more peaks. As shown in
figure 12(b), the variance attains its minimal value for Ji =−J0 for the regular firing neurons, for which
⟨∆Φi ⟩ ≃ 4π. Moreover, minima in the variance are observable also whenever ⟨∆Φi ⟩ ≃ 6π at J≈−21.44,
and also at lower Ji where ⟨∆Φi ⟩ ≃ 8π. Furthermore, the variance vanishes in the locking region
(J ∈ [−15,−4.4]) where ⟨∆Φi ⟩= 2π. The maxima in the variance are instead observable when
⟨∆Φi ⟩ ≃ (2k+ 1)π for k= 0,1,2. For the case ⟨∆Φi ⟩ ≃ 3π , we observe that the corresponding neurons
emit two spikes almost in correspondence with two successive population bursts and then skip one burst.
This amounts to a sequence of phase differences∆Φi = 2π,4π,2π,4π, . . . , that gives an average global phase
of 3π and a distributions of the phases with two equally relevant peaks and thus to a high variance.

We can safely affirm that the neurons tend to fire in correspondence of the bursting activity of the
network, in general every two bursts, but as shown above they can present more complex combinations of
locking n :m with the population bursting.

4.2. Emergence of γ-oscillations in the clustered state
The clustered state is characterised by population bursts, corresponding to COs. It is of extreme interest to
understand in which frequency range these oscillations occur. In order to estimate the oscillation frequency
we evaluate the power spectrum density (PSD) associated to the time evolution of the mean membrane
potential v for heterogeneous (∆J = 0.02) and homogeneous (∆J = 0) case subject to noise of the same
amplitude, namely σ = 0.00842 (the results are reported in figure 13(a)).

For the heterogenous case, we observe that the two neural mass models and the network simulations
agree quite well among them as evident in figure 13(a). The only noticeable difference are the positions of the
main peak of the PSD, that are slightly different. The main peak of the 3rd order neural mass model and of
the network simulations are located both around f0 ≈ 50.79 Hz, while the 2nd order neural mass reveals a
peak located at f0 ≈ 50.95 Hz, as visible in the inset of figure 13(a). This seems to be a general trend, since it
is confirmed also for different parameter values (namely, J0 =−18 and σ= 0.01) as shown in figure 13(b).

The simulations of the network with homogeneous couplings result in a PSD with a peak at a higher
frequency f0 ≈ 52.8 Hz, still in the vicinity of the heterogenous peaks.

The PSD around the peak is a bit broader for the network simulations compared to the neural mass
results, since the network presents also finite-size fluctuations. In the network simulations, homogeneous
and heterogeneous, we observe also peaks at combinations of the first two harmonics, not present in the
neural mass models, suggesting that finite-size effects can lead to combinations of these harmonics similar to
the beating phenomenon.

By analysing the microscopic dynamics of the network for the same parameters in the homogenous case,
we observe that the histogram nν of the single neuron firing rate ν i is extremely localised with a peak around
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Figure 13. Power spectrum density (PSD) versus the frequency f of the mean membrane potential v for the 3rd order neural mass
model (red), the 2nd order neural mass model (orange) and the network simulation with∆J = 0 (black) and∆J = 0.02 (blue),
respectively. The colours are plotted with transparency to allow the visualisation of overlapping parts. The inset shows a zoom
around the global maxima. All the other parameters are as in figures 1(b) and (c) apart for the noise amplitude fixed to
σ = 0.00842 in (a); while in (b) the coupling is set to J0 =−18 and the noise amplitude to σ= 0.01. The PSD are measured via a
discrete Fourier transform of a time series measured over 100 seconds with a step size of 2.5× 10−3 ms for a network made of
N= 200000 neurons in (a) and N= 100000 in (b).

Figure 14. Histogram nν of the single-neuron firing rate for the homogeneous and heterogeneous networks for the asynchronous
(a) and clustered (b) phases. Black (red) line refers to homogeneous (heterogenous) networks. All parameters as in figure 13(a).

ν0 ≈ 19.27 Hz (ν0 ≈ 26.41 Hz) for the asynchronous (clustered) state (see figure 14(a)). These data confirm
that in the clustered regime the neurons mostly fire every two population bursts, since the frequency of COs
is f0 ≈ 52.8 Hz. In the heterogenous case, the situation is more complex, as shown in figure 14(b) the
histogram of the firing rates has a main peak at f0/2 with symmetric tails at lower and higher frequencies and
a secondary peak at f 0, where f0 ≈ 50.79 Hz. These data confirm the previously reported analysis for the
heterogeneous model performed in section 4.1.4. The heterogeneity in the couplings is essentially
responsible for the distributed firing rates. Furthermore, the most part of the neurons fire every second
bursts, but a small group is locked to the population activity.

Increasing the noise amplitude only changes the frequency slightly, e.g. a noise of σ= 0.03 results in a
frequency around 52.44 Hz for the 3rd order mean-field neural mass, this means that we observe
γ-oscillations in the whole region of coexistence.

5. Summary and outlook

We have shown that for a globally coupled inhibitory network of QIF neurons the presence of independent
Gaussian noise promotes the emergence of COs both for heterogeneous and homogeneous synaptic
couplings. For sufficiently large synaptic coupling |J0|, the observed oscillations emerge at some critical noise
amplitude σc via a sub-critical Hopf bifurcations giving rise to a region of coexistence among stationary and
oscillatory dynamics. For the homogenous (heterogenous) case the coexistence is observable from zero (a
finite) noise amplitude up to σc.

In the heterogenous case the analysis is based on the comparison of the results obtained via a direct
integration of large spiking QIF networks and of the corresponding neural mass models. In the examined
noise range we observe a quite good agreement among network simulations and mean-field results obtained
via the pseudo-cumulant expansion arrested to the third order [21]. The second-order neural mass model
fails to reproduce the simulations for sufficiently large noise amplitudes.
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The neural mass model (at the third order) captures well the macroscopic behaviour of the network
induced by noise and heterogeneity, however being a mean-field model cannot reproduce the microscopic
dynamics, for this we should rely on numerical simulations.

The observed collective oscillations are population bursts, where roughly half of the neurons fire in
alternation in correspondence of each single collective event. However, there are irregularities to this
behaviour. In the heterogeneous case we observe that initially the rate at which the surviving neurons emit a
spike in an irregular manner decreases over time and successively it becomes constant, i.e. it becomes a
Poissonian process in the long run. The origin of the initial behaviour is due to the heterogeneity in the
synaptic couplings, while the following phase is due to the presence of the Gaussian noise. Indeed in the
homogenous case we observe only the second phase.

Furthermore, for heterogenous couplings we observe that the regular behaviour of the neurons, i.e. firing
every two population bursts, is observable only for synaptic couplings corresponding to the median of the
distribution. For sufficiently large inhibitory couplings we have silent neurons, while neurons displaying a
1:1 locking with the population bursts are observable in a wide interval of synaptic couplings.

In order to characterise the stability of the asynchronous regime we have introduced a new criterion
based on the long-term evolution of the system, once the stationary configuration corresponding to the
asynchronous regime has been subject to a non-infinitesimal global deformation. This criterion allows to
identify the basins of attraction of the two coexisting regimes, therefore resembling the basin stability
analysis [24]. Furthermore, the method captures with very good accuracy the Hopf and saddle-node
bifurcation points delimiting the coexistence regime in the heterogenous and homogenous cases. This
criterion can represent a useful alternative to the linear stability analysis and find application in the context
of complex networks for the characterisation of their dynamical regimes.

The nature of the noise is fundamental in order to observe the reported phenomena. Indeed, in
appendix A we have shown that for Lorentzian distributed white noise the corresponding low-dimensional
neural mass model [45, 46] exhibits only a stable foci and no oscillatory regime, as we have also verified via
network simulations.

Clustering phenomena similar to the one here analysed have been reported in [5] for globally coupled
inhibitory homogenous networks for conductance based and current based neural models in presence of
Gaussian noise. However, at variance with our model the authors considered post-synaptic potentials of
finite duration and not instantaneous synapses, as in the present case. The emergence of COs in absence of a
delay or of a finite synaptic time scale is peculiar of inhibitory QIF networks, as previously shown in [47].

As we have shown for the chosen parameters the frequency of the COs is in the γ-band, therefore the
present model can be employed to analyse the emergence of transitory γ-bursts coexisting with
asynchronous dynamics observed in many experiments [14–17]. In particular, our model can represent a
more realistic alternative to the damped harmonic oscillator driven by noise employed in [16] to reproduce
the emergence of spontaneous γ-cycles in awake primate visual cortex (V1). Finally, the indicators we have
introduced in Paragraph 2.3.3 to characterise the regularity/irregularity of the single-neuron dynamics with
respect to the global activity can find applications in the analysis of spiking events with respect to the Local
Field Potential evolution in experimental data.
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Appendix A. Lorentzian noise

It is worth mentioning that, by assuming that the white noise terms ξi(t) in (1) are Lorentzian distributed, it
is still possible to obtain the corresponding low-dimensional neural mass model in an exact manner [45, 46].
In particular, by assuming that the ξi(t) random terms follow a LD centred in zero and with HWHM Γ, one
can obtain the following two-dimensional neural mass model [46]

ṙ= 2rv+(∆η +Γ+∆Jr)π
−1 and v̇= η0 + J0r−π2r2 + v2, (A.1)

which is identical to equation (31) apart for the Γ term that contributes exactly as the HWHM∆η of the
neural excitabilities {ηi } to the mean-field dynamics. Therefore, in the thermodynamic limit the Lorentzian
noise can be assimilated to a quenched disorder in the heterogeneities as shown also in [45, 46]. This implies
that the neural mass model equation (A.1) displays only stable foci solutions as in the deterministic situation
equation (31) and no collective oscillations are observable, contrary to the case where the noise is Gaussian
distributed.

Appendix B. Homogeneous synaptic couplings

As we have seen in section 3 for the case with homogeneous couplings, i.e.∆J =∆η = 0, the linear stability
of the mean-field model predicts that the asynchronous state is unstable whenever the noise amplitude is
finite. However, the mean-field approach is no more strictly valid in the fully homogenous case, since the
Ott–Antonsen manifold [26] is no more attractive in such a case [48]. Therefore, we will limit to network
simulations in order to numerically investigate the stability of the asynchronous state as well as possible
coexistence regime with a collective oscillatory dynamics.

B.1. The clustering transition
To this aim we performed quasi-adiabatic simulations of the QIF network by varying the noise amplitude σ
and by evaluating the variance Σv of the mean membrane potential v, analogously to the analysis done in the
heterogeneous case, whose results have been reported in figure 2. In the present case, by increasing
adiabatically σ in the interval [0,0.015] we observe that the asynchronous regime appears to remain stable up
to noise amplitude σc ≃ 0.011, while for larger noise COs emerge. Successively, by decreasing σ the
oscillatory regime remains stable down to σ= 0, thus we have a coexistence regime in the whole interval
σ ∈ [0,0.011], as shown in figure B1. Note the contrast with the heterogeneous case where, in the absence of
noise, only the asynchronous regime was observable.

The oscillatory regime is once more a clustered regime, where the neurons fire in population bursts and
each burst involves almost half of the population.

B.2. Stability of the asynchronous regime
Let us now analyse, how the stability of the asynchronous state depends on the noise amplitude. To perform
this analysis we have employed (as in section 4.1.3) the indicator ρ= ρ(γ) introduced in equation (24) as a
function of the parameter γ. The corresponding results are reported in figure B2 for various noise
amplitudes σ ∈ [0,0.015].

The main difference with respect to the heterogenous case, is that now even for the smallest noise
amplitude considered, namely σ= 0.0025, for a sufficiently large distortion of the LD (namely, γ > 0.4) will
destabilise the asynchronous state. This is a further confirmation that the clustered state is always stable, as
already shown in figure B1. For increasing noise amplitudes the asynchronous state gets destabilised for
larger and larger γ values and for σ> 0.011 even for γ= 1. Thus indicating that this is the critical noise
amplitude above which only the clustered regime can be observed on the long-time limit.

In analogy to what done in section 4.1.3, to better characterise this transition, we will estimate for various
noise amplitudes the value γ̄ for which ρ(γ̄) crosses 1

2 . In particular, we measured γ̄ by using B= 192 to
obtain a better accuracy. The results are displayed in figure B3, by performing a fit of the data to the
function (36) we obtained the following parameter value a=−0.21(6), b= 376(205), c= 33(6) and
σc = 0.0149(3). Thus obtaining a critical noise amplitude consistent with the previous estimations.

B.3. Characterisation of the clustered dynamics
Analogously to the heterogenous case the oscillatory dynamics is characterised by neurons firing alternately
in the two population bursts. To measure the irregularity in this dynamics, we have examined, as in the
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Figure B1. VarianceΣv of the mean membrane potential v versus noise amplitude σ obtained via quasi-adiabatic simulations.
The decrease or increase of the noise amplitude σ performed during the adiabatic simulations is indicated by the direction of the
triangles’ tip. The dashed lines are simply intended as a visual aid. The parameters for the quasi-adiabatic simulations are
∆σ = 0.4

19
, tT = 20 s, tS = 25 s. The other parameters are set as in figure 2 with∆J = 0 for a network size N= 200000.

Figure B2. Stability parameter ρ versus 1− γ, where γ is the modulation factor entering in (23). For each measurement of ρ we
averaged over B= 96 different noise realisations and each time we estimatedΣv from a time series of duration TW = 0.3 s after
discarding a transient Tt = 16 s. The dashed line indicates ρ= 0.5, i.e. where the system has an equal probability to end in the
asynchronous or clustered state. The data refer to a system size N= 32000, other parameters as in figure B1.

Figure B3. γ̄ versus the noise amplitude σ. The green circles represent σ values for which ρ(σ) = 0.5 was never reached. The blue
solid line is a fit to the data (violet crosses) performed via the expression (36), the fit is employed to extrapolate the critical noise
value σc for which ρ(σc, γ̄ = 1) = 0.5. Other parameters as in figure B2 apart B= 192.
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Figure B4. Fraction of surviving neurons S(t) versus time in semi-logarithmic scale. We also include a fit to the numerical data
with the function g2(t) (38) (blue line). The inset shows the first 25 s of the evolution of S(t) in a linear scale. The parameters are
fixed as in figure B1 for a noise amplitude σ = 0.00842 and we refer to the clustered phase.

Figure B5. PDF P(λ) of the fraction of irregular spikes λ for different measurement durations in semi-logarithmic scale. The
inset shows a zoom in linear scale. The parameters are fixed as in figure B1 for a noise amplitude σ = 0.00842 and we refer to the
clustered phase.

heterogenous case, the fraction of surviving neurons S(t) defined as in equation (29), for the same noise
amplitude σ = 0.00842. We now observe that S(t) can be well reproduced by a simple exponential decay
equation (38) with parameters α2 = 0.853(2) and β2 = 0.0752(6)Hz, see figure B4. The mean lifetime of the
periodic regular regime is now of the order of 13.3 s, definitely longer than in the heterogenous case. Since
the only source of irregularity is now the noise, we confirm that the emergence of the irregularities in the
firing process follows a Poissonian process. Furthermore, in contrast with the heterogeneous case we did not
observe any silent neurons, since none of the neurons receive very large inhibitory post-synaptic potentials,
because the amplitude of the synaptic weight is the same for all neurons.

Next, we have estimated P(λ), i.e. the PDF of the fraction λ of irregular spikes obtained for each neuron,
this is reported in figure B5. We have integrated the network for the same time duration as in figure 10,
however due to the slightly higher frequency of the COs measured in the homogeneous case we observe more
bursts.

In this case the PDF for λE and λL are identical (not shown) and this is clearly due to the absence of
heterogeneity in the network. The noise induces with equal probability irregularities due to early or late
spiking.

For increasing duration of the measurements we observe that P(λ) tends to get more and more localised
around the maximum located at λ= λ0 ≈ 0.01. Due to the central limit theorem we expect that the function
P(λ) has a Gaussian profile (limited to λ> 0) with a standard deviation σ scaling as 1/

√
T, where T is the

time duration. Indeed, by considering only values of λ > λ0 we have verified that lnP(λ) = A+ (λ−λ0)
2

2σ2 with
σ ∝ Tξ where ξ =−0.52± 0.02 for the data reported in figure B5.

22



New J. Phys. 26 (2024) 063017 Y Feld et al

Appendix C. Details on the numerical simulations

For the heterogenous case, in order to compare the results of the network simulations with the neural mass
models [21] we consider synaptic couplings following a LD h(Ji) with median J0 and half width at half
maximum (HWHM)∆J, that we fix deterministically as follows

Ji = tan

(
π

2

(2i −N− 1)

N+ 1

)
∆J + J0 ∀i ∈ {1,2, . . .,N} , (C.1)

to avoid spurious effects related to extreme values of the couplings and to allow for a faster convergence at
sufficiently large system sizes towards the corresponding mean-field results as previously shown e.g. in [20,
49]. It should be noticed that even for a LD centred at a quite negative value, namely J0 =−20 as in our case,
a small number of positive coupling is expected. For the parameter values used in this paper (∆J = 0.02) the
percentage of excitatory synaptic coupling is 0.032%, therefore we can consider their influence on the
macroscopic dynamics as negligible.

The initial values of the membrane potentials are deterministically chosen as in equation (23) from the
LD expected in the thermodynamic limit (6) for the asynchronous state. Note that, to avoid correlations
between Vi and Ji that would result from the previous deterministic equations, the list of Ji values is shuffled
before creating the initial state of the network.

In order to analyse the transition from the asynchronous to the partially synchronised regime due to the
noise, we perform simulations where the noise amplitude is varied quasi-adiabatically. In particular, we start
from some initial noise value, typically σ= 0, and we simulate the models for a certain time interval tS, after
discarding a transient time tT. The quantities of interest are evaluated only during the interval tS. Then we
increase the noise amplitude by an amount∆σ and we repeat the previous procedure by an initial condition
that is the last configuration obtained at the previous step. The noise is increased in steps of amplitude∆σ
up to some maximal value is reached. Then the procedure is repeated by decreasing the noise at each
simulation step by∆σ until the initial noise value is recovered.

As already mentioned, for the QIF model the threshold value would be Vth =+∞ and the reset one
Vre =−∞, it is possible to take in account exactly the integration among these extrema in absence of noise if
the neurons are supra-threshold by employing event driven techniques [50, 51]. However, in presence of
noise we should perform usual clock driven simulations by employing finite threshold and reset values as
suggested in [20].

In particular, we implement the finite threshold crossing and the spike emission as follows. Whenever
Vi(t)> Vth, the neuron enter in a refractory period of duration TR = 2/Vi, after this phase the membrane
potential is resetted to Vi(t+TR) =−Vi(t). Thus employing a variable resetting value related to the neuron
evolution, this avoids spurious synchronisation phenomena induced by using the same reset value for all
neurons as suggested in [20]. Furthermore, the neuron i will fire at a time t+TR/2 that approximately
corresponds to the time it would reach+∞ as shown in [20]. Somehow, the usage of finite thresholds and
reset value is less mathematically accurate, but it reflects more the dynamics of real neurons [52].

To simulate the network model we have numerically integrated the stochastic differential equation (1) by
employing a clock driven scheme. In particular we have employed the Heun method [53] for its higher
accuracy in the treatment of the determistic part with respect to a standard Euler scheme.

The iterative Heun method [53] applied to our network model reads as :

ki = Ji s+∆t

(
(vi (t))

2
+ ηi

)
(C.2)

li =
√
2∆tσ2Ξi (C.3)

vi (t+∆t/2) = vi (t)+ li + ki (C.4)

vi (t+∆t) = vi (t)+
(
(vi (t+∆t/2))

2
+ ηi

)∆t

2
+

Ji s+ ki
2

+ li, (C.5)

where Vi(t) are the membrane potentials, k and l are auxiliary variables, and Ξi is a Gaussian random
number with zero mean and unitary standard deviation that is drawn separately for each neuron. Moreover
∆t is the integration time step, whose choice will be discussed in the next appendix, and s represents the
network activity and it is the number of spikes emitted in the network in the interval∆t divided by N.

Appendix D. Selection of the integration time step

For the numerical integration of the network model we need to select an optimal time step∆t, which should
lead to high accuracy in the integration joined to a minimal computational cost.
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Figure D1. Probability density function P(v) as measured for a network of size N= 200000,∆J= 0.02 and σ= 0.001. The
dashed lime-green line shows the analytical prediction while the solid lines represent the measurements for a step-size of 0.001
(red), 0.003 (blue) and 0.006 (yellow). The left inset shows a zoom, while the right inset shows a range around the peak in linear
scale and uses symbols for each data point that are colour-coded as above.

In deterministic systems this choice is quite simple, one just select the largest time step for which the
integrated orbits converge to the same value up to some accuracy. In a stochastic system this cannot happen,
therefore we rely on a different concept.

In the present case, we know from the mean-field approach that in the asynchronous regime for
sufficiently small noise values σ < σSN the system should always relax towards a PDF of the membrane
potential that is a LD, namely

p(V) =
1

π

∆V

∆2
V +(V−V0)

2 . (D.1)

with V0 = v∗ and∆V = π r∗, where (v∗, r∗) are the fixed point solutions of the neural mass model
equation (16). Therefore, we considered a small noise value σ = 0.001< σSN and for different integration
time steps∆t we have verified if the distribution of the membrane potentials converge to (D.1) or not.

In particular, we initialised the simulation always with membrane potentials distributed as in (D.1), then
we simulate the system for a time interval of 1.2 s and every 0.12 ms we accumulate the instantaneous values
of the membrane potentials in a histogram of 5000 bins with V ∈ [−100,100]. We do not consider the
neurons in their refractory periods to prevent from unphysical overestimations of large V values. From the
final histogram we obtain the PDFs shown in figure D1 for three different∆t/τm = 1× 10−3;3× 10−3;
6× 10−3 together with the expected PDF (D.1).

As evident from figure D1, the larger time-step leads to clear artefacts in the estimation of the PDF.
Already by considering∆t/τm = 3× 10−3 leads to a noticeable improvement, in particular the right inset of
figure D1 reporting p(V) in linear scale around the maximum show essentially no differences among (D.1)
and the estimated PDFs with∆t/τm ⩽ 3× 10−3. However, in the semi-logarithmic scale (left inset and main
figure) the numerically estimated PDF for∆t/τm = 3× 10−3 still presents numerical artefacts for sufficiently
negative V values.

For a time step∆t/τm = 1× 10−3, we cannot notice any artefact and essentially we have a perfect
coincidence with the theoretical PDF (D.1). We can already conclude that this time step give a sufficient
accuracy to the simulations, however to be on the safe side we opted for∆t/τm = 2.5× 10−4.
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