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Population spiking and bursting in next-generation neural masses with spike-frequency adaptation
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Spike-frequency adaptation (SFA) is a fundamental neuronal mechanism taking into account the fatigue due to
spike emissions and the consequent reduction of the firing activity. We have studied the effect of this adaptation
mechanism on the macroscopic dynamics of excitatory and inhibitory networks of quadratic integrate-and-fire
(QIF) neurons coupled via exponentially decaying post-synaptic potentials. In particular, we have studied the
population activities by employing an exact mean-field reduction, which gives rise to next-generation neural mass
models. This low-dimensional reduction allows for the derivation of bifurcation diagrams and the identification
of the possible macroscopic regimes emerging both in a single and in two identically coupled neural masses. In
single populations SFA favors the emergence of population bursts in excitatory networks, while it hinders tonic
population spiking for inhibitory ones. The symmetric coupling of two neural masses, in absence of adaptation,
leads to the emergence of macroscopic solutions with broken symmetry, namely, chimera-like solutions in the
inhibitory case and antiphase population spikes in the excitatory one. The addition of SFA leads to new collective
dynamical regimes exhibiting cross-frequency coupling (CFC) among the fast synaptic timescale and the slow
adaptation one, ranging from antiphase slow-fast nested oscillations to symmetric and asymmetric bursting
phenomena. The analysis of these CFC rhythms in the θ -γ range has revealed that a reduction of SFA leads
to an increase of the θ frequency joined to a decrease of the γ one. This is analogous to what has been reported
experimentally for the hippocampus and the olfactory cortex of rodents under cholinergic modulation, which is
known to reduce SFA.

DOI: 10.1103/PhysRevE.107.024311

I. INTRODUCTION

Neural mass models are mean-field models developed to
mimic the dynamics of homogenous populations of neurons.
These models range from purely heuristic ones (as the well-
known Wilson-Cowan model [1]), to more refined versions
obtained by considering the eigenfunction expansion of the
Fokker-Planck equation for the distribution of the membrane
potentials [2,3]. However, quite recently, a next-generation
neural mass model has been derived in an exact manner
for heterogeneous populations of quadratic integrate-and-fire
(QIF) neurons [4]. This new generation of neural mass models
describes the dynamics of networks of spiking neurons in
terms of macroscopic variables, like the population firing rate
and the mean membrane potential, and it has already found
various applications in many neuroscientific contexts [5–13].

Neural populations can display collective events, re-
sembling spiking or bursting dynamics, observable at the
single-neuron level [14,15]. In particular, in this context, tonic
spiking corresponds to periodic collective oscillations (COs),
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while a population burst is a relaxation oscillation connecting
a spiking regime to a silent (resting) state [16].

Regular collective oscillations have been reported for spik-
ing neural populations with purely excitatory [17,18] or
inhibitory interactions [19]. The emergence of these oscilla-
tions have been usually related to the presence of a synaptic
timescale [20] or to a delay in the spike transmission [21]. In-
deed, as shown in Refs. [7,22], the inclusion of exponentially
decaying synapses in inhibitory QIF networks is sufficient
for the appearance of COs, corresponding to limit cycles
emerging via a Hopf bifurcation in the associated neural mass
formulation.

A prominent role for the emergence of population bursts
is played by spike-frequency adaptation (SFA), a mechanism
for which a neuron, subject to a constant stimulation, grad-
ually lowers its firing rate [23]. Adaptation in brain circuits
is controlled by cholinergic neuromodulation. In particular an
increase of the acetylcholine neuromodulator released by the
cholinergic nuclei leads to a clear reduction of SFA in the
Cornu Ammonis area 1 (CA1) pyramidal cells of the hip-
pocampus [24]. Recently, it has been shown that an excitatory
next-generation neural mass equipped with a mechanism of
global adaptation (specifically short-term depression or SFA)
can give rise to bursting behaviors [11].
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Furthermore, cholinergic drugs are responsible for a modi-
fication of the neural oscillations frequency, specifically of the
θ and γ rhythms [25–27], which are among the most common
brain rhythms [28]. Specifically γ oscillations, which have
been observed in many areas of the brain [29], have a range
between �30 and 120 Hz, while θ oscillations correspond to
4–12 Hz in rodents [30,31] and to 1–4 Hz in humans [32].
Moreover, γ oscillations have been recently categorized in
three distinct bands for the CA1 of the hippocampus [31]:
a slow one (�30–50 Hz), a fast one (�50–90 Hz), and
a so-termed ε band (�90–150 Hz). γ rhythms with simi-
lar low- and high-frequency subbands occur in many other
brain regions besides the hippocampus [33,34] and they are
usually modulated by slower θ rhythms in the hippocampus
during locomotory actions and rapid eye movement (REM)
sleep. This modulation is an example of a more general
mechanism of cross-frequency coupling (CFC) between a
low and a high-frequency rhythm, which is believed to be
functionally relevant for the brain activity [35]: low-frequency
rhythms (such as θ ) usually involve broad regions of the
brain and are entrained to external inputs and/or cognitive
events, while high-frequency oscillations (such as γ ) reflect
local computation activity. Thus CFC can represent an ef-
fective mechanism to transfer information across spatial and
temporal scales [35,36]. The most studied CFC mechanism
is the phase-amplitude coupling, which corresponds to the
modification of the amplitude (or power) of γ -waves in-
duced by the phase of the θ oscillations; this phenomenon
is often referred as θ -nested γ oscillations [37]. Choliner-
gic neuromodulation, and therefore SFA, has been shown to
control θ -γ phase-amplitude coupling in freely moving rats
in the medial entorhinal cortex [38] and in the prefrontal
cortex [39].

In this paper we want to compare the role played by the
spike-frequency adaptation in shaping the emergent dynamics
in two simple setups: either purely inhibitory or purely excita-
tory neural networks. In this regard we consider fully coupled
QIF neurons with SFA, interacting via exponentially decaying
post-synaptic potentials. The spike-frequency adaptation is
included in the model via an additional collective afterhyper-
polarization (AHP) current, which temporarily hyperpolarizes
the cell upon spike emission, with a recovery time of the order
of hundreds of milliseconds [23,25,40]. We will first analyze
the dynamics of an isolated population with SFA and then
extend the analysis to two symmetrically coupled populations.
In the latter case we will focus on the emergence of collective
solutions (either asynchronous or characterized by population
spiking and bursting) with particular emphasis of the symmet-
ric or nonsymmetric nature of the dynamics displayed by each
population [41].

The emergence of CFC among oscillations in the θ and γ

range have been previously reported for next-generation neu-
ral masses: namely, for two asymmetrically coupled inhibitory
populations with different synaptic timescales [7], as well
as for inhibitory and excitatory-inhibitory networks under an
external θ -drive [10]. Here, we show that, in presence of SFA,
θ -γ CFCs naturally emerge in absence of external forcing and
for symmetrically coupled populations. The cross-frequency
coupling is due to the presence of a fast timescale associ-
ated to the synaptic dynamics and a slow one relative to the

adaptation. Quite peculiarly, inhibitory interactions give rise
to slow γ oscillations (30–60 Hz), while excitatory ones are
associated to fast γ rhythms (60–130 Hz). Furthermore, we
will show that SFA controls the frequency of the slow and
fast rhythms as well as the entrainement among θ and γ

rhythms.
This paper is organised as follows. Section II is devoted to

the introduction of the QIF neuron and of the studied network
models, as well as to the presentation of the corresponding
neural mass models. The methods employed to characterize
the linear stability of the stationary solutions for a single
and two coupled populations are reported in Sec. II D. In
Sec. III A the regions of existence of population spikes and
bursts are identified for a single population with SFA together
with the bifurcation diagrams displaying the possible collec-
tive dynamical regimes. The analysis is then extended to two
symmetrically coupled excitatory or inhibitory populations
without SFA in Sec. III B and with SFA in Sec.III C. The
relevance and influence of SFA for θ -γ CFC for two symmet-
rically coupled populations is examined in Sec. IV. Finally a
summary and a brief discussion of the results is reported in
Sec. V. The Appendix summarizes the methods employed to
study the linear stability of the stationary solutions for a single
population.

II. MODEL AND METHODS

A. Quadratic integrate and fire (QIF) neuron

As single-neuron model we consider the QIF neuron,
which represents the normal form of Hodgkin class I excitable
membranes [42] and it allows for exact analytic treatments of
network dynamics at the mean-field level [4]. The membrane
potential dynamical evolution for an isolated QIF neuron is
given by

τV̇ (t ) = V 2(t ) + η, (1)

where τ = 10 ms is the membrane time constant and η is the
excitability of the neuron.

The QIF neuron exhibits two possible dynamics depending
on the sign of η. For negative η the neuron is excitable, and for
any initial condition V (0) <

√−η it reaches asymptotically
the resting value −√−η. However, for initial values larger
than the excitability threshold, V (0) >

√−η, the membrane
potential grows unbounded and a reset mechanism has to be
introduced together with a formal spike emission to mimic the
spiking behavior of a neuron. As a matter of fact, whenever
V (t ) reaches a threshold value Vth, the neuron delivers a for-
mal spike and its membrane voltage is reset to Vr ; for the QIF
neuron Vth = −Vr = ∞. In other words the QIF neuron emits
a spike at time tk whenever V (t−

k ) → ∞, and it is instanta-
neously reset to V (t+

k ) → −∞. For positive η, the neuron is
suprathreshold and it delivers a regular train of spikes with
frequency

√
η/π .

B. Network models of QIF neurons

We consider a heterogeneous network of N fully cou-
pled QIF neurons with spike-frequency adaptation (SFA). The
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membrane potential dynamics of QIF neurons can be written
as

τV̇i(t ) = V 2
i (t ) + ηi + JS(t ) − Ai(t ), (2a)

τAȦi(t ) = −Ai(t ) + α
∑

m|t i
m<t

δ
(
t − t i

m

)
(2b)

i = 1, . . . , N,

τSṠ(t ) = −S(t ) + 1

N

N∑
j=1

∑
k|t j

k <t

δ
(
t − t j

k

)
, (2c)

where the network dynamics is given by the evolution of 2N +
1 degrees of freedom. Here, ηi is the excitability of the ith
neuron and J is the synaptic strength which is assumed to be
identical for each synapse. The sign of J determines if the
presynaptic neuron is excitatory (J > 0) or inhibitory (J < 0).
Moreover, S(t ) is the global synaptic current accounting for all
the previously emitted spikes in the network, where t j

k < t is
the spike time emission of the kth spike delivered by neuron
j. We assumed exponentially decaying PSPs with decay rate
τS , therefore S(t ) is simply the linear superposition of all the
PSPs emitted at previous times in the whole network. Since
we have considered a fully coupled network, S(t ) is the same
for each neuron. The adaptation variable Ai(t ) accounts for
the decrease in the excitability due to the activity of neuron
i. Each time the neuron emits a spike at time t i

k , the variable
Ai is increased by a quantity α and the effect of the spikes is
forgotten exponentially with a decay constant τA. We termed
this version of the network model μ-SFA, since it accounts for
the adaptability at a microscopic level.

However, as shown in Ref. [9], by assuming that the spike
trains received by each neuron have the same statistical prop-
erties of the spike train emitted by a single neuron (apart
from obvious rescaling related to the size), the SFA can be
included in the model also in a mesoscopic way. In this case
the evolution equations for the membrane potentials read as

τV̇i(t ) = V 2
i (t ) + ηi + JS(t ) − A(t ), (3a)

i = 1, . . . , N,

τAȦ(t ) = −A(t ) + α

N

N∑
j=1

∑
k|t j

k <t

δ
(
t − t j

k

)
, (3b)

τSṠ(t ) = −S(t ) + 1

N

N∑
j=1

∑
k|t j

k <t

δ
(
t − t j

k

)
, (3c)

where the number of ODEs describing the network dynamics
is now reduced to N + 2 and the SFA dynamics is common to
all neurons and driven by the population firing rate

r(t ) = 1

N

N∑
j=1

∑
k|t j

k <t

δ
(
t − t j

k

)
. (4)

In the following we will denote this network model as m-SFA.
The treatment of the N adaptability variables {Ai} in terms of
a single mesoscopic one is clearly justified (i) for relatively
narrow distributions of the excitabilities with respect to the
median excitability value [13,43] and (ii) for sufficiently long

adaptive timescale τA � τS . While the former assumption im-
plies limiting the variability of the firing rates of the single
neurons, the latter allows us to neglect the modulations of the
firing rates on synaptic timescales [11].

In a large part of the paper, we will consider adimensional
time units, therefore the variables entering in Eqs. (2) and (3)
will be rescaled as follows:

t̃ = t

τ
S̃ = τS, Ãi = τAi, Ã = τA, (5)

and the timescales as

τs = τS

τ
, τa = τA

τ
. (6)

Only in the final Secs. IV and V, we will come back to
dimensional time units to make easier the comparison with
experimental findings. To simplify the notation and without
lack of clarity we will omit in the (˜) symbol on the adimen-
sional variables and parameters.

C. Neural mass models

1. Single neural population

As shown in Ref. [4], a neural mass model describing the
macroscopic evolution of a fully coupled heterogeneous QIF
spiking network with instantaneous synapses can be derived
analytically, by assuming that the excitabilities {ηi} follow a
Lorentzian distribution

g(η) = 1

π




(η − η̄)2 + 
2
, (7)

where η̄ is the median value of the distribution and 
 is
the half-width at half-maximum (HWHM), accounting for the
dispersion of the distribution. The derivation is possible for
the QIF neuronal model, since its dynamical evolution can be
rewritten in terms of purely sinusoidal functions of a phase
variable. This allows us to apply the Ott-Antonsen Ansatz,
introduced for phase oscillator networks [44], in the context
of spiking neural networks [45,46]. In particular, the analytic
derivation reported in Ref. [4] allows us to rewrite the net-
work dynamics in terms of only two collective variables: the
population firing rate r(t ) and the mean membrane potential
v(t ) = ∑N

i=1 Vi(t )/N . The neural mass thus introduced can be
extended to include finite synaptic decays; for exponentially
decaying synapses it takes the following form [22]:

ṙ = 


π
+ 2rv, (8a)

v̇ = v2 + η̄ − (πr)2 + Js, (8b)

τsṡ = −s + r, (8c)

where a third variable in now present, s(t ), representing the
global synaptic field.

The inclusion of SFA in the neural mass model Eqs. (8)
is straightforward when considering the m-SFA, since, in this
context, the adaptability is described by a collective variable.
This finally leads to the following four dimensional meso-
scopic model for a single QIF population,

ṙ = 


π
+ 2rv, (9a)

v̇ = v2 + η̄ − (πr)2 + Js − A, (9b)
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τsṡ = −s + r, (9c)

τaȦ = −A + αr, (9d)

which represents the exact mean-field formulation of the QIF
spiking network with m-SFA, described by the N + 2 set of
ODEs (3), in the limit N → ∞. However, as we will show
thereafter, it can also capture the dynamics of the network with
μ-SFA, described by the set of ODEs (2) and characterized
by N2 + 1 variables, for limited neural heterogeneity (i.e.,
sufficiently small 
) and sufficiently long adaptive timescales
τa.

2. Two symmetrically coupled neural population

The dynamics of two symmetrically coupled identical neu-
ral masses with adaptation is described by the 8-dim system
of ODEs,

ṙ1,2 = 


π
+ 2r1,2v1,2, (10a)

v̇1,2 = v2
1,2 + η̄ − (πr1,2)2 + Jss1,2 + Jcs2,1 − A1,2, (10b)

τsṡ1,2 = −s1,2 + r1,2, (10c)

τaȦ1,2 = −A1,2 + αr1,2, (10d)

where Js and Jc represent the self- and cross-coupling, respec-
tively.

On the basis of Eqs. (10), one cannot distinguish
between the two populations, therefore these equa-
tions are invariant under the permutation of the variables
(r1, v1, s1, A1, r2, v2, s2, A2)−→ (r2, v2, s2, A2, r1, v1, s1, A1)
and they admit the existence of entirely symmetric solutions
(r1, v1, s1, A1) ≡ (r2, v2, s2, A2).

By following Ref. [41], we analyze the stability of sym-
metric solutions by transforming the original set of variables
in the following ones:⎛

⎜⎜⎝
rl,t

vl,t

sl,t

Al,t

⎞
⎟⎟⎠ = 1

2

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

r2

v2

s2

A2

⎞
⎟⎟⎠ ±

⎛
⎜⎜⎝

r1

v1

s1

A1

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

, (11)

where we refer to (rl , vl , sl , Al ) and (rt , vt , st , At ) as the lon-
gitudinal and transverse set of coordinates, respectively.

In this new set of coordinates, the trajectories of
the symmetric solutions live in the invariant subspace
(rl , vl , sl , Al , rt ≡ 0, vt ≡ 0, st ≡ 0, At ≡ 0), with the longi-
tudinal variables satisfying the following set of ODEs:

ṙl = 


π
+ 2rlvl , (12a)

v̇l = v2
l + 1 − (πrl )

2 + (Js + Jc)sl − Al , (12b)

τsṡl = sl − rl , (12c)

τaȦl = Al − αrl . (12d)

D. Linear stability analysis

1. Stationary solutions for a single population

By following Ref. [22], we explore the stability of the sta-
tionary solutions of the single QIF population, corresponding
to fixed-point solutions (r0, v0, s0, A0) in the neural mass for-

mulation (9). These fixed-point solutions are given by s0 = r0,
A0 = αr0, together with the implicit algebraic system

v0 = − 


2πr0
, (13)

0 = v2
0 + η̄ + Jr0 − π2r2

0 − αr0. (14)

Notice that the whole equilibrium solution can be
parametrized in terms of r0.

The linear stability analysis of the fixed point can be
performed by estimating the eigenvalues λ of the associated
Jacobian matrix

H =

⎛
⎜⎜⎜⎜⎝

2v0 2r0 0 0

−2π2r0 2v0 J −1
1
τs

0 − 1
τs

0
α
τa

0 0 − 1
τa

⎞
⎟⎟⎟⎟⎠. (15)

The eigenvalues are the solutions of the corresponding char-
acteristic polynomial p(λ). In particular, assuming λ = i�
leads to the Hopf bifurcation curves, while setting λ = 0 leads
to saddle-node and pitchfork bifurcations. This analysis is
performed in details in the Appendix.

2. Stationary solutions for two coupled populations

The stability of the symmetric solutions of Eqs. (12) can be
examined in the longitudinal or transverse manifold by em-
ploying the transformation of variables reported in Eq. (11).
In particular, as seen in many contexts ranging from chaotic
maps [47] to chimera states [48], the longitudinal instabilities
preserve the symmetric nature of the solutions, while the
transverse ones are responsible for symmetry breaking.

Here, we will focus on the linear stability of symmetric sta-
tionary solutions, corresponding to fixed points (r̄l , v̄l , s̄l , Āl )
of Eqs. (12). The linear and transverse stability analysis can
be performed by considering the linearized evolution around
the fixed points given by⎛

⎜⎜⎜⎜⎝

δṙl,t

δv̇l,t

δṡl,t

δȦl,t

⎞
⎟⎟⎟⎟⎠ = Hl,t

⎛
⎜⎜⎜⎜⎝

δrl,t

δvl,t

δsl,t

δAl,t

⎞
⎟⎟⎟⎟⎠, (16)

with

Hl,t =

⎛
⎜⎜⎜⎜⎝

2ṽl,t 2r̃l,t 0 0

−2π2r̃l,t 2ṽl,t Js ± Jc − 1
τa

1
τs

0 − 1
τs

0
α
τa

0 0 − 1
τa

⎞
⎟⎟⎟⎟⎠. (17)

The longitudinal and transverse stability of the fixed points
can be analysed by considering the eigenvalue problems as-
sociated to Hl and Ht , respectively. In particular, we notice
that the stability can be lost in two different ways: (i) one
eigenvalue becomes exactly equal to 0 (similarly to a limit
point); (ii) the real part of two complex conjugates eigenvalues
becomes exactly zero (Hopf bifurcation).

Therefore, we have a total of four possible changes of
stability of the symmetric stationary solutions giving rise to
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the following bifurcations in the complete eight-dimensional
phase space:

(1) Longitudinal limit point bifurcation (LLP): Saddle-
node bifurcation in the original system;

(2) Longitudinal Hopf bifurcation (LH): Hopf bifurcation
generating symmetric oscillations;

(3) Transverse limit point bifurcation (TLP): Branch-point
or pitchfork bifurcation in the original system giving rise to
two different equilibria for the two populations;

(4) Transverse Hopf bifurcation (TH): Hopf bifurcation in
the original system generating asymmetric oscillations for the
two populations, which can differ simply in their phase or
even in amplitude and phase.

The transverse and longitudinal stability analysis of the
symmetric solutions is verified and complemented by employ-
ing standard continuation packages (such as MATCONT [49])
over the dynamics of the complete system (10),

III. RESULTS

The analysis reported in this paper will be focused on neu-
ral mass models, however, before reporting the corresponding
results, let us compare in a few cases the simulations done sep-
arately for the network and the neural masses. As previously
stated, the neural mass model (8) reproduces exactly the pop-
ulation dynamics of a network of QIF spiking neurons with
m-SFA (3) for a sufficiently large number of neurons. Indeed,
as shown in Fig. 1, the agreement between the neural mass
(red solid line) and the network simulations (blue squares) is
very good already for N > 10 000 for different macroscopic
regimes observable in purely inhibitory or excitatory popula-
tions. For what concerns the μ-SFA network model (2) (black
circles), while in the asynchronous regime (stationary state)
the agreement with the other two models is noticeable [see
Fig. 1(a)], in presence of collective oscillations there is a
clear dephasing between neural mass and μ-SFA dynamics at
sufficiently long times [see Figs. 1(b) and 1(c)]. In general, the
μ-SFA networks will display the same macroscopic states and
bifurcation structure as the neural mass models. However, dis-
crepancies among the two approaches should be expected for
low median excitability with a high level of heterogeneity or
for faster adaptation timescales, as shown in Refs. [11,13,43].

A. Single population with SFA

In this subsection we analyze the relevance of SFA for the
emergence of collective dynamics. In particular, we consider
a single heterogeneous population of QIF neurons with SFA.
All the results here reported are based on the linear stability
analysis of the stationary solutions of the neural mass models,
as discussed in Sec. II D 1 and the Appendix.

In the absence of adaptation, the excitatory population with
exponentially decaying synapses displays only fixed-point so-
lutions (namely, foci): for sufficiently negative (positive) η̄,
a single stable fixed point is present corresponding to a low
(high) firing rate solution, while just below η̄ = 0, the two
solutions coexist. For exponentially decaying synapses both
fixed points are foci, characterized by one real and two com-
plex conjugate eigenvalues, at variance with what reported in
the absence of a synaptic timescale [4], where the low firing

FIG. 1. Comparison of population firing rate r(t ) as obtained by
the network models with μ-SFA (2) (black circles) and with m-SFA
(3) (blue squares), with the evolution of the neural mass models
(8) (red line) for different macroscopic behaviors: (a) stationary
state (parameters J = −6, 
 = 0.5, α = 1); (b) population spiking
(J = −6, 
 = 0.12, α = 1); and (c) population bursting (J = 15,

 = 0.12, α = 20). Other parameters are τs = 1.5, τa = 10, and
η̄ = 1. For the network simulations the number of considered QIF
neurons is N = 10 0000 [panel (a)] or N = 100 000 [panels (b) and
(c)]. For all comparisons the neural mass model has been integrated
starting from initial values of r, v, A, and s as obtained from the
microscopic state of the considered networks.

solution is a node, not a focus. However, in the inhibitory
case, one observes tonic population spiking in a limited range
of synaptic timescales τs � 0.1–100 and for not too wide
heterogeneity distributions and synaptic coupling strenghts
|J| [7,22]. In this case the period of the COs is essentially
controlled by the synaptic timescale, since the oscillations
emerge due to the inhibitory action that desynchronizes the
spiking activity [22].

In the presence of SFA, COs are observable both in purely
excitatory and inhibitory populations, as shown in Fig. 2(a),
where the Hopf bifurcation lines are reported (as solid lines)
in the (J, η̄) plane at different values of the HWHM of the
heterogeneity 
. In the inhibitory case, for the present choice
of synaptic and adaptation timescales, COs emerge for any
value of |J|, for sufficiently large excitatory drive η̄, i.e., above
the Hopf bifurcation curves shown in Fig. 2(a) for J < 0.
For increasing 
, the Hopf curve moves at higher values of
η̄, thus indicating that a higher excitatory drive is required
to overcome the heterogeneity present in the population. In
the excitatory case, stable COs are instead limited to a small
portion of the plane in proximity of η̄ ≈ 0 and J � 5–10,
as shown the inset of Fig. 2(a). The COs are stable within
the closed loop in the (J, η̄) plane, while, outside the loop,
the macroscopic limit cycles are unstable and eventually both
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FIG. 2. Single neural mass with SFA. (a) Hopf boundaries in the
(J, η̄) space at different values of 
. Parameters used here τs = 2,
τa = 10, and α = 5. Solid lines refer to Hopf curves while dashed
lines refer to saddle-node curves. At J > 0 the Hopf curves meet
with the saddle node curves at Bogdanov Takens points (circle), as
shown in the inset. (b) Oscillations generated within the Hopf region
in the inhibitory case with η = 1 and J = −7 (top) and the excitatory
case with η = 0.1 and J = 7 (bottom). In both cases 
 = 0.05 was
used.

branches of the Hopf curve end at a Bogdanov Takens (BT) bi-
furcation point of codimension two (circles in the inset) [50].
As expected, at this point, saddle-node bifurcation curves of
fixed points (dashed lines) emerge.

As it can be seen in Fig. 2(b), COs generated via inhibi-
tion (top) are population spikes characterized by an unique
oscillation period, whose value is controlled by α and which
can range form τs to τa. However, excitatory mediated COs
(bottom) are characterized by two frequencies: a slow one
(definitely longer than τa), responsible for the alternation of
silence and high activity in the population and a fast one
(of the order of τs), controlling the fast damped oscillations
developing on top of the slow carrier. These kind of COs
have been termed emergent bursting or population bursting,
in analogy with the bursting activity of the single neurons
[11,51]. To better understand the origin of these population
bursts we have performed a standard slow-fast analysis, by
considering as fast subsystem the one with constant adaptation
A. In particular, we analyze the possible solutions emerging in
the fast subsystem [Eqs. (9a)–(9c)] as a function of the control
parameter η̄ − A. The solutions are stable (unstable) fixed
points reported as solid (dashed) black lines in Fig. 3 and they
correspond to a low and a high firing solution that can coexist
in a certain interval of the parameter values η̄ − A. Together
with the fast subsystem solutions, we display also the popula-
tion burst (solid red line) obtained for the full equation system
(9) as r(t ) = r[η̄ − A(t )]. As shown in the upper insets of

FIG. 3. Single neural mass with SFA. The population firing
rate r versus η̄ − A for the population burst solution displayed in
Fig. 2(b) (bottom). The solid (dashed) black lines refer to stable
(unstable) fixed points of the fast subsystem [Eqs. (9a)–(9c)]. The
filled black squares denote the saddle-node bifurcations in the fast
subsystem. The red solid line is the bursting solution of the complete
system (9), where the black arrows indicate the time evolution along
such a solution. In the upper insets are shown the population firing
rate r(t ) and the adaptation variable A(t ) as a function of time during
the evolution of the population burst. Parameters as described in the
caption of Fig. 2.

Fig. 3, the variable A(t ) displays regular periodic oscillations
with period τa, each complete oscillation corresponding to a
population burst in the variable r(t ).

By examining the evolution of the bursting solution in
Fig. 3, we observe that the orbit is initially lying on the lower
stable solution branch of the fast subsystem. However, during
the burst evolution (indicated by the black arrows) the variable
A(t ) decreases. This decrease finally leads the orbit beyond the
region of existence of the lower branch, where only the higher
branch state is present and stable. Afterwards, the orbit is at-
tracted towards the focus in the upper branch and approaches
it by displaying damped oscillations with periods of the order
of �1.1–2.8. In the meantime, the variable A is growing. The
growth of A leads the burst orbit beyond the region of exis-
tence of the upper state and, consequently, the orbit is attracted
back towards the only stable solution, i.e., the lower state, and
the orbit evolution repeats. However, it still remains an aspect
to be clarified regarding this slow-fast analysis: why the orbit
approaches the upper state by displaying damped oscillations,
while it approaches the lower state without such oscillations,
despite both solutions are foci of the fast subsystem. This is
due to the fact that the period of the damped oscillations in the
lower branch is definitely larger than the characteristic period
of the population bursts ta (namely, �12–40), and therefore
oscillations cannot be observed on this timescale.

The effect of the adaptation on the population dynamics
can be better appreciated by considering the bifurcation dia-
gram in the (J, α) plane for different 
 values, as shown in
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FIG. 4. Single neural mass with SFA. Hopf boundaries in the
(J, α) space at different values of 
. Parameters used here: τs = 2,
τa = 10, and η̄ = 1. Dashed vertical line separates the excitatory
regime from the inhibitory one. The symbol refers to the general-
ized Hopf (GH) bifurcation point for 
 = 0.1 located at (J, α) =
(5.86, 9.81).

Fig. 4. As already mentioned, in the excitatory case no COs
are observable in the system in the absence of adaptation.
Instead, in the presence of SFA there is a wide region where
population bursts can be observed for sufficiently large α and
for any 
: the region inside each Hopf bifurcation curve,
identified by circles of different colors for each 
 value in
Fig. 4. In this case, on the lower Hopf bifurcation curve,
a generalized Hopf (GH) point is observable, distinguishing
supercritical (at smaller J) from subcritical Hopf-bifurcations
(at larger J); an example is shown for 
 = 0.1 in Fig. 4. Just
above the subcritical line one has a region where population
bursts and stationary foci coexist, similarly to what is reported
in Ref. [11] for an adaptation current with an α-kernel and
instantaneous synapses.

For the inhibitory case an interval of synaptic strength J
where COs are present can be identified even at α = 0, for
sufficiently small 
 � 0.13: it is the interval between the
crossing of the Hopf curves with the zero axis in Fig. 4. The
presence of adaptation shrinks the interval where COs can be
observed, having in this case an opposite effect with respect
to what seen for an excitatory population. This is true for
sufficiently large heterogeneity 
 > 
c � 0.063271, while,
below the critical value 
c, the Hopf curves for excitatory
and inhibitory populations merge together, giving rise to a
wide region where COs are observable (see the blue circles
in Fig. 4 delimiting the internal region of existence of COs for

 = 0.05).

In summary, the adaptation has a twofold effect of pro-
moting COs in excitatory neural masses and preventing their
emergence in inhibitory ones. This can be explained by the
fact that in the excitatory case the only source of inhibition
arises from SFA. As a consequence, we can expect that the
adaptation timescale plays a role somehow similar to that
of the synaptic timescale in purely inhibitory networks for

the emergence of COs [19]. In the inhibitory case the effect
of adaptation is to increase the inhibitory effect and to slow
down the inhibitory response, thus, for sufficiently large α,
the COs can eventually disappear for a mechanism similar to
that reported in Refs. [7,22] in the absence of adaptation.

B. Two coupled populations without SFA

In this subsection we analyze the dynamical regimes
emerging in two symmetrically coupled neural mass mod-
els without adaptation, corresponding to Eqs. (10) with α =
0. In particular, we vary the cross-coupling and the me-
dian excitability as control parameters, thus evaluating the
bifurcation diagram in the bidimensional plane (Jc, η̄). The
synaptic timescale τs, the level of heterogeneity 
 and the
self-coupling Js are kept fixed.

1. Two inhibitory populations

Let us first consider two inhibitory neural masses that dis-
play, when uncoupled, a stationary solution (fixed point) for
sufficiently small η̄ < ηc, and COs for larger η̄ > ηc. Once
symmetrically coupled, the two populations can display vari-
ous dynamical regimes emerging from the stable fixed points
due to longitudinal or transverse instabilities, as shown in
Fig. 5. In the present analysis as well as in the following, we
will only consider transitions associated to stable states (solid
lines in Fig. 5) and we will neglect those corresponding to
unstable states (dashed lines).

In particular, the longitudinal Hopf (LH) instability [blue
solid line in Fig. 5(a)] divides the plane (Jc, η̄) in two parts:
one associated to fixed points (COs) below (above) the line.
The LH line is the continuation of the critical point ηc,
found at Jc ≡ 0, to finite cross-couplings. Another bifurcation
curve corresponding to a transverse instability is reported in
Fig. 5(a). This is a TLP bifurcation line (red solid curve):
the dynamical evolution of the two populations is identical
(different) to the right (to the left) of this curve. The LH and
TLP bifurcation lines meet at a zero-Hopf (ZH) point, thus
creating 4 different regions with distinct types of dynamics.
For each region the evolution of the firing rate of population 1
(population 2) is shown in Figs. 5(b)–5(e) as blue (red) solid
line, and they correspond to the following regimes:

(1) region I: the two firing rates are constant and identical
[see Fig. 5(b)];

(2) region II: the two firing rates are constant but with
different values [see Fig. 5(c)];

(3) region III: the two firing rates oscillate in perfect syn-
chrony [see Fig. 5(d)];

(4) region IV: the two firing rates oscillates with different
amplitudes, the two populations oscillate in phase but their
activity is different [see Fig. 5(e)].

The collective periodic oscillations here reported can be all
identified as population spikes [14], where a large part of the
neurons fires within a short time window and their periods are
obviously related to the synaptic timescale τs [22].

The nonidentical solutions observable in Figs. 5(c) and
5(e) correspond to a spontaneous symmetry breaking of the
dynamical evolution and they emerge for |Jc| > |Js|. In partic-
ular, these solutions can be identified as generalized chimera
states [41,52], where the two populations display different
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FIG. 5. Two symmetrically coupled inhibitory populations without adaptation. (a) Phase diagram in the (Jc, η̄) space showing the
longitudinal (blue solid line) and transverse (red solid line) stability boundaries. Stability boundaries of stable (unstable) solutions are
shown as (solid) dashed lines. Longitudinal and transverse stability boundaries meet at a zero-Hopf point dividing the parameter space in
four regions. A sample time trace of the firing rate of each population is shown in panels (b)–(e) for the four possible dynamical regimes:
(b) region I, symmetric fixed points (Jc, η̄) = (−25, 5); (c) region II, asymmetric fixed points (Jc, η̄) = (−33, 7); (d) region III, symmetric
COs (Jc, η̄) = (−25, 10); (e) region IV, asymmetric COs (Jc, η̄) = (−33, 10). The blue (red) solid lines in panels (b)–(e) denotes the firing
rate of population 1 (population 2). Other parameters for this figure: τs = 2, 
 = 0.5, Js = −20, and α = 0.

levels of synchronization characterized by constant [as in
Fig. 5(c)] or periodically [as in Fig. 5(e)] oscillating Kuramoto
order parameters [53], as we have verified by employing the
conformal transformation introduced in Ref. [4], which relates
the Kuramoto order parameter to the mean membrane poten-
tial and the population firing rate.

2. Two excitatory populations

As a complementary analysis, we consider now two iden-
tically coupled excitatory neural masses. In this case, for
sufficiently low values of the cross-coupling Jc, we observe
two coexisting symmetric fixed points, corresponding to a low
and a high-activity state of the neural population, analogously
to what found for a single population. These solutions are
shown in Fig. 6(a) as a function of η̄ for increasing values
of Jc. At low values (namely, Jc = 10 and 20) we observe
that the low-activity state looses its stability by increasing η̄

via a saddle-node bifurcation; this fixed point is connected to
the high-activity state via an unstable solution that turns to be
stable via a second saddle-node bifurcation. In particular, we
observe a coexistence region between the two solutions delim-
ited by the occurrence of the two saddle-node bifurcations.
At larger cross-coupling (Jc = 40) the high-activity state is
instead always unstable.

The complete scenario can be better understood by con-
sidering the two dimensional phase diagram in the plane

(Jc, η̄), shown in Fig. 6(b), obtained by computing longitu-
dinal and transverse instabilities for this system. Let us first
focus on the part of phase diagram delimited by the ver-
tical line Jc � 32.5 (yellow solid line) where one has only
symmetric solutions and three distinct regions separated by
two longitudinal saddle-node bifurcation curves (LLP) are
observables:

(1) region I: a unique stable low-activity fixed point corre-
sponding to the lower branch of equilibria in Fig. 6(a);

(2) region II: coexistence of two fixed points correspond-
ing to high and low activity. The region inside the red dashed
curve corresponding to a TLP bifurcation line is not observ-
able, since it is related to the continuation of the branch point
appearing in the unstable branch in Fig. 6(a) at low Jc;

(3) region III: an unique stable high-activity fixed point
corresponding to the stable upper branch of equilibria in
Fig. 6(a).

At Jc ≈ 32.5 a spontaneous symmetry breaking occurs in
the system, due to a transverse Hopf instability (TH), leading
to the emergence of collective antiphase oscillations from
the high-activity fixed point. These COs are characterized by
extremely fast periods of oscillation definitely smaller than the
synaptic time constant τ . Here two other dynamical regimes
are now observable:

(1) region IV: the stable high-activity point is no longer
stable, and an asymmetric solution where both populations
oscillate in antiphase appears;
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FIG. 6. Two symmetrically coupled excitatory populations without adaptation. (a) Evolution of the population firing rates r1,2 versus η̄

for the stationary solution corresponding to an asynchronous regime. The fixed-point solutions are shown for three different values of the
cross-coupling: namely, Jc = 10 (blue lines), 20 (red lines), and 40 (yellow lines). Stable (unstable) solutions are denoted by solid (dashed)
lines, saddle-node bifurcations ae denoted by filled squares, pitchfork bifucations by empty circles and Hopf bifurcations by empty diamonds.
(b) Two-dimensional phase diagram in the (Jc, η̄) plane showing the saddle node curves (LLP) as black solid curves and the transverse Hopf
(TH) boundary as yellow solid line. The dashed lines refer to transverse instabilities connecting unstable solutions, which are therefore not
observable in the system evolution. Other parameters for this figure: τs = 2, 
 = 0.5, Js = 20, and α = 0.

(2) region V: below the upper saddle-node curve the asym-
metric solution characterized by antiphase oscillations is still
stable and coexists with the low-activity fixed point. The lower
branch of the saddle-node curve to the right of the zero-
Hopf point delimits the region where spontaneous symmetry
breaking occurs. The dashed yellow curve in region V is
the continuation of the Hopf point reported in Fig. 6(a) for
Jc = 40, which leads to unstable oscillations of asymmetric
nature (unstable TH curve).

C. Two coupled populations with SFA

We now investigate the collective dynamics emerging
in a system of two symmetrically coupled neural masses
with spike-frequency adaptation. We first analyze two cou-
pled inhibitory populations and then two coupled excitatory
ones.

1. Two inhibitory populations

Let us first analyze the phase diagram in the (Jc, η̄) plane
for two coupled inhibitory populations with SFA. This is
shown in Fig. 7(a) and it is quite similar to the one obtained
in the absence of SFA in Fig. 5(a). In particular, we observe
the same four dynamical regions I–IV previously reported for
the case in the absence of adaptation. However, due to SFA,
we have a new transverse Hopf (TH) line [yellow curve in
Fig. 7(a)], which originates from a Bogdanov Takens (BT)
bifurcation point. This new instability leads to the emergence
of slow collective oscillations in antiphase in region VI. An
example of this collective dynamics is reported in Fig. 7(c).
By crossing the longitudinal Hopf (LH) instability curve [blue

solid line in Fig. 7(a)], the slow and fast oscillations, asso-
ciated to the LH, combine themselves in region V, giving
rise to the so-called nested oscillations. In each population
these COs are characterized by a slowly varying envelope
joined to fast oscillations. These oscillations resemble the
so-called θ -nested γ oscillations observable in various part of
the brain, where the slow modulation is in the θ -range and the
fast oscillations in the γ band. In particular, these have been
measured in the hippocampus of behaving rats and shown to
be relevant for cognitive tasks, including navigation, sensory
association, and working memory [29–31,54]. In the present
case, due to the symmetry breaking, the two populations re-
veal slow-fast nested oscillations in antiphase as shown in
Fig. 7(b).

We then proceed to investigate the role played by the
adaptation parameter α on the collective dynamics. Therefore,
we computed the bifurcation diagram in the (η̄, α) plane, as
shown in Fig. 8. Let us first focus on the supercritical longi-
tudinal Hopf (LH) instability (blue solid line), which divides
regions I and III, where we find symmetric fixed points and
fast symmetric COs, respectively. Here, even for extremely
large α values, COs are observable. This seems in contra-
diction with the analysis reported for the single inhibitory
population with SFA. In such a case, for a constant value of
η̄, the increase of the α parameter led to a shrink of the region
where COs were observable, until they disappear completely
for sufficiently large α values. However, in the present case,
we see that the inhibitory effect, due to the adaptation, can be
compensated by increasing the neuron excitability η̄. Indeed,
the positive slope of the LH curve is consistent with this
interpretation.
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FIG. 7. Two symmetrically coupled inhibitory populations with SFA (a) Phase diagram in the (Jc, η̄) plane depicting the longitudinal
(transverse) stability boundary with red (blue) lines. Stability boundaries of stable (unstable) solutions are shown as solid (dashed) lines.
Longitudinal and transverse bifurcation curves divide the parameter space in six relevant regions. (b) Typical dynamical evolution in region V:
slow-fast nested collective oscillations in antiphase in the two populations for (Jc, η̄) = (−32, 10). (c) Typical dynamical evolution in region
VI: antiphase collective oscillations emerging for (Jc, η̄) = (−32, 7.5). The values of the other parameters are τs = 2, 
 = 0.5, Js = −20, and
α = 5.

For low α values we find a transverse instability curve
corresponding to a bifurcation line of limit points (TLP)
(red solid curve), which separates symmetric fixed points in
region I from asymmetric fixed points in region II. By in-
creasing η̄ we encounter the longitudinal Hopf bifurcation
line (LH) previously described, where the asymmetric fixed

FIG. 8. Two symmetrically coupled inhibitory populations with
SFA. Phase diagram in the (η̄, α) plane showing eight regions with
different dynamical regimes which are listed in details in Table I.
Regions I–VI as in Fig. 7; region VII: Coexistence between fast
symmetric COs and slow-fast nested COs; region VIII: coexistence
between fast symmetric and asymmetric COs. The symbols refer
to codimenstion two bifurcation points: namely, Bodgnatov-Takens
(BT) (black square), generalized-Hopf (GH) (green diamond), Hopf-
Hopf (HH) (red triangle), and zero-Hopf (ZH) (blue circle). The
remaining parameters are fixed as Jc = −33, Js = −20, 
 = 0.5,
τA = 10, and τs = 2.

points bifurcate toward asymmetric fast COs in region IV. By
following the TLP curve we observe, at a Bogdanov-Takens
(BT) point located at (η̄, α) ≈ (6.8, 3.8), the emergence of a
transverse Hopf (TH) bifurcation line (yellow solid curve in
Fig. 8). This TH line ends at another Bogdanov-Takens (BT)
point observable at very large η̄ values, always along the TLP
curve. The symmetry breaking associated to the transverse
Hopf instability leads from stable symmetric fixed points in
region I to slow COs in antiphase in region VI. By following
the TLP curve, we encounter a zero-Hopf (ZH) codimension
two bifurcation point, when this meets the LH line. The LH
line separates region VI, displaying slow COs in antiphase,
from region V where slow-fast nested COs in antiphase are
observable.

In this phase diagram we can identify two new dynamical
regimes with respect to the ones reported in Fig. 7(a), both
characterized by the coexistence of different stable solutions.
Firstly, let us observe that symmetric fast COs emerge only
to the right of the Neimark-Sacker (NS) curve [55] (in violet
in the figure), that emerges in the proximity of a Hopf-Hopf
(HH) codimension two bifurcation point (red triangle) [56].
Indeed, we have found coexisting regimes between symmetric
and asymmetric oscillations only to the right of the NS curve.
These regimes exist in region VII, where we have found stable
fast symmetric COs together with stable slow-fast nested COs,
and in region VIII, where stable fast symmetric and asymmet-
ric COs coexist. The green dotted line in Fig. 8, separating
region VII and III, where only symmetric solutions persist, has
been determined by direct simulations of the coupled neural
masses.

The last codimension two bifurcation point can be ob-
served along the unstable transverse Hopf branch (yellow
dashed line), corresponding to a generalized Hopf (GH)
(green diamond). It distinguishes between a supercritical
Hopf bifurcation line at higher η̄ values and a subcriti-
cal one at lower η̄. However, since it involves unstable
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TABLE I. Two symmetrically coupled inhibitory populations
with SFA. Macroscopic dynamical regimes observable in the dif-
ferent regions identified in Fig. 8. While regions I–IV are already
present in the system without SFA, regions V–VIII are observable
only when introducing SFA in the system.

Two coupled inhibitory populations

Region Dynamical Regime

I Symmetric fixed points
II Asymmetric fixed points
III Fast symmetric COs
IV Fast asymmetric COs
V Slow-fast nested COs in antiphase
VI Slow COs in antiphase
VII Coexistence between fast symmetric COs and

slow-fast nested COs in antiphase
VIII Coexistence between fast symmetric and

asymmetric COs

solutions, these are not observable in the dynamics of the
system.

The scenario that we have described in the (η̄, α) parameter
space is summarized in Table I.

2. Two excitatory populations

Let us now consider two symmetrically coupled excita-
tory populations with SFA. For not too large α values we
observe the same scenario as the one reported in Fig. 6(b)
in the absence of adaptation. Therefore, we do not describe
in detail the possible solutions here, since they have been
already reported in the previous Sec. III B 2. To observe new
dynamical regimes due to adaptation, we rather consider the
(η̄, α) plane for sufficiently large α values. Indeed, as shown
in Fig. 9(a), a new region VI emerges where identical bursting
oscillations can be observed in both populations, as shown in

Fig. 9(b). This region is delimited by two LH lines separating
it from region I, where the fixed point, corresponding to low
firing activity, is stable, and region IV, where fast COs in
antiphase are observable. The low-activity state gets unstable
by crossing the almost vertical LH line; once crossed the
LH line, it gives rise to symmetric relaxation oscillations
corresponding to a burst characterized by a silent regime
connected to fast modulated oscillations. This bursting dy-
namics is analogous to the one reported for a single excitatory
population with SFA, shown in Fig. 2(b). The other LH line
determines the stability of the COs in antiphase, which emerge
via a transverse Hopf (TH) bifurcation (red solid line) from
the destabilization of the high-activity fixed point present in
region III.

As observable in Fig. 9(a), for low α values and high
negative η̄ values, the system shows only two possible stable
regimes separated by a longitudinal saddle node bifurcation
curve (black solid line): a low-activity fixed point in region
I and a coexistence between two fixed points with different
activity levels in region II. Further increasing α, η̄ along the
branch point curve (LLP) leads to a codimension two ZH
point. Here emerges a new longitudinal Hopf curve (blue solid
line) which delimits the region V, where a coexistence be-
tween antiphase COs and a low-activity fixed point is present.
As we have already shown, antiphase COs are present also
in region IV, as the unique stable solution. Beyond these
broken symmetry solutions, where the same attractor is vis-
ited at different times by the two populations, we have been
able to identify another solution with broken symmetry at
quite large α values, as shown in Fig. 9(c). In this case,
both populations display bursting activity, characterized by
the same period of the slow modulation, but with different
amplitudes and frequencies for the modulated fast spiking
oscillations.

An overview of the possible dynamical regimes emerg-
ing in a system of two symmetrically coupled excitatory
populations is reported in Table II.

FIG. 9. Two symmetrically coupled excitatory populations with SFA. (a) Phase diagram in the (η̄, α) space showing six regions with
different dynamics. Parameters for this diagram: Jc = 20, Js = 8, 
 = 0.5, τA = 10 and τs = 2. Regions I–V as in Fig. 6(b). (b) Region
VI: symmetric bursting dynamics (η̄, α) = (5, 30). (c) An example of bursting with broken symmetry for parameters (η̄, α) = (23, 70). The
regimes here shown are summarized in Table II.
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TABLE II. Two symmetrically coupled excitatory populations
with SFA. Macroscopic dynamical regimes observable in the differ-
ent regions identified in Fig. 9. While regions I–V are already present
in the system without SFA, regions VI–VII are observable only when
introducing SFA in the system.

Two coupled excitatory populations

Region Dynamical Regime

I Low-activity symmetric fixed points
II Asymmetric fixed points (one low-activity and

one high-activity fixed point)
III High-activity symmetric fixed points
IV Fast asymmetric (antiphase) COs
V Coexistence between fast COs in antiphase and

low-activity fixed points
VI Symmetric bursting activity
VII Asymmetric bursting activity

IV. θ-γ CROSS-FREQUENCY COUPLING
DUE TO ADAPTATION

In this section we will focus on the dynamical regimes
where cross-frequency couplings among slow and fast collec-
tive oscillations are observable for two coupled excitatory or
inhibitory populations with SFA. In particular, due to their rel-
evance for brain dynamics we will consider as slow rhythms
the ones in the θ range (1–12 Hz) and as fast ones COs in the
γ band (30–130 Hz).

A. θ-nested γ oscillations in coupled inhibitory
populations with SFA

For two coupled inhibitory populations with SFA the slow-
fast nested COs in antiphase shown in Fig. 7(b) can be
classified as instances of CFCs. Here we will consider param-
eters allowing the slow (fast) rhythms to be in the θ (γ ) range
and we will analyze the dependence of these rhythms on the
adaptation. In this case the phase of the θ modulation affects
the amplitude of the γ -oscillations: this CFC mechanism is
termed phase amplitude coupling and it turns out to have been
observed in several parts of the brain [35]. Since the time
traces of the two populations are identical, but in antiphase,
we limit the analysis to only one trace. As shown in Fig. 10(a),
one observes distinct oscillatory periods: a slow intercycle
period Ts, which identifies the time in between two succes-
sive θ oscillations, and a fast intracycle period Tf between
successive γ peaks.

The evaluation of the power spectral density S( f ) for the
time trace reported in Fig. 10(a) reveals a single peak at low
frequencies fs � 5 Hz [see Fig. 10(b)] and a main peak at high
frequencies, located around f f � 35 Hz, plus smaller peaks in
correspondence of the combinations of the two main frequen-
cies f f ± k fs with k = 1, 2, 3, . . . [as shown in Fig. 10(c)].

It is of particular interest to understand how the param-
eter α, measuring the strength of the adaptation, influences
these two frequencies. The analysis is reported in Fig. 10(d)
and 10(e) for the chosen set of parameters and for α ∈
[20, 100]. It is evident that f f , that identifies the main peak
in the power spectrum of the fast signal component, decreases
monotonously for increasing α, while the main peak of the

FIG. 10. Two coupled inhibitory populations with SFA. (a) Time trace of the firing rate r(t ) for one of the two populations. The other
population shows the same evolution, but shifted in phase. The two relevant periods of the oscillatory behavior are reported as Ts (slow) and
Tf (fast). (b) Power spectral density S( f ) of the time trace filtered using a third-order Butterworth low pass filter with cut-off frequency of
15 Hz. (c) Same as in panel (b) using a third-order Butterworth high pass filter with cut-off frequency of 20 Hz. (d), (e) Variation of the fast-
and slow-frequency components f f and fs, respectively, as a function of the adaptation parameter α. Parameters used here: η̄ = 28, Js = −20,
Jc = −47, 
 = 0.5, τS = 20 ms, and τA = 100 ms. For panels (a)–(c), a value of α = 50 was chosen.
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FIG. 11. Two coupled excitatory populations with SFA. (a) Time trace of the firing rate r(t ) for one of the two populations. The other
population shows exactly the same evolution. The two relevant periods of the oscillatory behavior are sketched as Ts (slow) and Tf (fast) (for
this see the enlargement in the inset). (b) Power spectral density S( f ) of a filtered time trace obtained by using a third-order Butterworth with
cut-off frequency of 10 Hz. (c) Same as in panel (b) by using a third-order Butterworth high pass filter with cut-off frequency of 80 Hz. (d), (e)
Variation of the fast- and slow-frequency components f f and fs, respectively, as a function of the adaptation constant α. Parameters used here:
η̄ = 5, Jin = 8, Jex = 20, 
 = 0.5, τS = 20 ms, and τA = 100 ms. For panels (a)–(c), a value of α = 50 was chosen.

slow signal component fs increases. In particular, fs grows
from 2 to 11 Hz, while the fast peak f f decreases from 60 to
30 Hz, thus exploring the whole range of the so-called slow γ

rhythms observable in the hippocampus [30].

B. θ-γ population bursts in coupled excitatory
populations with SFA

For coupled excitatory neural masses with SFA it is possi-
ble to observe CFC in the form of a burst connecting a resting
state to a fast spiking activity. In this case the dynamics is the
same for both populations. For specific choices of the parame-
ters the interburst period is in the θ -range, while the intrabursts
are γ oscillations [an example is reported in Fig. 11(a)].
Analogously to the previous subsection, we can define Ts as
the interburst period, while Tf represents the intraburst period,
as shown in Fig. 11(a). By performing low-pass (high-pass)
filtering of the time signal reported in the above-mentioned
figure (i.e., the firing rate r(t ) of one of the two populations),
we can detect the main peak fs � 4 Hz ( f f � 80 Hz) for
the slow (fast) component of the power spectrum S( f ); see
Figs. 11(c) and 11(d). At variance with the previous case, the
phase of the θ rhythm does not modulate only the amplitude of
the γ -oscillations, but also their periods (frequencies), there-
fore the spectrum reported in Fig. 11(c) reveals that an entire
band of frequencies between 70 and 100 Hz is indeed excited.

Also in the present case, we analyze the dependence of fs

and f f on the adaptation parameter α. By varying α in the
range [25,68], we observe that fs ( f f ) increases (decreases) for
growing values of α as before. However, while the variation
of fs is quite limited from 2.8 to 4.8 Hz, the γ peak f f ranges

from 130 to 60 Hz, i.e., f f is now exploring the fast γ range
[30].

V. DISCUSSION

In this paper we have analyzed the influence of the
spike-frequency adaptation mechanism on the macroscopic
dynamics of single as well as symmetrically coupled neural
populations connected via either excitatory or inhibitory expo-
nentially decaying post-synaptic potentials. The macroscopic
dynamics has been investigated in terms of next-generation
neural masses reproducing exactly the dynamics of fully cou-
pled networks of quadratic integrate-and fire spiking neurons
in the thermodynamic limit. This low-dimensional mean-field
reduction has allowed for the estimation of the correspond-
ing bifurcation diagrams. In particular, we mostly focused
on the instabilities of the stationary states with emphasis on
the longitudinal and transverse nature of the instabilities in
symmetrically coupled populations.

In a single population with a fixed distribution of the neural
excitabilities, SFA favors the emergence of population bursts
when the coupling is excitatory, while it hinders the emer-
gence of periodic population spikes in inhibitory networks.
This is related to the fact that SFA acts as an effective in-
hibition with a slow timescale τa. In inhibitory networks in
the absence of adaptation, oscillations are already present,
controlled by the fast synaptic timescale τs. Therefore, in this
case, SFA leads to an additional inhibitory effect that can
eventually kill the population spiking for sufficiently large
amplitude of the adaptation parameter [7,22]. However, in
excitatory networks COs are absent without adaptation, while
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these are promoted by the SFA, which represents the only
source of inhibition. As we have shown by performing a
slow-fast decomposition, the population burst evolves on a
timescale controlled by τa connecting a low firing state to a
high firing one, that is approached via fast damped population
spikes characterized by a fast timescale of the order of τs.

The coupling of two identical populations in a symmetric
way leads to the emergence of collective solutions with bro-
ken symmetry for cross-couplings larger than self-couplings
(|Jc| > |Js|). These solutions can be classified as chimera-like
for the inhibitory case and antiphase population spikes in
the excitatory one. The chimera-like solutions correspond to
asymmetric fixed points and fast COs. These kind of solutions
have been usually identified whenever the self-coupling was
larger than the cross-coupling in identically coupled popula-
tions of phase oscillators [57] and excitatory neurons [41,52].
In all these cases the action of the phase oscillators (neurons)
on their own population was more effective in promoting
the synchronized (firing) activity than that of the oscillators
(neurons) belonging to the other population. This scenario
would emerge for two inhibitory coupled populations when-
ever |Jc| > |Js|. Therefore, consistently with our analysis, we
can affirm to have reported, for the first time to our knowledge,
chimera-like states in purely inhibitory neural systems.

Chimera-like states have been reported also in Ref. [41]
for two coupled next-generation neural masses interacting
via steps of currents for the excitatory and inhibitory case.
However, it should be noticed that in Ref. [41], the inhibitory
case refers to a situation where the self-coupling is excitatory,
while the cross-coupling is inhibitory. This choice violates
the Dale’s principle [58] that states that neurons can transmit
either excitatory or inhibitory post-synaptic signals, but not
both at the same time. However, a setup like the one proposed
in Ref. [41], could be shown to mathematically represent two
excitatory populations coupled to an inhibitory pool [59], thus
resulting in a setup involving at least three neural populations,
which is definitely different from the one we have examined.

The addition of SFA leads to new macroscopic solutions
and regimes besides the ones observed in the absence of
adaptation. In the inhibitory case, new collective solutions
with broken symmetry are observable, that correspond to slow
collective oscillations and slow-fast nested oscillations, both
occurring in antiphase in the two populations. Furthermore,
the fast symmetric COs can coexist with fast asymmetric
ones as well as with slow-fast nested COs in antiphase. The
new solutions observable for excitatory populations with SFA
correspond to population bursts that can be either symmetric
or asymmetric. A summary of all the observable regimes is
reported in Tables I and II.

The evolution of two symmetrically coupled neural masses
with SFA can lead to interesting CFC phenomena, where
oscillations induced by the fast synaptic timescale and by
the slow adaptation are present at the same time and interact
among them. In particular, we have examined macroscopic so-
lutions exhibiting cross-frequency coupling in the θ -γ range
and the dependence of the fast f f and slow fs frequencies on
the adaptation, both for the inhibitory and excitatory case.

As a first result, we observe that the reduction of SFA leads
to an increase in the frequency of the θ rhythm, joined to a
decrease in the γ frequencies. This is analogous to the effect

of cholinergic modulation, as shown in several experiments
based on EEG recordings of the hippocampus and the ol-
factory cortex [60,61]. In particular, cholinergic modulation
induces an increase in the number of γ oscillations, joined
to a decrease in the frequency of the θ rhythm [25–27]. In-
deed, consistently with these results, it has been shown that
cholinergic drugs are responsible for a reduction of SFA in
pyramidal cells [24].

Furthermore, it has been shown that θ -γ CFC is favored
by the presence of the cholinergic neurotransmitters [38,39]
and, therefore, by a reduction of SFA [62]. This is somehow
consistent with our results, since we have shown that the
ratio f f / fs decreases for increasing α, thus determining a
reduction of the number of γ oscillation events inside a single
θ cycle for higher adaptation values. Therefore, according to
the hypothesis that the neural code for multi-item messages is
organized by θ -γ nested brain oscillations [36,63], we expect
that, for large adaptation values, the number of coded items
will diminish, thus reducing the neural coding effectiveness.

Finally, we have shown that, in our model, θ rhythm can
modulate either slow or fast γ oscillations, analogously to
those identified in the hippocampus and other brain areas [33].
In particular, we observe that, in presence of SFA, slow γ

are associated to inhibitory dynamics, while excitatory pop-
ulations support fast γ oscillations.

As far as the generality of our results is concerned, since
the QIF neuron represents the normal form of Hodgkin class
I excitable membranes, we can expect that our findings will
extend to all this class of neurons. Furthermore, spiking and
bursting regimes have been previously identified in a single
population of (leaky) integrate and fire (LIF) neurons with
SFA [23,40], thus suggesting that the regimes here identified
will probably emerge also for symmetrically coupled popu-
lations of LIF neurons. By following the recent advances in
the development of next-generation neural mass models, we
plan in the future to further extend the analysis here presented
to QIF networks including more biologically realistic aspects,
such as the delays in the synaptic transmissions [64] or the
sparseness in the synaptic connections [65].

Finally, our analysis could be useful to develop new models
of Central Pattern Generators, which are responsible for the
generation of rhythmic movements, since these models are
often based on two interacting oscillatory populations with
adaptation, as reported for the spinal cord [66] and the respira-
tory system [67]. Finally, the model of the medullary circuitry
reported in Ref. [68] can be taken as a cue for a further
interesting application of coupled neural masses with SFA,
like the modelization of rhythmic whisking in rodents and,
in particular, the entrainment of whisking by breathing.
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APPENDIX: STABILITY OF THE STATIONARY
SOLUTIONS FOR A SINGLE POPULATION

Here we show the steps to calculate the stability bound-
aries for the stationary solutions of the single population. We
start by using the adimensional system defined in Eq. (9).
The characteristic polynomial evaluated at the equilibrium
(r0, v0, s0, a0) is given by

p(λ) = 2αr0
s + 
a
{ − 2Jr0 + [

4π2r2
0 + (λ − 2v0)2

]

s

}
τaτs

,

(A1)
with 
a = (1 + λτa) and 
s = (1 + λτs). In general, a bi-
furcation occurs when one or more eigenvalues cross the
imaginary axis, namely whenever λ = iω, hence we look
for solutions of the form p(iω) = 0. Replacing λ with iω in
Eq. (A1) and equating to zero leads to

2αr0�s + �a
{ − 2Jr0 + [

4π2r2
0 + (2v0 − iω)2

]
�s

} = 0,

(A2)
with �s = (1 + iωτs) and �a = (1 + iωτa). For Eq. (A2) to
be satisfied, both imaginary and real parts of p(iω) should be
zero, namely:

Re[p(iω)] = 0; Im[p(iω)] = 0. (A3)

By solving Re[p(iω)] = 0 (Im[p(iω)] = 0) in Eq. (A3) we
get the solutions ω∗

Re (ω∗
Im). These have the form

ω∗
Re = ±

√
P1 ±

√
P2 + P2

1
√

2τaτs
, (A4a)

ω∗
Im = ±

√
2P3, ω∗

Im = 0, (A4b)

with

P1 = 1 + 4π2r2
0τaτs + 4v2

0τaτs − 4v0(τa + τs), (A5a)

P2 = 8
[
Jr0 − 2r2

0 − r0(2π2r0 + ᾱ)
]
τaτs, (A5b)

P3 = 2r0 − 2r2
0 (τa + τs) − r0[−Jτa+ατs+2π2r0(τa + τs)]

−τs + τa(−1 + 4v0τs)
.

(A5c)

Recalling that v0 = −
/(2πr0), all the expressions are
parametrized by the coordinate r0 of the equilibrium. Equating
(A4a) and the nonzero solutions of Eq. (A4b), and solving for
one of the parameters, it is possible to parametrize the Hopf
bifurcation solution via r0. Similarly, equating (A4a) with
the trivial solution ω∗

Im = 0, the limit point-type bifurcations
(saddle-node, pitchfork, and transcritical) can be obtained.
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