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Abstract. – A microcanonical first-order transition, connecting a clustered to a homogeneous
phase, is studied from both the thermodynamic and the dynamical point of view for an N -body
Hamiltonian system with infinite-range couplings. In the microcanonical ensemble, specific heat
can be negative, but besides that, a microcanonical first-order transition displays a temperature
discontinuity as the energy is varied continuously (a dual phenomenon to the latent heat in the
canonical ensemble). In the transition region, the entropy per particle exhibits, as a function
of the order parameter, two relative maxima separated by a minimum. The relaxation of
the metastable state is shown to be ruled by an activation process induced by intrinsic finite
N fluctuations. In particular, numerical evidences are given that the escape time diverges
exponentially with N , with a growth rate given by the entropy barrier.

Introduction. – There has been recently a renewed interest for systems with long-range
interactions [1]. Phase transitions from clustered to homogeneous phases, occurring in simple
models of globally coupled particles, have been analysed within different statistical ensem-
bles [1,2]. It has been shown that, near transitions that are of the first order in the canonical
ensemble, ensembles are inequivalent [3, 4]. In the microcanonical ensemble the phase coex-
istence region can display a negative specific heat, corresponding to a convex entropy as a
function of energy. In this region, entropy can be either a continuous and infinitely differen-
tiable function of the energy (in the case of a continuous microcanonical transition) or it can
display a discontinuity already in the first derivative. This case is denoted as microcanonical
first-order transition and is characterized by a jump in temperature as the energy is varied
continuously [3, 5](1).
This latter case remains to be fully understood from the physical point of view: what

does the coexistence of two temperatures, at equilibrium, for a given energy mean? In this

(1)Other, more complicated, situations have been rigorously classified in [6].
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letter we present a careful analysis of the microcanonical first-order transition that appears
in a toy model that describes the motion of particles in a two-dimensional bounded domain
(a torus). The model has been first introduced in refs. [7, 8], where the analysis was limited
to microcanonical continuous transitions.

In the first part of this letter, we fully characterize the phase transition by studying the
intricate dependence of temperature on energy (the so-called caloric curve) and the dependence
of entropy on both the energy and the order parameter, discussing also finite-N effects.

In the second part we concentrate on a study of the relaxation dynamics from a metastable
state for a finite number N of particles. This process had been originally investigated by
Griffiths et al. [9] within the canonical ensemble. In this pioneering paper the authors have
shown that, for a Curie-Weiss Ising model in an external magnetic field, the relaxation time
of the metastable states grows exponentially with N , the exponential growth rate being given
by the free-energy barrier per spin(2). More recently, the influence on the relaxation dynamics
of extrinsic (thermal) noise source and of the intrinsic noise source due to finite-N effects has
been analysed for a φ4-model with long-range interactions [11].

We are not aware of any similar study within the microcanonical ensemble, especially in a
situation of ensemble inequivalence. Indeed, the out-of-equilibrium dynamical behaviour near
a microcanonical continuous transition has already been examined as far as the relaxation from
unstable states is concerned [12, 13]. The relaxation times have been shown to be typically
proportional to some power of N . In our analysis, since no extrinsic noise is present, we
emphasize the role played by the intrinsic noise source originated by finite-N effects. These
intrinsic fluctuations induce an exponential divergence with N of the relaxation time, with a
growth rate given by the entropy barrier per particle.

The model. – The model we consider is a classical N -body Hamiltonian system defined on
a two-dimensional periodic cell. The inter-particle potential is infinite ranged and the particles
are all identical and have unitary mass. The Hamiltonian of the model is Ha = K+Va, where
K =

∑N
i=1(p

2
x,i + p2

y,i)/2 is the kinetic energy, while the potential energy reads

Va =
1
2N

N∑

i,j=1

[
2 + a − cos (xi − xj

) − cos (yi − yj

) − a cos
(
xi − xj

)
cos

(
yi − yj

)]
, (1)

where (xi, yi) ∈]− π : π]×]− π : π] represents the coordinates of the i-particle, (px,i, py,i) the
conjugated momenta and a is a parameter. The complete phase diagram of this model has been
previously presented in ref. [8]. We limit here our analysis to the parameter value a = 2, for
which the system undergoes a first-order microcanonical phase transition. The different phases
are conveniently characterized by the vector order parameter

−→
Mz = (〈cos(z)〉N , 〈sin(z)〉N ),

where z = x or y and 〈〉N indicates the average over all the particles. It can be shown that
|−→Mx| ≈ |−→My| = M and M can be thought as the magnetization of the infinite-range Heisen-
berg XY Hamiltonian (1). In the low-energy U = Ha/N clustered phase (CP) all particles
are trapped in a single cluster and M 	= 0, whereas in the high-energy homogeneous phase
(HP) they are uniformly distributed in the cell and M ≈ O(1/

√
N). At the microcanonical

transition energy, both the order parameter and temperature have a discontinuity.
We have analyzed model (1) from an analytical and a numerical point of view. Since the

microcanonical and the canonical variational problems define the same critical states [8, 14],
it is convenient to first solve the model in the canonical ensemble. Indeed, via standard
saddle-point techniques, one obtains all absolute and relative extrema of the free energy as

(2)For more recent developments see [10].
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a function of the order parameter [8]. These are also extrema of the entropy, although their
stability properties are different in the two ensembles. States that are unstable in the canonical
ensemble may become stable in the microcanonical one: this is the mechanism at the origin of
the negative specific heat in the microcanonical ensemble(3). From the entropy extrema, we
get all the thermodynamics of the model in the mean-field (N → ∞) limit, including caloric
curves and entropy barriers, that we discuss in the next section. As far as the numerics is
concerned, we perform molecular-dynamics (MD) simulations (of course at finite N) using an
accurate fourth-order symplectic integrator (for more details, see [7]).

Thermodynamics. – Let us first briefly resume the main features of the phase diagram.
In the canonical ensemble, model (1) exhibits a continuous transition from the CP to the HP
for small a values (namely for 0 ≤ a < 2/5), above the canonical tricritical point, a = 2/5, the
transition becomes discontinuous with a finite-energy jump. In the microcanonical ensemble
the transition is continuous till the microcanonical tricritical point, a ∼ 1.15, is reached. For
a > 1.15, a first-order transition with a temperature jump is observed.
We concentrate here our analysis to the specific parameter value a = 2, for which the

transition is discontinuous in both the canonical and the microcanonical ensemble. In the
canonical ensemble, at the transition temperature Tc = 0.664, one observes an energy jump
from U1 = 1.896 to U2 = 2.664, corresponding to a release of a latent heat. In this energy
range the microcanonical ensemble gives different predictions. The CP is stable in the interval
[U1, Uc = 2.548], while in the interval [Uc, U2] the stable phase is the HP. The two phases are
connected by a finite-temperature jump at Uc from TCP = 0.618 to THP = 0.548. These
results are confirmed by the numerical simulations (see fig. 1(a)), although the sharp jump is
smoothed by finite-N effects. The specific heat is negative from U = 2.240 till UB = 2.555
(point B in fig. 1(a)), but before reaching this energy value, at point A, the CP becomes
metastable and remains such from A to B. At point B, the specific heat vanishes and the
phase turns to unstable, with an associated positive specific heat(4). The unstable curve BC
(dot-dashed line in fig. 1(a)) joins the CP to the HP phase (T = U − 2). HP is metastable
along CD in fig. 1(a), while for U > Uc it is always stable.
The microcanonical transition can be better understood by considering the behaviour of

the entropy per particle s as a function of the order parameter M . In the energy range
[UC, UB], the entropy always exhibits two maxima separated by a minimum. The two maxima
correspond to the HP (sHP) and the CP (sCP), respectively, while the minimum refers to
an unstable clustered phase (sunst). Plotting the values of these extrema as a function of
U , three distinct branches can be drawn (see fig. 1(b)): a concave one corresponding to the
CP, and two convex ones corresponding to the HP and to the unstable phase, respectively.
For U < UC, the entropy s = s(M) exhibits a single maximum sCP. At UC, a second lower
maximum sHP emerges together with a minimum, via a saddle-node bifurcation. At higher
energies the height of sHP increases, while that of sCP decreases. At Uc the two maxima
reach the same height: this signals the first-order transition energy. This is illustrated in
fig. 1(c), where Uc is identified by the intersection of the barrier heights ∆sCP = sCP − sunst

and ∆sHP = sHP − sunst. For U > Uc, the HP maximum prevails and the CP phase becomes
metastable. At UB, the entropy minimum and the lower maximum corresponding to the CP
merge and disappear via an inverse saddle-node bifurcation. Above such energy only one
maximum in the entropy is present and it is associated to the HP.
Another strong indication that the transition is first order comes from the fact that near

(3)The first thorough discussion of the stability of microcanonical critical states was performed in ref. [15] for
self-gravitating systems.
(4)Point B is a Poincaré turning point similar to the one investigated in ref. [16] for isothermal spheres.
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Fig. 1 – (a) Temperature T as a function of energy per particle U (caloric curve). Crosses refer to
MD simulations, where temperature is measured by the time average of the kinetic energy, while
lines indicate mean-field analytical results. Solid lines refer to stable phases, dashed to metastable
and dot-dashed to unstable. Numerical data have been obtained for N = 10000 by integrating the
equations of motion of Hamiltonian (1) for a time ranging from 700000 to 900000 typical periods of the
motion. The initial conditions for each run have been obtained recursively by rescaling the velocities
of the final equilibrated configuration at higher energy. Results obtained by recursively increasing
the energy of the configurations essentially agree with the reported ones. The vertical (respectively,
horizontal) dashed line corresponds to the microcanonical (respectively, canonical) transition energy
Uc = 2.548 (respectively, temperature Tc = 0.664). (b) Sketch of the entropy per particle s as a
function of energy U . The solid line refers to stable phases, the dashed and dot-dashed lines to
metastable and unstable, respectively. (c) Entropy barriers per particle vs. energy U . The solid line
refers to ∆sCP and the dashed line to ∆sHP. The lines cross at the microcanonical transition energy
Uc. (d) Histogram of the instantaneous temperatures T (t)’s at U = 2.550 for N = 4000. T (t)’s are
measured by partially averaging kinetic energy over a time span = 300. The time evolution of T (t)
is shown in the inset.

the transition energy an intermittent behaviour is observed: the system jumps erratically from
the CP to the HP and back(5). In fig. 1(d), the histogram of the instantaneous temperatures
is reported for a system of N = 4000 particles at an energy, U = 2.550, close to Uc. Two
peaks are present in the histogram: one is associated to the HP (T ≈ THP = 0.550) and
the other to the CP (T ≈ TCP = 0.614). Hence, there is no mystery in the coexistence of
two temperatures in equilibrium: temperature, in the microcanonical ensemble, is a derived

(5)In the mean-field limit, this intermittency is peculiar of the transition energy Uc.
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quantity and is subject to fluctuations. The bimodal shape of the temperature histogram
reflects the analogous bimodality of the order parameter fluctuations, which is a consequence
of the first-order nature of the phase transition. Similarly, in a canonical simulation, one
would observe a bimodal energy distribution, with peaks at U1 and U2.

Relaxation dynamics. – We are interested in characterizing the differences in the re-
laxation dynamics from an unstable state towards a stable one, with respect to an initial
metastable state. As detailed above, an unstable state is an entropy minimum, while a
metastable state is a relative maximum, separated from the stable state by an entropy barrier.
It is reasonable to conjecture that in the first case the relaxation process is dominated

by a “diffusive like” behaviour, while in the second situation the activation across an entropy
barrier should play a fundamental role. At variance with canonical ensemble dynamics [11], the
activation process can be induced only by finite-N fluctuations, since there is no coupling to an
external bath. Hence, we expect that the relaxation time from an unstable state will typically
increase with a power law in the particle number, the relaxation process being dominated by
the granularity of the system, that drives it to equilibrium through collisional effects of the
type encountered in self-gravitating systems [17]. Instead, for a metastable state, we should
find a noticeably different behaviour. Let us consider the situation where the CP is stable,
while the HP is metastable. By following the standard fluctuation theory [18], we expect that
the probability to observe a given value of the magnetization in the interval [M : M +dM ] is
given by

w(M) dM = const e[S(M)−SHP] dM =
(
2π

〈
M2

〉)− 1
2 e−

M2

2〈M2〉 dM, (2)

where S(M) = Ns(M) is the entropy as a function of the order parameter, SHP = NsHP is
the entropy of the HP (for which M = 0) and 〈M2〉 ∼ O(1/N). As soon as the magnetization
reaches the value corresponding to the entropy minimum Munst, the system is quickly driven
towards the CP. Therefore, the relaxation time from a metastable state should diverge as

τ ∝ [w(Munst)]−1 ∝ e[sHP−sunst]N (3)

and we will observe an activated escape process as long as ∆sHP ≥ 1/N .
Let us check these two distinct relaxation behaviours in numerical experiments. In order

to measures the lifetime of a metastable (unstable) HP, the system is initialized with zero
magnetization (indeed due to finite N effects 〈M〉 ∼ 1/

√
N)(6). Once the initial state is

prepared, we follow its time evolution by monitoring magnetization. A typical behaviour is
reported in fig. 2(a). Then, we register the time M needs to reach 80% of its asymptotic
value. The lifetime of the HP state is finally determined by averaging over several different
initial conditions.
We first examine the relaxation of a metastable state, therefore the system is initialized

with an energy in the range [UC, Uc]. In this interval, entropy exhibits an absolute maximum
sCP (corresponding to the CP) and a relative maximum sHP (corresponding to the HP) sep-
arated by a minimum sunst. If we prepare the initial state in the HP, this will have a lifetime
τ that we expect to grow as exp[∆sHPN ]. In particular, as shown in fig. 2(b) at U = 2.530,
for N > 6000, τ has indeed an exponential growth with N . Moreover, as reported in table I
the numerical estimation of the growth rates ∆snum at three different energies in the interval
[UC, Uc] is in agreement with the mean-field value ∆sHP. As a final remark, one should notice

(6)The initial configurations have been realized in two different ways, but significant discrepancies have never
been observed. In one case the particle positions have been chosen randomly within the cell and the velocities
accordingly to the Maxwell-Boltzmann distribution. In the other one, an equilibrated configuration with
energy U > Uc (where the HP is stable) is taken and the velocities are rescaled to obtain the desired energy.
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Fig. 2 – (a) Instantaneous magnetization M(t) vs. time. M(t) has been obtained by averaging over
short time windows of duration 300 and over 20 initial conditions. The asymptotic magnetization
value is M = 0.2586 (solid line) and the dashed line indicates the threshold value used for the
determination of the lifetime (i.e. 0.207). The data refer to U = 2.530 and N = 4000. (b) Lifetimes
τ of the metastable state HP as a function of N in a log-lin scale. Circles refer to numerical data at
U = 2.530, the dashed line to the best fit obtained in the interval 6000 < N < 60000 (see table I).
In the inset we report numerical results (squares) for U = 2.40 in a log-log scale, the solid line is a
linear fit to the data with slope one. The data have been obtained by averaging over 10 to 1000 initial
conditions.

that for small N (e.g., for 100 < N ≤ 6000 at U = 2.530) the escape time grows proportion-
ally to N instead of exhibiting an exponential growth (as can be seen also in fig. 2(b)). This
behaviour resembles the relaxation from an unstable state and it is due to the fact that for
such small number of particles 1/N � ∆sHP. Therefore, the magnetization fluctuations are
so large to easily overcome the entropy barrier, that does not play any role here. In order
to measure the lifetime of an unstable HP, we take the energy U = 2.4, for which the zero
magnetization state is unstable and the CP is stable. At U = 2.4, the transition times τ scale
clearly with N as shown in the inset of fig. 2(b). Such type of divergence was first observed
in refs. [12] in model (1) for a = 0. Recently, Yamaguchi [13] has studied the same model,
finding that τ diverges as N1.7. On the other hand, Bouchet [19] has shown, again for a = 0,
that the single-particle self-diffusion time increases linearly with N .

Concluding remarks. – In this letter we have examined a first-order microcanonical
transition from a clustered to a homogeneous phase for an N -particle model with infinite-
range interactions. Even in the mean-field limit, canonical and microcanonical ensembles
are inequivalent. While in the canonical ensemble the transition exhibits an energy jump

Table I – Entropy barries ∆sHP, as estimated from the mean-field microcanonical analytical results
and by direct MD simulations. The escape times from the homogeneous metastable phase are evaluated
by averaging over 10 to 1000 initial conditions. The numerical values for ∆s are estimated by fitting
the escaping times as a function of N , tipically in the interval 4000–60000.

U ∆sHP ∆snum

2.530 1.28× 10−4 (1.0± 0.1)× 10−4

2.540 3.33× 10−4 (3.4± 0.5)× 10−4

2.545 5.00× 10−4 (5.8± 0.4)× 10−4
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at the transition temperature, in the microcanonical one a temperature jump is observed at
the transition energy. Moreover, specific heat is negative in a wide energy range. We have
elucidated the intricate structure of stable, metastable and unstable phases that coexist near
the transition.
A more physical grasp is obtained by considering the entropy of the system as a function

of the order parameter. In a large energy domain, we have observed the coexistence of a
stable and a metastable phase, corresponding to the absolute and relative entropy maximum,
respectively. In this energy interval the two maxima are separated by an entropy minimum,
associated to an unstable state. We have shown that the relaxation from the metastable state
is due, for sufficiently large N , to an activated crossing of an entropic barrier and that the
activation mechanism is induced by finite-N intrinsic fluctuations. The escape time from the
local entropy maximum grows exponentially with N , and the growth rate is given by the
entropy barrier per particle. We have further checked that, instead, the relaxation time from
an unstable state grows linearly with N .
These results represent a first step towards the assessment of a more rigorous theory of

the dynamical evolution of a microcanonical system with long-range interactions trapped in
a metastable state. A further refinement will require the derivation of an appropriate Fokker-
Planck equation describing out-of-equilibrium fluctuations.
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