
 

Transition from Asynchronous to Oscillatory Dynamics in
Balanced Spiking Networks with Instantaneous Synapses

Matteo di Volo1 and Alessandro Torcini2
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We report a transition from asynchronous to oscillatory behavior in balanced inhibitory networks for
class I and II neurons with instantaneous synapses. Collective oscillations emerge for sufficiently
connected networks. Their origin is understood in terms of a recently developed mean-field model,
whose stable solution is a focus. Microscopic irregular firings, due to balance, trigger sustained oscillations
by exciting the relaxation dynamics towards the macroscopic focus. The same mechanism induces in
balanced excitatory-inhibitory networks quasiperiodic collective oscillations.
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Introduction.—Cortical neurons fire quite irregularly and
with low firing rates, despite being subject to a continuous
bombardment from thousands of presynaptic excitatory and
inhibitory neurons [1]. This apparent paradox can be solved
by introducing the concept of a balanced network, where
excitation and inhibition balance each other and the
neurons are kept near their firing threshold [2]. In this
regime spikes, representing the elementary units of infor-
mation in the brain, are elicited by stochastic fluctuations in
the net input current yielding an irregular microscopic
activity, while neurons can promptly respond to input
modifications [3].
In neural network models balance can emerge sponta-

neously in coupled excitatory and inhibitory populations
thanks to the dynamical adjustment of their firing rates
[4–9]. The usually observed dynamics is an asynchronous
state characterized by irregular neural firing joined to
stationary firing rates [4,6,7,9]. The asynchronous state
has been experimentally observed both in vivo and in vitro
[10,11]; however this is not the only state observable during
spontaneous cortical activity. In particular, during sponta-
neous cortical oscillations excitation and inhibition wax
and wane together [12], suggesting that balancing is crucial
for the occurrence of these oscillations with inhibition
representing the essential component for the emergence of
the synchronous activity [13,14].
The emergence of collective oscillations (COs) in

inhibitory networks has been widely investigated in net-
works of spiking leaky integrate-and-fire (LIF) neurons. In
particular, it has been demonstrated that COs emerge from
asynchronous states via Hopf bifurcations in the presence
of an additional timescale, beyond the one associated with

the membrane potential evolution, which can be the
transmission delay [5,15] or a finite synaptic time [16].
As the frequency of the COs is related to such external
timescale this mechanism is normally related to fast
(>30 Hz) oscillations. Nevertheless, despite many theo-
retical studies, it remains unclear which other mechanisms
could be invoked to justify the broad range of COs’
frequencies observed experimentally [17].
In this Letter we present a novel mechanism for the

emergence of COs in balanced spiking inhibitory networks
in the absence of any synaptic or delay timescale. In
particular, we show for class I and II neurons [18] that COs
arise from an asynchronous state by increasing the network
connectivity (in-degree). Furthermore, we show that the
COs can survive only in the presence of irregular spiking
dynamics due to the dynamical balance. The origin of COs
can be explained by considering the phenomenon at a
macroscopic level; in particular, we extend an exact mean-
field formulation for the spiking dynamics of quadratic
integrate-and-fire (QIF) neurons [19] to sparse balanced
networks. An analytic stability analysis of the mean-field
model reveals that the asymptotic solution for the macro-
scopic model is a stable focus and determines the frequency
of the associated relaxation oscillations. The agreement of
this relaxation frequency with the COs’ one measured in
the spiking network suggests that the irregular microscopic
firings of the neurons are responsible for the emergence of
sustained COs corresponding to the relaxation dynamics
towards the macroscopic focus. This mechanism elicits
COs through the excitation of an internal macroscopic
timescale, which can range from seconds to tens of
milliseconds, yielding a broad range of collective
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oscillatory frequencies. We then analyze balanced excita-
tory-inhibitory populations revealing the existence of COs
characterized by two distinct frequencies, whose emer-
gence is due, also in this case, to the excitation of a mean-
field focus induced by fluctuation-driven microscopic
dynamics.
The model.—We consider a balanced network of N

pulse-coupled inhibitory neurons, whose membrane poten-
tial evolves as

τm _vi ¼ FðviÞ þ I − 2τmg
X

j∈preðiÞ
εijδðt − tjÞ; ð1Þ

where I is the external dc current, g is the inhibitory
synaptic coupling, τm ¼ 20 ms is the membrane time
constant and fast synapses (idealized as δ pulses) are
considered. The neurons are randomly connected, with
in degrees ki distributed according to a Lorentzian PDF
peaked at K and with a half width at half maximum
(HWHM) ΔK . The elements of the corresponding adja-
cency matrix εij are one (zero) if the neuron j is connected
(or not) to neuron i. We consider two paradigmatic models
of spiking neuron: the quadratic-integrate and fire (QIF)
with FðvÞ ¼ v2 [20], which is a current-based model of
class I excitability; and the Morris-Lecar (ML) [21,22],
representing a conductance-based class II excitable mem-
brane. The dc current and the coupling are rescaled with the
median in degree as I ¼ ffiffiffiffi

K
p

I0 and g ¼ g0=
ffiffiffiffi
K

p
, as usually

done in order to achieve a self-sustained balanced state for
sufficiently large in degrees [4,6–9,23,24]. Furthermore, in
analogy with Erdös-Renyi networks we assume ΔK ¼
Δ0

ffiffiffiffi
K

p
. We have verified that the reported phenomena

are not related to the peculiar choice of the distribution of
the in degrees, namely, Lorentzian, needed to obtain an
exact mean-field formulation for the network evolution
[19], but that they can be observed also for more standard
distributions, like Erdös-Renyi and Gaussian ones (for more
details see the Supplemental Material [22] and Ref. [25]).
In order to characterize the network dynamics

we measure the mean membrane potential VðtÞ ¼P
N
i¼1 viðtÞ=N, the instantaneous firing rate RðtÞ, corre-

sponding to the number of spikes emitted per unit of time
and per neuron, as well as the population averaged coef-
ficient of variationCV [26]measuring the fluctuations in the
neuron dynamics. Furthermore, the level of coherence in the
neural activity can be quantified in terms of the following
indicator [27]

ρ≡
�

σ2VP
N
i¼1 σ

2
i =N

�
1=2

; ð2Þ

where σV is the standard deviation of the mean membrane
potential, σ2i ¼ hV2

i i − hVii2 and h·i denotes a time average.
A coherent macroscopic activity is associated with a finite
value of ρ (perfect synchrony corresponds to ρ ¼ 1),
while an asynchronous dynamics to a vanishingly small

ρ ≈Oð1= ffiffiffiffi
N

p Þ. Time averages and fluctuations are usually
estimated on time intervals ≃120 s, after discarding tran-
sients ≃2 s.
Results.—In both models we can observe collective

firings, or population bursts, occurring at almost constant
frequency νosc. As shown in Fig. 1, despite the almost
regular macroscopic oscillations in the firing rate RðtÞ and
in the mean membrane potential VðtÞ, the microscopic
dynamics of the neurons viðtÞ is definitely irregular. The
latter behavior is expected for balanced networks, where
the dynamics of the neurons is driven by the fluctuations in
the input current; however usually the collective dynamics
is asynchronous and not characterized by COs as in the
present case [4,6–9,23,24].
Asynchronous dynamics is indeed observable also for

our models for sufficiently sparse networks (small K),
indeed a clear transition is observable from an asynchro-
nous state to collective oscillations for K larger than a
critical value Kc. As observable from Figs. 2(a), 2(b),
where we report the coherence indicator ρ as a function of
K for various system sizes from N ¼ 2 000 to N ¼ 20 000.
In particular, ρ vanishes as N−1=2 for K < Kc (as we have
verified), while it stays finite above the transition, thus
indicating the presence of collective motion. This transition
resembles those reported for sparse LIF networks with
finite synaptic timescales in Refs. [28,29] or with finite
time delay in [5,15]. However, Poissonian-like dynamics of
the single neurons has been reported only in Refs. [5,15].
In the present case, in both the observed dynamical

regimes the microscopic dynamics remains quite irregular
for all the considered K and system size N, as testified by
the fact that CV ≃ 0.8 for the QIF and CV ≥ 1 for the ML
[as shown in the insets of Figs. 2(a), 2(b)]. The relevance of
the microscopic fluctuations for the existence of the
collective oscillations in this system can be appreciated
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FIG. 1. The panels show (from top to bottom) the raster plots
and the corresponding time traces for the membrane potential
viðtÞ of a representative neuron, for VðtÞ and RðtÞ. Left row
(black): QIF and right row (blue): ML. The parameter values are
N ¼ 10 000, K ¼ 1000, Δ ¼ 0.3, g0 ¼ 1, and I0 ¼ 0.015.

PHYSICAL REVIEW LETTERS 121, 128301 (2018)

128301-2



by considering the behavior of ρ and CV as a function of
the external current I0 and of the parameter controlling the
structural heterogeneity, namely, Δ0. The results of these
analyses are shown in Figs. 2(c) and 2(d) for the QIF and
for N ¼ 2 000, 10 000, and 20 000. In both cases we fixed
an in-degree K > Kc in order to observe collective oscil-
lations and then we increased I0 or Δ0. In both cases we
observe that for large I0 (Δ0) the microscopic dynamics is
now imbalanced with few neurons firing regularly with
high rates and the majority of neurons suppressed by this
high activity. This induces a vanishing of the CV, which
somehow measures the degree of irregularity in the micro-
scopic dynamics. At large I0 the dynamics of the network is
controlled by neurons definitely suprathreshold and the
dynamics becomes mean driven [30,31]. The same occurs
by increasing Δ0, when the heterogeneity in the in-degree
distribution becomes sufficiently large only few neurons,
the ones with in degrees in proximity of the mean K, can
balance their activity, while for the remaining neurons it is
no more possible to satisfy the balance conditions, as
recently shown in Refs. [32–34]. As a result, COs disappear
as soon as the microscopic fluctuations, due to the balanced
irregular spiking activity, vanish.
Effective mean-field model.—In order to understand the

origin of these macroscopic oscillations we consider an
exact macroscopic model recently derived in Ref. [19] for
fully coupled networks of pulse-coupled QIF with synaptic
couplings randomly distributed according to a Lorentzian.
The mean-field dynamics of this QIF network can be
expressed in terms of only two collective variables (namely,
V and R), as follows [19]:

_R¼ R
τm

�
2VþΓ

π

�
; _V¼V2þ I

τm
þRḡ− ðπRÞ2τm; ð3Þ

where ḡ is the median and Γ the HWHM of the Lorentzian
distribution of the synaptic couplings.
Such formulation can be applied to the sparse network

studied in this Letter, indeed the quenched disorder in the
connectivity can be rephrased in terms of a random
synaptic coupling [35]. Namely, each neuron i is subject
to an average inhibitory synaptic current of amplitude
g0kiR=ð

ffiffiffiffi
K

p Þ proportional to its in-degree ki. Therefore, we
can consider the neurons as fully coupled, but with random
values of the coupling distributed as a Lorentzian of median
ḡ ¼ −g0

ffiffiffiffi
K

p
and HWHM Γ ¼ g0Δ0. The mean-field for-

mulation (3) takes now the expression,

τm _R ¼ R

�
2V þ g0Δ0

π

�
ð4Þ

τm _V ¼ V2 þ
ffiffiffiffi
K

p
ðI0 − τmg0RÞ − ðπRτmÞ2: ð5Þ

As we will verify in the following, this formulation
represents a quite good approximation of the collective
dynamics of our network. Therefore, we can safely employ
such an effective mean-field model to interpret the observed
phenomena and to obtain theoretical predictions for the
spiking network.
Let us first consider the fixed point solutions ðV̄; R̄Þ of

Eqs. (4), (5). The result for the average membrane potential
is V̄ ¼ ð−g0Δ0Þ=ð2πÞ, while the firing rate is given by the
following expression:

R̄τm ¼ g0
ffiffiffiffi
K

p

2π2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4π2ffiffiffiffi

K
p I0

g20
þ Δ2

0

K

s
− 1

!
: ð6Þ

This theoretical result reproduces quite well with the
simulation findings for the QIF spiking network in the
asynchronous regime (observable for sufficiently high Δ0

and I0) over a quite broad range of connectivities (namely,
10 ≤ K ≤ 104), as shown in Fig. 3(a). At the leading order
in K, the firing rate (6) is given by Raτm ¼ I0=g0, which
represents the asymptotic result to which the balanced
inhibitory dynamics converges for sufficiently large in
degrees irrespectively of the considered neuronal model,
as shown in Figs. 3(a) and 3(b) for the QIF and ML models
and as previously reported in Ref. [24] for LIF neurons. In
particular, for the ML model the asymptotic result Ra is
attained already for K ≥ 500, while for the QIF model in
degrees larger than 104 are required.
The linear stability analysis of the solution ðV̄; R̄Þ

reveals that this is always a stable focus, characterized
by two complex conjugate eigenvalues with a negative
real part ΛRτm ¼ −Δ0=2π and an imaginary part
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FIG. 2. Upper panels: order parameter ρ versus K for QIF (a)
and ML (b), the insets report the corresponding CVs. The lower
panels display in the upper part ρ and in the lower one the CV
versus I0 (c) and Δ0 (d) for the QIF. The data refer to various
system sizes: namely, N ¼ 2000 (black), 5000 (red), 10 000
(green), and 20 000 (violet). The employed parameters are
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ΛIτm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R̄τmð2π2R̄τm þ ffiffiffiffi

K
p

g0Þ − ðΔ0=2πÞ2
q

. The fre-

quency of the relaxation oscillations towards the stable
fixed point solution is given by νth ¼ ΛI=2π. This repre-
sents a good approximation of the frequency νosc of the
sustained collective oscillations observed in the QIF net-
work over a wide range of values ranging from ultraslow
rhythms to high γ band oscillations, as shown in Fig. 3(c).
Furthermore, it can be shown that νth predicts the correcting
scaling of νosc for the QIF for sufficiently large dc currents
and/or median in-degree K, namely, νth ≈ I1=20 K1=4 [as
shown in Figs. 3(c) and 3(d)]. For the ML we observe
similar scaling behaviors for νosc, with slightly different
exponent, namely, νosc ≈ I0.40 and νosc ≃ K0.10; however in
this case we have no theoretical prediction with which to
compare [see the insets of Figs. 3(c) and 3(d)].
Excitatory-inhibitory balanced populations.—So far we

have considered only balanced inhibitory networks, but in
the cortex the balance occurs among excitatory and
inhibitory populations. To verify if also in this case
collective oscillations could be identified we have consid-
ered a neural network composed of 80% excitatory QIF
neurons and 20% inhibitory ones (for more details on the
considered model see the Supplemental Material in
Ref. [22]). The analysis reveals that also in this case
collective oscillations can be observed in the balanced
network in the presence of irregular microscopic dynamics

of the neurons. This is evident from the raster plot reported
in Fig. 4(a). An important novelty is that now the
oscillations are characterized by two fundamental frequen-
cies as it becomes evident from the analysis of the power
spectrum SðνÞ of the mean voltage VðtÞ shown in Fig. 4(b).
As expected for a noisy quasiperiodic dynamics, the
spectrum reveals peaks of finite width at frequencies that
can be obtained as linear combinations of two fundamental
frequencies ν1 and ν2. The origin of the noisy contribution
can be ascribed to the microscopic irregular firings of the
neurons. Analogously to the inhibitory case, a theoretical
prediction for the collective oscillation frequencies can be
obtained by considering an effective mean-field model for
the excitatory and inhibitory populations of QIF neurons.
The model is now characterized by 4 variables, i.e., the
mean membrane potential and the firing rate for each
population, and also in this case one can find as stationary
solutions of the model a stable focus. However, the stability
of the focus is now controlled by two couples of complex
conjugate eigenvalues; thus the relaxation dynamics of the
mean field towards the fixed point is quasiperiodic (see the
Supplemental Material for more details [22]). A compari-
son between the theoretical values of these relaxation
frequencies and the measured oscillation frequencies ν1
and ν2 associated to the spiking network dynamics is
reported in Figs. 4(c) and 4(d) for a wide range of dc
currents, revealing an overall good agreement. Thus sug-
gesting that the mechanism responsible for the collective
oscillations remains the same identified for the inhibitory
network.
Conclusions.—We have shown that in balanced spiking

networks with instantaneous synapses COs can be triggered
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by microscopic irregular fluctuations, whenever the neu-
rons will share a sufficient number of common inputs.
Therefore, for a sufficiently large in degree the erratic
spiking emissions can promote coherent dynamics. We
have verified that the inclusion of a small synaptic time-
scale does not alter the overall scenario [25].
It is known that heuristic firing-rate models, character-

ized by a single scalar variable (e.g., the Wilson-Cowan
model [36]), are unable to reproduce synchronization
phenomena observed in spiking networks [37,38]. In this
Letter, we confirm that the inclusion of the membrane
dynamics in the mean-field formulation is essential to
correctly predict the frequencies of the COs, not only for
finite synaptic times (as shown in Ref. [38]), but also for
instantaneous synapses in dynamically balanced sparse
networks. In this latter case, the internal timescale of the
mean-field model controls the COs’ frequencies over a
wide and continuous range. As we have verified, sustained
oscillations can be triggered in the mean-field model by
adding noise to the membrane dynamics. Therefore, an
improvement of the mean-field theory here presented
should include fluctuations around the mean values. A
possible strategy could follow the approach reported in
Ref. [37] to derive high-dimensional firing-rate models
from the associated Fokker-Planck description of the neural
dynamics [5,15]. Of particular interest would be to under-
stand if a two-dimensional rate equation [37] is sufficient to
faithfully reproduce collective phenomena also in balanced
networks.
Our results pave the way for a possible extension of the

reported mean-field model to spatially extended balanced
networks [39–42] by following the approach employed to
develop neural fields from neural mass models [43].
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