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Introduction
Coherence Resonance (CR ) : the effect induced by noise on an excitable oscillator, that
leads to a regularization of the system response at an optimal noise intensity without any
external drive. B. Lindner et al., Phys Rep. 392 (2004) 321-424

CR has been usually observed for uncorrelated inputs with respect to noise intensity
Hu Gang et al., PRL 71, 807 (1993) – A. Pikovsky & J. Kurths, PRL 78, 775 (1997)

A second type of CR has been also observed with respect to the level of correlation :

lasers – Buldú et al, PRE (2001)

digital circuits – Brugioni et al., PRE (2005)

chemical reactions – Beato el al. PRE (2005)

neuronal models – Casado PLA (1997)

Our study:

A FitzHugh-Nagumo (FHN) model subjected to a large number of stochastic excitatory
and inhibitory post-synaptic inputs (PSPs) (small positive or negative kicks);

Either excitatory or inhibitory Poissonian PSP trains are correlated.

By varying indipendently noise amplitude and correlation level, is it possible to observe a
maximal coherence resonance ?
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Summary

The FHN model and the stochastic stimulation protocol;

Coherence resonance in brief;

Influence of correlations on the coherent response;

Double coherence resonance (DCR) with respect to noise and
correlations;

Heuristic explanations of the observed phenomena;

Conclusions
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The FitzHugh-Nagumo Model

The FitzHugh-Nagumo (FHN) model is a two dimensional simplified neuronal model:

V̇ = φ(V − V 3

3
− W ) ;

Ẇ = V + a0 − I(t)

where V is a voltage-like variable, W is a recovery variable and a0 is the bifurcation
parameter.

For φ = 100 the silent regime is observed for a0 > 1, while at a0 < 1 one has periodic firing.
The external input is :

I(t) = ∆W0

» Ne
X

k=1

X

l

δ(t − tlk) −
Ni
X

m=1

X

n

δ(t − tnm)

–

We examine the FHN model subject to NE (resp. NI ) trains of excitatory (resp. inhibitory)
post-synaptic potentials, in the balanced case (i.e. for NE = NI ≡ N ) where < I >≡ 0 for
a0 = 1.05 and ∆W0 = 0.0014.

NOISE07 - Dresden 06/11/07 – p.4/20



High-input regime

Instead of a continuous input I(t), we consider NE excitatory (EPSP) and NI

inhibitory postsynaptic inputs (IPSP), each corresponding to a voltage kick
∆W0 = 0.0014.

These inputs originate from uncorrelated neurons emitting Poissonian spike trains with
frequency ν0.

This corresponds to a single excitatory (resp. inhibitory) Poissonian spike train with
frequency νE = Ne × ν0 (resp. νI = NI × ν0) for Ne ∼ NI ∼ 100 − 1, 000.

For these high frequencies the net input spike count within a (sufficiently large) temporal
window ∆T is essentially Gaussian distributed and it can be characterized by

average µ = ν0(NE − NI)∆T ; variance V = ν0(NE + NI)∆T = ν0σ2∆T

The response of the neuron is examined for a zero average external input

< I >= ∆W0ν0(NE − NI ) ≡ 0

by varying only the standard deviation of the noise σ =
√

NE + NI

M.N. Shadlen & W.T. Newsome (1998)
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Statistical and dynamical indicators
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ISI distribution → PISI (t);

CV =
Std(ISI)
〈ISI〉

→ coefficient of variation of the ISIs:

Poissonian distribution → CV = 1

regular sequence → CV = 0;

τc =
R ∞
0 C2(t)dt → correlation time,

C(τ) =
〈V (t+τ)V (t)〉−〈V 〉2

〈V 2〉−〈V 〉2
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Coherence Resonance
Coherence of the emitted spike trains
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In the silent regime :

low noise: Activation Process - PISI is Poissonian

by increasing σ the firing rate increases, the spike train becomes more regular;

a maximal coherence level is reached for an optimal σ-value;

for higher noise amplitudes the response becomes again more irregular:
Brownian motion + drift - PISI is an Inverse Gaussian.

Hu Gang et al., PRL 71, 807 (1993) – A. Pikovsky & J. Kurths, PRL 78, 775 (1997)

NOISE07 - Dresden 06/11/07 – p.7/20



Coherence Resonance

The system is characterized by two characteristic times → ISI ≡ T = ta + te :

ta=activation time → time needed to excite the system;

te=excursion time → duration of the spike (excited state).

CV (T ) can be splitted in two contributions

CV (T )2 = CV (ta)2 <ta>2

<T >2 + CV (te)2
<te>2

<T >2 = R2
1(ta) + R2

2(te)

R2
1(ta) decreases with σ, while R2

2(te) increases → minimum in CV (T )

B. Lindner et al., Phys Rep. 392 (2004) 321-424
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Correlations via shared inputs
Correlations ONLY among either excitatory or inhibitory inputs are considered in the
balanced case NE = NI ≡ N ;

The degree of correlation among N distinct inputs ρ is given by the average fraction of
synapses delivering kicks at the same time;

The superposition of N correlated (ρ) Poissonian spike trains with rate ν0 gives rise to
a sequence of kicks of variable amplitude ∆W (binomially distributed) and with ISIs
Poissonian distributed with rate νx = ν0/ρ (either x = e or x = i );

The uncorrelated excitatory (resp. inhibitory) inputs are small kicks delivered at high
rate νU = Nν0 (this is an almost continuous background);

The correlated inhibitory (resp. excitatory) inputs are large amplitude events delivered
at a much lower rate νx << νU ;
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Correlations via shared inputs
Correlations ONLY among either excitatory or inhibitory inputs are considered in the
balanced case NE = NI ≡ N ;

The degree of correlation among N distinct inputs ρ is given by the average fraction of
synapses delivering kicks at the same time;

The superposition of N correlated (ρ) Poissonian spike trains with rate ν0 gives rise to
a sequence of kicks of variable amplitude ∆W (binomially distributed) and with ISIs
Poissonian distributed with rate νx = ν0/ρ (either x = e or x = i );

The uncorrelated excitatory (resp. inhibitory) inputs are small kicks delivered at high
rate νU = Nν0 (this is an almost continuous background);

The correlated inhibitory (resp. excitatory) inputs are large amplitude events delivered
at a much lower rate νx << νU ;

The effect of the uncorrelated inputs leads to a renormalization of the bifurcation
parameter: ā = a0 ± (Nν0∆W0);

The effect of the correlated inputs is embodied in the noise variance

σ2 = ∆W 2
0 ν0[ρN2 + (1 − ρ)N + N ]

M.N. Shadlen & W.T. Newsome (1998) – E. Salinas & J. Sejnowski (2000)
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Response to correlated inputs
We have studied the response of the (balanced NE = NI ) Fitz-Hugh Nagumo model in the
silent regime for excitatory (resp. inhibitory) correlated inputs by varying INDEPENDENTLY
correlation ρ and noise variance σ2.

Coherence Resonance (CR) is observed for any excitatory (resp. inhibitory) level of
correlation at finite noise amplitude.

Double Coherence Resonance (DCR) : an absolute CR with respect to noise and
correlation can be identified for excitatory (resp. inhibitory) correlated inputs.
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Strong excitatory correlations

The coherence phenomenon is now determined only by the kick amplitude and not by the
properties of the asymptotic stochastic processes, since in the present case the output can
be always described as a Poissonian process with a refractory time:

CV = 1 − Tref ν̄

For increasing variance (N ) the amplitude of the correlated kicks increases. while the effect
of the uncorrelated (inhibitory) trains drives the system towards the silent regime.
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for V ariance < V1 → Activation Process

for V1 < V ariance < V2

1 kick may be sufficient to elicit a spike

for V ariance ≥ V2

Each kick elicits always a spike apart during the
refractory period

1 : 1 synchronization between input and output

ν̄ = ν0/ρe ;

By further increasing V ariance → Tref

decreases
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Excitatory DCR
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for ρe ≥ ρ̄e, 1:1 synchronization is always achieved for kick amplitudes ≥ ∆Wc

therefore CVmin = 1 − Tref ν0/ρe

the CVmin is attained at essentially the same ∆Wc, Tref does not vary too much.

for ρe < ρ̄e, the system is no more strictly forced by the driving kicks:

at the minimum the firing rate is smaller ν̄ < ν0/ρe.
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Strong inhibitory correlations I
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for V ariance < V1 Silent regime - Activation Process - CV ≃ 1

for V1 < V ariance < V2

The uncorrelated excitatory inputs lead the system towards the repetitive firing
regime ā < 1

Despite the increase of their amplitude the inhibitory kicks are not too effective

The signal becomes more regular CV decreases

for V ariance > V2 Each inhibitory kick induces a certain delay in the spike time of the
neuron - A multimodal structure appears in the ISI distribution

Frequency of the correlated kicks (ν0) << Frequency of the uncorrelated kicks (Nν0)
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Strong inhibitory correlations II
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The fraction of time r(ā) a FHN neuron is sensitive to the arrival of a kick before a spike
emission for the deterministic case has a minimum:

r(ā) = 1 − Tref (ā)/Tf (ā)

Noticeably, the CVmin occurs for ā ∼ 0.97 for ρi > ρ̄i.
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Inhibitory DCR
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The CVmin in the correlation interval [ρ̄ : 1] occurs essentially for the same
renormalized parameter value ā = a0 − (Nν0∆W0) ∼ 0.97

Therefore the average inhibitory kick amplitude at the minima depends only on the
correlation < ∆W >∝ ρi

For decreasing ρi the kicks disturb less: CVmin decreases

For sufficiently small ρi < ρ̄i the frequency of the inhibitory kicks becomes more
important than their amplitude.

Lowering ρi → 0 leads to an increase of the frequency νi = ν0/ρi, that renders the
neuronal firing more irregular: CVmin increases again
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Conclusions

Absolute minima of CV corresponding to maximal coherence are observed at finite
noise and correlation for both inhibitory and excitatory case.

The extrema of CVmin indicate the change in the mechanisms inducing CR, from
amplitude dominated to usual mechanisms related to the crossover from activated to
(biased) diffusive processes.
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Conductance-based input

The external current I(t) for the FHN is now rewritten as:

I(t) = ge(t)(Ee − V ) + gi(t)(Ei − V )

where Ee (resp Ei) is the excitatory (resp. inhibitory) reverse potential and ge (resp.
gi) is the the excitatory (resp. inhibitory) conductance.

The excitatory conductance is defined as

ge(t) = de

N
X

i=1

X

j

δ(t − tji )

where de represents the strenght of the synapses and

The set {tji} counts over the Poisson-distributed excitatory pulses obtained as a
super-position of N spike trains each characterized by a rate ν0, representing the N

correlated or uncorrelated inputs. The overall (correlated or uncorrelated) spike trains
are constructed exactly as before.

MJE Richardson, PRE (2004)
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Conductance-driven FHN
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Hodgkin-Huxley Model
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eCR and iCR for any level of correlations, same mechanisms as in the FHN;

no evidence of DCR

why ? Maybe the chosen parameters ν0 and ∆W0 are not the right ones
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Credits

Stefano Luccioli - Msc in Physics (2004-2005)

Dynamics of realistic single neuronal models

Thomas Kreuz - Marie Curie Fellow (2005-2006)

Dynamical Entropies in Assemblies of Neurons

http://www.fi.isc.cnr.it/users/alessandro.torcini/neurores.html
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Response of the silent neuron

The HH neuron is in the silent state, i.e. the average input current Ī is smaller than ISN .
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Response of the silent neuron

Firing activated by noise
Two mechanisms compete:

the HH dynamics tends to relax towards the rest state;

noise fluctuations lead the system towards an excitation threshold.

The dynamics of V (t) resembles the overdamped dynamics of a particle in a potential well
under the influence of thermal fluctuations, and the firing times can be expressed in terms of
the Kramers expression (for sufficiently small noise)

ta ∝ eWS/σ2

the time distribution is Poissonian (CV = 1).
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Response of the silent neuron

High noise limit
The effect of noise fluctuations on the neuron dynamics is twofold:

a constant current Ī driving the system;

a stochastic term with zero average.

The dynamics of V (t) can therefore be described in terms of a Langevin process with a drift
and the distribution of the first passage times is given by the inverse Gaussian distribution:

f(t) =
α

p

2πβt3
e
−

(t−α)2

2βt

In this case the coefficient of variation should
be given by

CV ∝ σ
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