Double coherence resonance in neuronal models driven by correlated noise

S. Luccioli, T. Kreuz, & A. Torcini

Istituto dei Sistemi Complessi - CNR - Firenze

Centro interdipartimentale di Studi sulle Dinamiche Complesse - CSDC - Firenze

Introduction

Coherence Resonance (CR): the effect induced by noise on an excitable oscillator, that leads to a regularization of the system response at an optimal noise intensity without any external drive. B. Lindner *et al.*, Phys Rep. 392 (2004) 321-424

- CR has been usually observed for uncorrelated inputs with respect to noise intensity Hu Gang et al., PRL 71, 807 (1993) – A. Pikovsky & J. Kurths, PRL 78, 775 (1997)
- A second type of CR has been also observed with respect to the level of correlation :
 - Iasers Buldú et al, PRE (2001)
 - digital circuits Brugioni et al., PRE (2005)
 - chemical reactions Beato el al. PRE (2005)
 - neuronal models Casado PLA (1997)

Our study:

- A FitzHugh-Nagumo (FHN) model subjected to a large number of stochastic excitatory and inhibitory post-synaptic inputs (PSPs) (small positive or negative kicks);
- Either excitatory or inhibitory Poissonian PSP trains are correlated.

By varying indipendently noise amplitude and correlation level, is it possible to observe a maximal coherence resonance ?

Summary

- The FHN model and the stochastic stimulation protocol;
- Coherence resonance in brief;
- Influence of correlations on the coherent response;
- Double coherence resonance (DCR) with respect to noise and correlations;
- Heuristic explanations of the observed phenomena;
- Conclusions

The FitzHugh-Nagumo Model

The FitzHugh-Nagumo (FHN) model is a two dimensional simplified neuronal model:

$$\dot{V} = \phi(V - \frac{V^3}{3} - W)$$

$$\dot{W} = V + a_0 - I(t)$$

where V is a voltage-like variable, W is a recovery variable and a_0 is the bifurcation parameter.

For $\phi = 100$ the silent regime is observed for $a_0 > 1$, while at $a_0 < 1$ one has periodic firing. The external input is :

$$I(t) = \Delta W_0 \left[\sum_{k=1}^{N_e} \sum_{l} \delta(t - t_k^l) - \sum_{m=1}^{N_i} \sum_{n} \delta(t - t_m^n) \right]$$

We examine the FHN model subject to N_E (resp. N_I) trains of excitatory (resp. inhibitory) post-synaptic potentials, in the balanced case (i.e. for $N_E = N_I \equiv N$) where $\langle I \rangle \equiv 0$ for $a_0 = 1.05$ and $\Delta W_0 = 0.0014$.

High-input regime

- Instead of a continuous input I(t), we consider N_E excitatory (EPSP) and N_I inhibitory postsynaptic inputs (IPSP), each corresponding to a voltage kick $\Delta W_0 = 0.0014$.
- These inputs originate from uncorrelated neurons emitting Poissonian spike trains with frequency ν_0 .
- This corresponds to a single excitatory (resp. inhibitory) Poissonian spike train with frequency $\nu_E = N_e \times \nu_0$ (resp. $\nu_I = N_I \times \nu_0$) for $N_e \sim N_I \sim 100 1,000$.

For these high frequencies the net input spike count within a (sufficiently large) temporal window ΔT is essentially Gaussian distributed and it can be characterized by

average $\mu = \nu_0 (N_E - N_I) \Delta T$; variance $V = \nu_0 (N_E + N_I) \Delta T = \nu_0 \sigma^2 \Delta T$

The response of the neuron is examined for a zero average external input

 $\langle I \rangle = \Delta W_0 \nu_0 (N_E - N_I) \equiv 0$

by varying only the standard deviation of the noise $\sigma = \sqrt{N_E + N_I}$

M.N. Shadlen & W.T. Newsome (1998)

Statistical and dynamical indicators

S ISI distribution
$$\rightarrow P_{ISI}(t)$$
;

• $CV = \frac{Std(ISI)}{\langle ISI \rangle} \rightarrow \text{coefficient of variation of the ISIs:}$ Poissonian distribution $\rightarrow CV = 1$ regular sequence $\rightarrow CV = 0$;

• $\tau_c = \int_0^\infty C^2(t) dt \to \text{correlation time,}$ $C(\tau) = \frac{\langle V(t+\tau)V(t) \rangle - \langle V \rangle^2}{\langle V^2 \rangle - \langle V \rangle^2}$

.

Coherence Resonance

Coherence of the emitted spike trains

In the silent regime :

- Iow noise: Activation Process P_{ISI} is Poissonian
- \square by increasing σ the firing rate increases, the spike train becomes more regular;
- **a** maximal coherence level is reached for an optimal σ -value;
- for higher noise amplitudes the response becomes again more irregular: Brownian motion + drift - P_{ISI} is an Inverse Gaussian.

Hu Gang et al., PRL 71, 807 (1993) – A. Pikovsky & J. Kurths, PRL 78, 775 (1997)

Coherence Resonance

The system is characterized by two characteristic times $\rightarrow ISI \equiv T = t_a + t_e$:

- $t_a = activation time \rightarrow time needed to excite the system;$
- $t_e = excursion time \rightarrow duration of the spike (excited state).$

• CV(T) can be splitted in two contributions $CV(T)^2 = CV(t_a)^2 \frac{\langle t_a \rangle^2}{\langle T \rangle^2} + CV(t_e)^2 \frac{\langle t_e \rangle^2}{\langle T \rangle^2} = R_1^2(t_a) + R_2^2(t_e)$

 $R_1^2(t_a)$ decreases with σ , while $R_2^2(t_e)$ increases \rightarrow minimum in CV(T)B. Lindner *et al.*, Phys Rep. 392 (2004) 321-424

Correlations via shared inputs

- Correlations ONLY among either excitatory or inhibitory inputs are considered in the balanced case $N_E = N_I \equiv N$;
- The degree of correlation among N distinct inputs ρ is given by the average fraction of synapses delivering kicks at the same time;
- The superposition of N correlated (ρ) Poissonian spike trains with rate ν_0 gives rise to a sequence of kicks of variable amplitude ΔW (binomially distributed) and with ISIs Poissonian distributed with rate $\nu_x = \nu_0 / \rho$ (either x = e or x = i);
- The uncorrelated excitatory (resp. inhibitory) inputs are small kicks delivered at high rate $\nu_U = N\nu_0$ (this is an almost continuous background);
- The correlated inhibitory (resp. excitatory) inputs are large amplitude events delivered at a much lower rate $\nu_x \ll \nu_U$;

Correlations via shared inputs

- Correlations ONLY among either excitatory or inhibitory inputs are considered in the balanced case $N_E = N_I \equiv N$;
- The degree of correlation among N distinct inputs ρ is given by the average fraction of synapses delivering kicks at the same time;
- The superposition of N correlated (ρ) Poissonian spike trains with rate ν_0 gives rise to a sequence of kicks of variable amplitude ΔW (binomially distributed) and with ISIs Poissonian distributed with rate $\nu_x = \nu_0 / \rho$ (either x = e or x = i);
- The uncorrelated excitatory (resp. inhibitory) inputs are small kicks delivered at high rate $\nu_U = N\nu_0$ (this is an almost continuous background);
- The correlated inhibitory (resp. excitatory) inputs are large amplitude events delivered at a much lower rate $\nu_x \ll \nu_U$;
- The effect of the uncorrelated inputs leads to a renormalization of the bifurcation parameter: $\bar{a} = a_0 \pm (N\nu_0 \Delta W_0);$
- The effect of the correlated inputs is embodied in the noise variance

 $\sigma^{2} = \Delta W_{0}^{2} \nu_{0} [\rho N^{2} + (1 - \rho)N + N]$

M.N. Shadlen & W.T. Newsome (1998) – E. Salinas & J. Sejnowski (2000)

Response to correlated inputs

We have studied the response of the (balanced $N_E = N_I$) Fitz-Hugh Nagumo model in the silent regime for excitatory (resp. inhibitory) correlated inputs by varying INDEPENDENTLY correlation ρ and noise variance σ^2 .

- Coherence Resonance (CR) is observed for any excitatory (resp. inhibitory) level of correlation at finite noise amplitude.
- Double Coherence Resonance (DCR) : an absolute CR with respect to noise and correlation can be identified for excitatory (resp. inhibitory) correlated inputs.

Strong excitatory correlations

The coherence phenomenon is now determined only by the kick amplitude and not by the properties of the asymptotic stochastic processes, since in the present case the output can be always described as a Poissonian process with a refractory time:

$$CV = 1 - T_{ref}\bar{\nu}$$

For increasing variance (N) the amplitude of the correlated kicks increases. while the effect of the uncorrelated (inhibitory) trains drives the system towards the silent regime.

- **for** $Variance < V_1 \rightarrow \text{Activation Process}$
- for V₁ < Variance < V₂
 1 kick may be sufficient to elicit a spike
- for $Variance \ge V_2$ Each kick elicits always a spike apart during the refractory period
 - 1 : 1 synchronization between input and output
 - ${}_{m
 u}$ $ar
 u =
 u_0 /
 ho_e$;
 - Sy further increasing $Variance \rightarrow T_{ref}$ decreases

Excitatory DCR

• for $ho_e \geq ar{
ho}_e$, 1:1 synchronization is always achieved for kick amplitudes $\geq \Delta W_c$

- therefore $CV_{min} = 1 T_{ref} \nu_0 / \rho_e$
- the CV_{min} is attained at essentially the same ΔW_c , T_{ref} does not vary too much.
- for $\rho_e < \bar{\rho}_e$, the system is no more strictly forced by the driving kicks:
 - at the minimum the firing rate is smaller $ar{
 u} <
 u_0 /
 ho_e$.

Strong inhibitory correlations I

- for $Variance < V_1$ Silent regime Activation Process $CV \simeq 1$
- **for** $V_1 < Variance < V_2$
 - The uncorrelated excitatory inputs lead the system towards the repetitive firing regime $\bar{a} < 1$
 - Despite the increase of their amplitude the inhibitory kicks are not too effective
 - The signal becomes more regular CV decreases
- for $Variance > V_2$ Each inhibitory kick induces a certain delay in the spike time of the neuron A multimodal structure appears in the ISI distribution

Frequency of the correlated kicks (ν_0) << Frequency of the uncorrelated kicks ($N\nu_0$)

Strong inhibitory correlations II

The fraction of time $r(\bar{a})$ a FHN neuron is sensitive to the arrival of a kick before a spike emission for the deterministic case has a minimum:

 $r(\bar{a}) = 1 - T_{ref}(\bar{a}) / T_f(\bar{a})$

Noticeably, the CV_{min} occurs for $\bar{a} \sim 0.97$ for $\rho_i > \bar{\rho}_i$.

Inhibitory DCR

- The CV_{min} in the correlation interval $[\bar{\rho}:1]$ occurs essentially for the same renormalized parameter value $\bar{a} = a_0 (N\nu_0\Delta W_0) \sim 0.97$
- Therefore the average inhibitory kick amplitude at the minima depends only on the correlation < $\Delta W > \propto \rho_i$
- For decreasing ρ_i the kicks disturb less: CV_{min} decreases
- For sufficiently small $\rho_i < \bar{\rho}_i$ the frequency of the inhibitory kicks becomes more important than their amplitude.
- Lowering $\rho_i \to 0$ leads to an increase of the frequency $\nu_i = \nu_0 / \rho_i$, that renders the neuronal firing more irregular: CV_{min} increases again

Conclusions

- Absolute minima of CV corresponding to maximal coherence are observed at finite noise and correlation for both inhibitory and excitatory case.
- The extrema of CV_{min} indicate the change in the mechanisms inducing CR, from amplitude dominated to usual mechanisms related to the crossover from activated to (biased) diffusive processes.

A DCR with respect to correlation and noise intensity is a new phe- ρ_e nomenon.

- \square X —> minima for fixed ρ
 - + —> minima for fixed σ

Conductance-based input

The external current I(t) for the FHN is now rewritten as:

 $I(t) = g_e(t)(E_e - V) + g_i(t)(E_i - V)$

where E_e (resp E_i) is the excitatory (resp. inhibitory) reverse potential and g_e (resp. g_i) is the the excitatory (resp. inhibitory) conductance.

The excitatory conductance is defined as

$$g_e(t) = d_e \sum_{i=1}^N \sum_j \delta(t - t_i^j)$$

where d_e represents the strenght of the synapses and

The set { t_i^j } counts over the Poisson-distributed excitatory pulses obtained as a super-position of N spike trains each characterized by a rate ν_0 , representing the N correlated or uncorrelated inputs. The overall (correlated or uncorrelated) spike trains are constructed exactly as before.

MJE Richardson, PRE (2004)

Conductance-driven FHN

Hodgkin-Huxley Model

- eCR and iCR for any level of correlations, same mechanisms as in the FHN;
- no evidence of DCR
- \blacksquare why ? Maybe the chosen parameters ν_0 and ΔW_0 are not the right ones

Credits

- Stefano Luccioli Msc in Physics (2004-2005)
- Dynamics of realistic single neuronal models

- Thomas Kreuz Marie Curie Fellow (2005-2006)
- Dynamical Entropies in Assemblies of Neurons

http://www.fi.isc.cnr.it/users/alessandro.torcini/neurores.html

Response of the silent neuron

The HH neuron is in the silent state, i.e. the average input current \overline{I} is smaller than I_{SN} .

Response of the silent neuron

Firing activated by noise

Two mechanisms compete:

- the HH dynamics tends to relax towards the rest state;
- noise fluctuations lead the system towards an excitation threshold.

The dynamics of V(t) resembles the overdamped dynamics of a particle in a potential well under the influence of thermal fluctuations, and the firing times can be expressed in terms of the Kramers expression (for sufficiently small noise)

the time distribution is Poissonian (CV = 1).

- for $\sigma < \sqrt{W_S} \rightarrow$ Activation Process
- for $\sigma > \sqrt{W_S} \rightarrow$ Diffusive Dynamics

Response of the silent neuron

High noise limit

The effect of noise fluctuations on the neuron dynamics is twofold:

- \checkmark a constant current \overline{I} driving the system;
- a stochastic term with zero average.

The dynamics of V(t) can therefore be described in terms of a Langevin process with a drift and the distribution of the first passage times is given by the inverse Gaussian distribution:

In this case the coefficient of variation should be given by

$$CV \propto \frac{\sigma}{(\bar{I} + I_0)\sqrt{\langle ISI \rangle}}$$

