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a b s t r a c t 

Canards, special trajectories that follow invariant repelling slow manifolds for long time intervals, have 

been frequently observed in slow-fast systems of either biological, chemical and physical nature. Here, 

collective canard explosions are demonstrated in a population of globally-coupled phase-rotators sub- 

ject to adaptive coupling. In particular, we consider a bimodal Kuramoto model displaying coexistence of 

asynchronous and partially synchronized dynamics subject to a linear global feedback. A detailed geomet- 

ric singular perturbation analysis of the associated mean-field model allows us to explain the emergence 

of collective canards in terms of the stability properties of the one-dimensional critical manifold, near 

which the slow macroscopic dynamics takes place. We finally show how collective canards and related 

manifolds gradually emerge in the globally-coupled system for increasing system sizes, in spite of the 

trivial dynamics of the uncoupled rotators. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Slow-fast systems, i.e. nonlinear dynamical systems in which 

wo or more variables evolve over very different time-scales, ap- 

ear in many branches of natural science. The splitting between 

ime-scales gives rise to peculiar oscillatory patterns, the dynamics 

f which can be generally decomposed into a sequence of peri- 

ds of slow motion, taking place near the attracting branches of 

 critical manifold defined by the equilibria of the fast dynam- 

cs, and rapid switches between them (relaxation and bursting os- 

illations) [1] . Remarkably, at the transition from small-amplitude 

Hopf-type) limit cycles to large relaxation/burst cycles, the tra- 

ectories may flow on a slow time-scale along the repelling part 

f the manifold, instead of quickly departing from it. These spe- 

ial trajectories are known as canard cycles [2] . The transition (ca- 

ard explosion) occurs within an exponentially small range of pa- 

ameter values, which makes these orbits hard to detect numer- 

cally and observe experimentally. Moreover, since canard orbits 

artially connect attracting and repelling slow manifolds, they are 

xtremely sensitive to variations of control parameters and fluctu- 
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tions. Such sensitivity is also at the origin of complex dynamics 

ncluding chaotic spiking and mixed-mode oscillations [3–12] . 

While most studies on canard phenomena have been carried 

ut in low-dimensional slow-fast systems, particularly two- or 

hree-dimensional neuronal models [13–17] , recent investigations 

ocused on large populations [18–20] . These works have demon- 

trated, e.g., the role of large networks in producing robust col- 

ective responses and preserving canard orbits in the presence of 

oise, which has important implications in neuroscience. Other 

tudies more generally focused on collective slow-fast dynamics, 

uch as bursting [21,22] and excitability [23] . In all these cases 

owever, these phenomena result in the partial synchronization of 

he nodes, each one being an autonomous slow-fast system. 

In this work, we show how canard explosions can sponta- 

eously emerge in the collective dynamics in large populations of 

lobally-coupled phase oscillators. 

Complex networks of rotators, typically described in terms of 

he Kuramoto model [24] and its generalizations [25] , have been 

idely investigated in the last decades with the aim of observing 

he emergence of non-trivial macroscopic phenomena. These in- 

ludes e.g. collective oscillations, quasi-periodicity and chaos [26–

8] , and first-order phase transitions between states with different 

egrees of synchronization [29–31] . However, only a few pioneer- 

https://doi.org/10.1016/j.chaos.2021.111592
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2021.111592&domain=pdf
mailto:francesco.marino@ino.it
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ng analyses have been devoted to the onset of collective slow-fast 

henomena in such networks [32,33] . 

In a recent paper [34] some of us have shown that a self- 

ustained adaptation mechanism can give rise to collective ex- 

itability and bursting oscillations in a population of rotators. 

n the absence of adaptation, the network displays a hysteretic 

hase transition involving asynchronous and partially synchronized 

tates. The adaptive feedback drives the system on a slow time- 

cale across the phase-transition, leading to self-sustained collec- 

ive oscillations that can be either periodic or chaotic. These dy- 

amics are fairly reminiscent of the spiking and bursting dynam- 

cs observed in the Hindmarsh-Rose model for a single neuron 

35–38] . However, many important features related to these phe- 

omena, in particular the transitional regime from the Hopf quasi- 

armonic cycle and the fully-developed bursting, have not been ex- 

lored so far. 

Here, we focus on this regime showing the existence of collec- 

ive canard explosions in a large population of phase oscillators 

ubject to a linear adaptive coupling. We demonstrate that these 

henomena originate from the existence of a one-dimensional (1D) 

ritical manifold which organizes the mean-field dynamics on a 

low time-scale. We perform extensive numerical simulations to 

haracterize canard trajectories as a function of the control param- 

ters and to address the effects of finite-size fluctuations. 

The paper is organized as follows. In Sec. II, we introduce the 

etwork model and its mean-field description, consisting of a 3D 

low-fast system with two fast and one slow variable. In Sec. III 

e present the collective dynamical regimes encountered in our 

etwork and compare them with the prediction of the mean-field 

odel. In Sec. IV we focus on the fast transition from the small- 

mplitude Hopf cycle to the large amplitude bursting oscillations 

nd explain it in terms of classical canard explosions nearby a 1D 

ritical manifold, �. We finally show in Sec. V that canard cycles 

ssociated to effective slow-manifolds in the phase space, are al- 

eady observable even at low values of N. Remarkably, such a geo- 

etric structure is not encoded in the single-node dynamics, but 

radually emerge in the macroscopic behaviour of the network. 

onclusions and future perspectives are presented in Sec. IV. 

. Adaptive Kuramoto model and mean-field description 

We consider a globally-coupled population of N rotators with 

daptive coupling strength S(t) [34] 

˙ 
k (t) = ω k + 

S(t) 

N 

N ∑ 

j=1 

sin (θ j (t) − θk (t)) , k = 1 , . . . , N (1a) 

˙ 
 (t) = ε[ −S(t) + K − αR (t) ] (1b) 

here θk ( ω k ) are the phases (natural frequencies) of each rotator. 

ccordingly to Eq. (1b) , the evolution of the coupling variable S(t) 

s controlled, via a linear feedback, by R (t) , which is the modulus 

f the complex Kuramoto order parameter Z(t) = 

1 
N 

∑ N 
j=1 e 

iθ j (t) = 

 (t)e iφ(t) [24] . The macroscopic variable R measures the level of 

ynchronization among the rotators: asynchronous (partially syn- 

hronized) dynamics will correspond to R = 0 ( 0 < R ≤ 1 ). We con-

ider a bimodal distribution of natural frequencies for which, in 

bsence of feedback ( α = 0 ), the system displays a first-order hys- 

eretic transition from incoherent to partially-synchronized states 

30] . The gain of the feedback loop is controlled by α while ε is 

he ratio between the characteristic time-scale of the macroscopic 

etwork dynamics and the feedback. We assume the coupling to 

lowly adapt to the fast switching between incoherent and coher- 

nt states, i.e. 0 < ε � 1 . It is in this regime that the multiple time-

cale competition between the macroscopic network dynamics and 

he feedback gives rise to collective slow-fast dynamics [34] . 
2 
For the special case of a bimodal frequency distribution given 

y the sum of two Lorentzians an exact mean-field model for 

he network (1) can be obtained by extending the calculations in 

32,41] based on the Ott-Antonsen Ansatz [42] . Writing Z = 

1 
2 (z 1 + 

 2 ) in terms of two sub-population order parameters z k = ρk e 
iφk 

 k = 1 , 2 ) each relative to a Lorentzian distribution, and assuming

1 ≈ ρ2 = ρ we obtain [34] 

˙ = −	ρ + 

S 

4 

ρ(1 − ρ2 )(1 + cos (φ)) (2a) 

˙ = 2 ω 0 − S 

2 

(1 + ρ2 ) sin (φ) (2b) 

˙ 
 = −ε

[ 

S − K + αρ

√ 

1 + cos (φ) 

2 

] 

(2c) 

here φ = φ2 − φ1 , ±ω 0 are the centers of the two Lorentzians, 	

s their half-width at half-maximum and R = ρ
√ 

(1 + cos (φ)) / 2 . In 

his paper, we keep fixed the distribution parameters at the values 

 0 = 1 . 8 and 	 = 1 . 4 and the feedback gain at α = 7 . 

The stability of Eqs. (2) can be analyzed by following the evo- 

ution of infinitesimal perturbations in the tangent space, whose 

ynamics is ruled by the linearization of Eqs. (2) as follows: 

˙ ρ = −	δρ + 

[ 
S 

4 

(1 + cos (φ)) − S 

4 

sin (φ) δφ
] 
ρ(1 − ρ2 ) 

+ 

S 

4 

(1 + cos (φ))(1 − 3 ρ2 ) δρ

˙ φ = 2 − δS 

2 

(1 + ρ2 ) sin (φ) − S 

2 

(1 + ρ2 ) cos (φ) δφ

−Sρ sin (φ) δρ

δ ˙ S = −ε

[ 

δS + α

√ 

1 + cos (φ) 

2 

δρ − αρ

8 

sin (φ) √ 

1 + cos (φ) 
δφ

] 

. (3) 

n particular the maximal Lyapunov Exponent (LE) λM 

associated 

o the mean-field model (2) can be obtained by considering the 

ime evolution of the tangent vector � δ= { δρ, δφ, δS } , ruled by the 

inearized version of the original system (3) . The maximal LE quan- 

ifies the average growth rate of an infinitesimal perturbation 

�
 δ0 

nd it can be estimated as follows 

M 

= lim 

t→∞ 

1 

t 
log 

| � δ(t) | 
| � δ0 | ; (4) 

he system is chaotic whenever λM 

> 0 [39] . As we shall see in

ection 4 , our system display a regime of irregular canard cycles 

he characterization of which in terms of the asymptotic maximal 

E is extremely difficult. For such states it is more useful to esti- 

ate the finite time LE λt over a finite time window of duration 

t , namely λt = 

1 
	t 

ln 

√ ∑ 3 
i =1 δi (	t ) δi (	t ) , where the initial mag- 

itude of the vector is set to one, i.e. || � δ(0) || ≡ 1 . 

. Network and mean-field dynamics 

We now present the dynamical regimes obtained integrating 

he network model (1) and compare them with the corresponding 

ean-field predictions. Unless noted otherwise, in our study the 

imodal Lorentzian distributions are randomly generated through 

he rule ω j = ±ω 0 + 	 tan (π(r − 0 . 5)) , where r is a random num-

er uniformly distributed between 0 and 1. Alternatively, we can 

enerate them deterministically, as follows [43] 

 j = −ω 0 + 	 tan (πξ j / 2) 

ξ j = 

2 j − N/ 2 − 1 

N/ 2 + 1 

j = 1 . . . N/ 2 (5a) 
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Fig. 1. Time-series of R for the network model (1) (black) and the mean-field model 

(2) (red). In each panel from (a) to (e) the control parameter K used in both models 

is the same: (a) K = 9.044, (b) K = 9.017137, (c) K = 9.017, (d) K = 8.9, (e) K = 8.5. In 

panels (f)-(j) we plot the same network time-traces as in (a)-(e), while the control 

parameter in the mean-field model has been adjusted to reproduce the dynam- 

ics of the network: (f) K = 9.06, (g) K = 9.04 4 41, (h) K = 9.04 4288, (i) K = 8.925, (j) 

K = 8.505. Other parameters: ε = 0.02, 	0 = 1.4 ω 0 = 1.8, α= 7. For the network we use 

a population of N = 5 × 10 5 rotators and a randomly-generated bimodal Lorentzian 

distribution. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

ω

 

t

c

s  

v

i

F

s

0

K

a

a

f

i

d

d

s

t

b

t

H

R

q

r

a

a

c

h

b

c

e

q

n

m

A

s

T

a

p

b

fi

h

o

o

g

a

t

o

s

a

r

s

4

t

n

c

n

n

a

m

f

m

b

l

g

0  

t

S

O

b

 j = ω 0 + 	 tan (πξ j / 2) 

ξ j = 

2 j − 3 N/ 2 − 1 

N/ 2 + 1 

j = N/ 2 + 1 . . . N (5b) 

While for large N ( N � 10 5 ) our results are not modified quali-

atively by the way in which the distribution is generated (nor by 

onsidering other bimodal frequency distributions, such as Gaus- 

ian), we will show in Section 5 that this is not the case at lower

alues of N. 

Time-traces of the different macroscopic regimes illustrated 

n terms of the synchronization parameter R (t) are displayed in 

ig. 1 . For K = 9.044 the network is in a partially-synchronized 

tate, associated with a constant synchronization variable R (t) ≈
 . 45 . A supercritical Hopf bifurcation occurs at the critical value 

 = 9 . 017135 beyond which R (t) displays quasi-harmonic small- 

mplitude oscillations (see e.g. Fig. 1 (b)). This behavior is observ- 

ble only within a parameter range of order ε beyond the bi- 

urcation point. Outside this range the system enters the burst- 
3 
ng regime, alternating partially synchronized phases with abrupt 

e-synchronization events (spikes), as shown in Fig. 1 (c). Further 

ecreasing K, the number of spikes increases in a spike-adding 

equence (see 2-spike and 3-spike bursting in ( Fig. 1 (d,e)) until 

he number of spikes becomes irregular, giving rise to a chaotic 

ursting phase. Such macroscopic dynamics is quite similar to 

hat observed in low-dimensional slow-fast systems, such as the 

indmarsh-Rose model [38] and has been investigated in detail in 

ef [34] . 

In this work we focus instead on the fast transition from the 

uasi-harmonic Hopf cycle ( Fig. 1 (b)) to the single-spike bursting 

egime ( Fig. 1 (c)). In a small range of K between these regimes, the 

mplitude of the limit cycle abruptly (though continuously) grows 

nd reaches a saturation value. Likewise, the frequency of the os- 

illations experiences a similar sudden change from the quasi- 

armonic value to a frequency of the order of ε typical of the 

ursting regime. Close to the transition both the Hopf and burst 

ycles are extremely sensitive to variations of the control param- 

ter and to fluctuations. As a result, the mean-field time-series 

uantitatively differ from those of the network, in spite of the large 

umber N of oscillators involved. In Fig. 1 (b), the network and the 

ean-field model are neither showing the same dynamical regime. 

 better agreement is found far from the transition, where the 

ystem displays multi-spike bursting oscillations (see Fig. 1 (c-d)). 

hese attractors typically exists over a wider range of parameters 

nd are less sensitive to fluctuations or variations of K. 

On the other hand, it is sufficient to slightly tune the control 

arameter K towards lower values, to find an excellent agreement 

etween the macroscopic dynamics of the network and the mean- 

eld predictions. This suggests that the finite size of the network 

as the main effect (at least at the level of N ∼ 10 5 oscillators) 

f shifting the bifurcation points, while having a moderate effect 

n the orbits in phase space. In the case of a deterministically- 

enerated frequency distribution, the network dynamics is gener- 

lly better approximated by the mean-field. We will return back to 

his point in Sec. V. 

While the above scenario displays all the characteristic features 

f canard explosions, a rigorous interpretation in terms of the clas- 

ical canard phenomenon requires the identification of the associ- 

ted geometric structures from which slow segments of trajecto- 

ies are attracted and repelled. This is what we discuss in the next 

ection. 

. Collective canard explosions 

In geometric terms a (maximal) canard solution originates from 

he connection of attracting and repelling slow manifolds near 

on-hyperbolic points that, for ε � 1 , are approximated by the 

ritical manifold defined by the set of equilibria of the fast dy- 

amics [40] . Other canard solutions exist in an exponentially small 

eighbourhood of maximal canards. As we shall see below, in the 

ppropriate parameters range a periodic pattern of canard cycles 

ay appear as the result of slow motion nearby the critical mani- 

old, combined with the turning back of the fast dynamics. 

On the fast time scale t , the evolution is described by the 

ean-field equations ( 2a –2b ) (layer problem) with S acting as a 

ifurcation parameter. The equilibria of this dynamical subsystem 

ay on the one-dimensional manifold � = �0 ∪ �ρ , where �0 is 

iven by the set of incoherent steady-state solutions �0 = { ρs = 

 , sin (φs ) = 4 ω 0 /S, S} , and �ρ = { ρs , φs , S} is defined by the equa-

ions S(1 + ρ2 
s ) sin (φs ) = 4 ω 0 and 

 = 

2 ω 

2 
0 

	

1 − ρ2 

(1 + ρ2 ) 2 
+ 

2	

1 − ρ2 
≡ F(ρ) (6) 

n the slow time scale τ = εt , the motion is governed by the feed- 

ack equation Eq. (2c) (reduced problem) with the algebraic con- 
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Fig. 2. Hopf and canard cycles of the network model (1) for (a) ε = 0.02 and (b) 

ε = 0.07. The limit cycles are illustrated in the ( S, R ) plane together with the crit- 

ical manifold (7) , whose attracting (repelling) branches are plotted as black solid 

(dashed) lines. (a) Hopf cycle K = 9.017137 (green) and canard cycles K = 9.0165 

(red), K = 9.017 (blue), K = 9.0171 (magenta). (b) Hopf cycle K = 8 . 98 (green) and ca- 

nard cycles K = 8.97 (red), K = 8.9725 (blue), K = 8.973. Other parameters as in Fig. 1 . 

(For interpretation of the references to colour in this figure legend, the reader is re- 

ferred to the web version of this article.) 
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c

i

o

traint ( ˙ ρ, ˙ φ)= (0,0). The fixed points of the layer problem thus de- 

ne the 1D critical manifold near which the slow dynamics takes 

lace. In particular, the trajectories will be attracted by stable parts 

f � while will be repelled by the unstable ones and the dynamics 

ill be well approximated by that of the reduced problem [40] . 

Linearizing the fast subsystem on �ρ we find that it consists of 

 branch of stable equilibria �S (see e.g. solid black line in Fig. 2 )

nd an unstable one �R (dashed line) coalescing in a saddle-node 

ifurcation at a fold point. For ω 0 > 	, equilibria along �0 are al- 

ays unstable. Finally, the above stationary states coexist with a 

ultiplicity of stable limit cycles which are responsible for the on- 

et of the bursting phase and the spike adding-sequences of the 

omplete system [34] . 

In order to verify the existence of canard trajectories in our net- 

ork, we re-write the critical manifold (6) in terms of R , using 

he relation R = ρ
√ 

(1 + cos (φ)) / 2 and the stationary solutions of 

q. 2a . We obtain the implicit expression 

 = (SR 

2 + 2	) 

(
1 + 

ω 

2 
0 

SR 

2 + 	

)
(7) 
4 
In Fig. 2 (a) we plot the projection on the (R, S) plane of a few

olutions of Eqs. ( 2a –2c ) as K is varied, together with the critical 

anifold (7) . As often observed in planar slow-fast systems, canard 

ycles, i.e. phase-space orbits with portions closely following the 

epelling branch of the critical manifold, arise in the vicinity of the 

old point where normal hyperbolicity is lost via a saddle-node bi- 

urcation of the layer problem. The trajectories passes close to the 

epelling branch �R for a certain amount of time, that critically de- 

ends on the control parameter K. For higher values of ε, the slow 

ynamics is less constrained by the critical manifold and the slow- 

ast character of the orbits is less pronounced. In particular, both 

anards and Hopf cycles tend to become more circular (see 2 (b)), 

nd for very large ε (of a few tenths) canard cycles no longer ex- 

st, becoming fully convex and loosing their characteristic inflection 

oint. 

On the other hand, a moderate increase of ε results in a 

ore simple detection of the canard cycles. In particular, since 

he canard explosion occurs within an exponentially small range 

(exp(−1 /ε)) of the control parameter K, by increasing ε, one can 

ore easily approach the transition and find canard orbits with a 

ore extended portion flowing close to the repelling part of the 

anifold. 

Further increasing K towards the boundary of the Hopf bifurca- 

ion, such canard portion should continuously increase, eventually 

ecoming maximal and thus following the whole repelling branch 

R . However, at difference with the planar systems in which ca- 

ards are asymptotically stable, here we observe a transition from 

eriodic to irregular canard cycles (see Fig. 3 a)). The trajectories 

n the phase space display a maximal variability after their in- 

ection point and generally, when they are far from the critical 

anifold. This is consistent with the fact that, close to the criti- 

al manifold, the dynamics is almost constrained on a plane. This 

ehaviour has been reproduced by the mean-field model, demon- 

trating that the phenomenon persists in the thermodynamic limit 

nd it is not related to finite-size effects. We found the irregular 

ehaviour in the parameter range K ∈ [9 . 04 4 4014 4 , 9 . 04 4 4014 475] .

or higher values of K in the interval, the irregular canard regime 

s a transient and the system eventually converges to a quasi- 

armonic Hopf cycle (see Fig. 3 c)). As K is decreased starting 

rom the upper bound, the time taken by the system to reach the 

opf cycles significantly grows. In Fig. 3 b) we report the case for 

 = 9 . 04 4 4014 469 , where apparently stable irregular canards are

bserved. Further investigation on these irregular canards in terms 

f LEs has clarified the origin of these irregularities. The behavior 

f the finite time LE λt is determined by the steep slopes shown 

y R nearby the inflection point (see Fig. 4 a): when the order pa-

ameter rapidly leaves the critical unstable manifold, λt is positive, 

ut it suddenly becomes negative when R is attracted back towards 

he stable manifold and it remains 0 along the stable manifold. The 

aximal LE , whose running average is shown in Fig. 4 b) as a

unction of time, exhibits a clear tendency to reach λM 

= 0 in the 

nfinite time limit with a slope inversely proportional to the time. 

hus confirming the overall periodic nature of the motion. The er- 

atic behaviour seen in Fig. 3 (c) is due to the strong instability of 

he system in proximity of the repelling manifold, where λt � 0 . 3 ,

hich enhances infinitesimal integration errors. However, at vari- 

nce with chaotic systems this perturbation is readily reabsorbed 

hen the system moves along the stable manifold, characterized 

y a large negative λt . 

. Emergent slow manifolds 

In the thermodynamic limit, canard explosions and burst os- 

illations in our network are explained in terms of the stabil- 

ty properties of a 1D critical manifold. Remarkably, such a ge- 

metric structure is not encoded in the single-node dynamics, 
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Fig. 3. Irregular canard cycles (red traces) for (a) the network model (1) ( K = 

9 . 017134 ) and (b,c) the mean-field model (2): (b) K = 9 . 04 4 4014 469 (c) K = 

9 . 04 4 4014 47113997 . The cycles are illustrated in the ( S, R ) plane together with the 

critical manifold (7) , whose attracting (repelling) branches are plotted as black solid 

(dashed) lines. Other parameters as in Fig. 1 . (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. (a) Time-dependent behavior of R and λt . (b) Running average of the maxi- 

mal LE λM vs time. In the inset is shown an enlargement of the time-dependent be- 

havior for long simulation times. Parameters: time step 	t = 0 . 001 , transient time 

t tr = 20 0 0 , simulation time t s = 5 × 10 7 , K = 9 . 04 4 4014 47113997 , ε = 0 . 02 . Other 

parameters as in Fig. 1 . 
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ut spontaneously emerges in the macroscopic behaviour of the 

etwork. 

To better understand such phenomenology we start investigat- 

ng the macroscopic dynamics of the network for low values of 

. In Fig. 5 (a-d) we report the time-traces of R (t) for N = 10 0 0

nd different realizations of the frequency distribution. The results 

n (a-c) showing typical burst solutions clearly indicate that, al- 

eady at low values of N, a collective slow-fast dynamics starts 

o emerge. On the other hand, when the distribution is randomly 

enerated, the small modifications in the set of natural frequen- 

ies are sufficient to deeply affect the dynamics, with the system 

assing from a stable fixed point (d), to single (a,c) or multi-spike 

ursting (b). Such changes cannot be attributed to finite-size fluc- 

uations, but they are rather the result of the dependence of the 
5 
ifurcation points on each realization of the distribution. This vari- 

bility indeed is neither observed when the distribution is gener- 

ted deterministically through the rule (5), nor for different choices 

f the initial conditions when the distribution is randomly gener- 

ted. In the latter case the population displays always the same 

acroscopic behaviour for the chosen parameters. We finally no- 

ice that, for a given N, the deterministic rule is more effective 

n approximating the mean-field dynamics. This is evidenced in 

ig. 5 e) where, apart from the stronger finite-size fluctuations, the 

-spike bursting is remarkably similar to that shown for a close 

arameter in Fig. 1 (d). 

We now focus on collective canard cycles and analyze the de- 

endence of the associated slow manifolds on the population size 

. Since canard cycles contain portions of the attracting and re- 

elling slow manifolds of the system, their study for different N

an help to visualize how effective manifolds for the macroscopic 

ynamics emerge. 

In Fig. 6 (a) we plot a number of canard solutions found for dif- 

erent network sizes. Owing to the dependence on the frequency 

istribution and sensitivity to fluctuations, the control parameter 

has been tuned to remain as close as possible to the transition 

etween the Hopf cycle and the bursting regime, where canard 

rajectories are typically observed. As expected, the orbits display 

nite-size fluctuations that decrease as N is increased. We observe 

hat the typical features of the canard cycles are observable even 

or low values of N, although with a less evident inflection point. 

owever, the trajectories seem to follow an effective slow mani- 

old that clearly differ from �. A good agreement is recovered only 

or N � 20 0 0 0 , while for lower values of N, the shape and loca-

ion of the canard cycles in the phase space strongly depends on 

he realizations of the frequency distribution. This is suggestive of 

 direct dependence of the manifold geometry on the specific set 

f natural frequencies. Such a dependence can be understood in 

erms of the following qualitative argument. The critical manifold 

f the network (1) (i.e. in the singular limit ε = 0 ) is defined by

he stable and unstable solution branches, corresponding to par- 

ially synchronized states of the fast dynamics ruled by Eq. (1a) , 

ith S acting as a constant coupling parameter. In the thermody- 

amic limit, these branches are determined by the ”locked” rota- 

ors, labeled by the indexes k such that | ω k | ≤ SR . The contribution

f the ”drifting” oscillators with | ω | ≥ SR instead vanishes in the 
k 
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Fig. 5. Time-series of R for the network model (1) for N = 10 0 0 rotators and different sets of their natural frequencies. In (a-d) the frequencies are generated in a random way 

while in (e) are generated deterministically accordingly to the rule (5). In panel (e) we also show the corresponding mean-field prediction (blue solid trace). All parameters 

are fixed: ε = 0.02, 	0 = 1.4 ω 0 = 1.8, α= 7, K = 8.955. The initial conditions are ρ = 0 . 01 , φ= 0, S = K. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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ase of symmetric frequency distributions [44] . For finite N these 

ranches, which perturb to effective slow manifolds for finite val- 

es of ε, thus depend not only on the kind of frequency distri- 

ution (i.e. unimodal or bimodal), but also on the way in which 

he distribution has been generated. In particular, we expect a de- 

endence on the relative weight between locked and drifting sub- 

opulations, corresponding to the central part and the tails of the 

istribution respectively, the symmetry and the smoothness of the 

requency distribution. 

The above interpretation is supported by the results in Fig. 6 (b), 

here we show canard orbits as a function of N in the case 

f deterministically-generated frequency distributions. The deter- 

inistic rule allows to uniformly cover the range of possible fre- 

uencies leading, even for low N, to a comparatively smoother 

imodal distribution. This leads to a reduction of finite-size ef- 

ects and to a more rapid convergence to the mean-field dynam- 

cs [45] . Already for N = 10 0 0 , the canard cycle displays indeed

he typical shape as observed in Fig. 2 (a) with a considerable por- 

ion of the orbit lying in the vicinity of the repelling branch �R . 

ven for such a low N, and in spite of the differences due to the

niteness of ε, the 1D critical manifold of the mean-field model 

7) provides a very good approximation of the effective slow man- 

fold of the network. This is particularly evident in the vicinity 
s

6 
f the attracting part (solid curve in Fig. 6 ) where the effects of 

he fluctuations and the sensitivity to the control parameter are 

ower. 

. Conclusions and perspectives 

We have shown that macroscopic canards cycles, special trajec- 

ories partially following invariant repelling slow manifolds, arise 

n the collective dynamics of a population of globally-coupled 

hase-rotators subject to adaptive coupling. In particular, we con- 

idered the bimodal Kuramoto model, that it is known to dis- 

lay the coexistence of asynchronous and partially synchronized 

egimes, with an adaptive coupling. The coupling is controlled via 

 global linear feedback dependent on the level of synchronization 

f the network. 

Canard solutions are related to locally invariant slow manifolds 

ear non-hyperbolic points that, for sufficiently small ε (the ratio 

etween the fast and the slow time-scale), are approximated by 

he set of equilibria of the fast dynamics. Remarkably, such a geo- 

etric structure is not encoded in the single-node equations, but 

s determined by the stable and unstable solution branches cor- 

esponding to partially synchronized states of the globally-coupled 

ystem Eq. (1a) (with S as a constant coupling parameter). We have 
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Fig. 6. Canard cycles in the ( S, R ) plane of the network model (1) as a function 

of N for (a) randomly-generated and (b) deterministically-generated Lorentzian fre- 

quency distributions. For each N the control parameter K has been adjusted to ap- 

proach as much as possible the maximal canard. (a) N = 10 0 0, K = 8.955 (magenta); 

N = 50 0 0, K = 8.925 (green); N = 20 0 0 0, K = 8.9470693 (red); N = 50 0 0 0, K = 9.04 

(blue). (b) N = 10 0 0, K = 9.0246 (magenta); N = 50 0 0, K = 9.035 (green); N = 20 0 0 0, 

K = 9.038 (red). Other parameters as in Fig. 1 . (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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tudied collective canard cycles for different system sizes by con- 

idering both random or deterministically generated natural fre- 

uencies showing indeed that an effective slow manifold gradu- 

lly emerges as the size of the population increases. Our results 

ndicate that its geometry and the related canard orbits are deter- 

ined not only by the kind of frequency distribution, but also by 

he uniformity of the set of natural frequencies. 

Similar phenomena are likely to be observed also in different 

odels, provided that the network dynamics without feedback dis- 

lays a hysteretic phase transition connecting a low synchroniza- 

ion state to one with a higher synchronization degree [34] . This is 

he case indeed of the Kuramoto model with inertia, in the pres- 

nce of both unimodal or bimodal distributions. Our study thus 

pens interesting perspectives in these systems in which a low 

imensional mean-field description has not been derived, for in- 

tance, for reconstructing the emergent slow invariant manifolds 

n the thermodynamic limit. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

eferences 

[1] Hirsch MW , Devaney RL , Smale S . Differential equations, dynamical systems, 

and linear algebra, vol.60. New York: Academic; 1974 . 
7 
[2] Benoit E , Callot J-L , Diener F , Diener M . Chasse au canard. Collect Math
1981;32(37) . 

[3] Brøns M , Krupa M , Wechselberger M . Mixed mode oscillations due to the gen-
eralized canard phenomenon. Fields Inst Comm 2006;49(39) . 

[4] Krupa M , Popovic N , Kopell N . Mixed-mode oscillations in a three time-scale
model for the dopaminergic neuron. SIAM J Appl Dyn Syst 2008;7(361) . 

[5] Guckenheimer J . Singular hopf bifurcation in systems with two slow variables. 
SIAM J Appl Dyn Syst 2008;7:1355 . 

[6] Guckenheimer J , Scheper C . A geometric model for mixed-mode oscillations in 

a chemical system. SIAM J Appl Dyn Syst 2011;10(92) . 
[7] Desroches M , Burke J , Kaper TJ , Kramer MA . Canards of mixed type in a neural

burster. Physical Review E 2012;85:021920 . 
[8] Desroches M , Guillamon A , Ponce E , Prohens R , Rodrigues S , Teruel AE . Ca-

nards, folded nodes and mixed-mode oscillations in piecewise-linear slow-fast 
systems. SIAM Rev 2016;58:653–91 . 

[9] Marino F , Marin F , Balle S , Piro O . Chaotically spiking canards in an excitable

system with 2D inertial mast Manifolds. Phys Rev Lett 2007;98(074104) . 
[10] Al-Naimee K , Marino F , Ciszak M , Meucci R , Arecchi FT . Chaotic spiking and

incomplete homoclinic scenarios in semiconductor lasers with optoelectronic 
feedback. New J Phys 2009;11(073022) . 

[11] Al-Naimee K , Marino F , Ciszak M , Abdalah S , Meucci R , Arecchi F . Excitability
of periodic and chaotic attractors in semiconductor lasers with optoelectronic 

feedback. Eur Phys J D 2010;58(187) . 

[12] Marino F , Ciszak M , Abdalah SF , Al-Naimee K , Meucci R , Arecchi FT . Mixed–
mode oscillations via canard explosions in light-emitting diodes with opto- 

electronic feedback. Phys Rev E 2011;84(047201) . 
[13] Izhikevich EM . Neural excitability, spiking and bursting. Int J Bifurcation Chaos 

Appl Sci Eng 20 0 0;10(1171) . 
[14] Desroches M , Krupa M , Rodrigues S . Inflection, canards and excitability thresh- 

old in neuronal models. J Math Biol 2013;67(989–1017) . 

[15] Mitry J , McCarthy M , Kopell N , Wechselberger M . Excitable neurons, firing
threshold manifolds and canards. J Math Neurosci 2013;3:1–12 . 

[16] Moehlis J . Canards for a reduction of the hodgkin-huxley equations. J Math 
Biol 2006;52:141–53 . 

[17] Kramer MA , Traub RD , Kopell NJ . New dynamics in cerebellar purkinje cells:
torus canards. Phys Rev Lett 2008;101:068103 . 

[18] Touboul JD , Krupa M , Desroches M . Noise-induced canard and mixed–

mode oscillations in large-scale stochastic networks. SIAM J Appl Math 
2015;75:2024V2049 . 

[19] Dolcemascolo A , Miazek A , Veltz R , Marino F , Barland S . Effective low-dimen-
sional dynamics of a mean-field coupled network of slow-fast spiking lasers. 

Phys Rev E 2020;101(052208) . 
20] D’Huys O , Veltz R , Dolcemascolo A , Marino F , Barland S . Canard resonance: on

noise-induced ordering of trajectories inheterogeneous networks of slow-fast 

systems. J Phys Photonics 2021;3(024010) . 
[21] Ivanchenko MV , Osipov GV , Shalfeev VD , Kurths J . Network mechanism for

burst generation. Phys Rev Lett 2007;98(108101) . 
22] Belykh I , Shilnikov A . When weak inhibition synchronizes strongly desynchro- 

nizing networks of bursting neurons. Phys Rev Lett 2008;101(078102) . 
23] Ciszak M , Montina A , Arecchi FT . Control of transient synchronization with ex-

ternal stimuli Chaos 2009;19(015104) . 
24] Kuramoto Y . Self-entrainment of a population of coupled non-linear oscillators. 

In: International Symposium on Mathematical Problems in Theoretical Physics. 

Berlin: Springer; 1975. p. 420–2 . 
25] Acebrón JA , Bonilla LL , Vicente CJP , Ritort F , Spigler R . The kuramoto model: a

simple paradigm for synchronization phenomena. Rev Mod Phys 2005;77(137) . 
26] Matthews PC , Strogatz SH . Phase diagram for the collective behavior of limit–

cycle oscillators. Phys Rev Lett 1990;65(1701) . 
27] Hakim V , Rappel WJ . Dynamics of the globally coupled complex ginzburg-lan- 

dau equation. Phys Rev A 1992;46(R7347) . 

28] Nakagawa N , Kuramoto Y . Collective chaos in a population of globally coupled
oscillators. Prog Theor Phys 1993;89(313) . 

29] Tanaka H-A , Lichtenberg AJ , Oishi S . First order phase transition resulting from
finite inertia in coupled oscillator systems. Phys Rev Lett 1997;78(2104) . 

30] Pazó D , Montbrió E . Existence of hysteresis in the Kuramoto model with bi- 
modal frequency distributions. Phys Rev E 2009;80(046215) . 

[31] Olmi S , Navas A , Boccaletti S , Torcini A . Hysteretic transitions in the Kuramoto

model with inertia. Phys Rev E 2014;90(042905) . 
32] So P , Barreto E . Generating macroscopic chaos in a network of globally coupled

phase oscillators. Chaos 2011;21(033127) . 
33] Skardal PS , Taylor D , Restrepo JG . Complex macroscopic behavior in systems of

phase oscillators with adaptive coupling. Physica D 2014;267:27 . 
34] Ciszak M , Marino F , Torcini A , Olmi S . Emergent excitability in populations of

nonexcitable units. Phys Rev E 2020;102(050201) . 

35] Hindmarsh JL , Rose R . A model of neuronal bursting using three coupled first
order differential equations. Proc R Soc London, Ser-B Biol Sci 1984;221(87) . 

36] Wang XJ . Genesis of bursting oscillations in the Hindmarsh-Rose model and 
homoclinicity to a chaotic saddle. Physica D 1993;62(263) . 

37] Gonzalez-Miranda JM . Observation of a continuous interior crisis in the Hind- 
marsh–Rose neuron model. Chaos 2003;13(845) . 

38] Innocenti G , Morelli A , Genesio R , Torcini A . Dynamical phases of the Hind-

marsh-Rose neuronal model: Studies of the transition from bursting to spiking 
chaos. Chaos 2007;17(043128) . 

39] Pikovsky A , Politi A . Lyapunov exponents: a tool to explore complex dynamics. 
Cambridge University Press; 2016 . 

http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0001
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0001
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0001
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0001
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0002
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0002
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0002
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0002
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0002
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0003
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0003
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0003
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0003
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0004
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0004
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0004
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0004
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0005
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0005
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0006
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0006
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0006
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0007
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0007
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0007
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0007
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0007
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0008
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0008
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0008
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0008
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0008
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0008
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0008
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0009
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0009
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0009
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0009
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0009
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0010
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0010
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0010
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0010
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0010
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0010
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0011
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0011
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0011
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0011
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0011
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0011
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0011
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0012
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0012
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0012
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0012
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0012
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0012
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0012
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0013
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0013
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0014
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0014
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0014
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0014
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0015
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0015
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0015
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0015
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0015
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0016
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0016
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0017
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0017
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0017
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0017
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0018
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0018
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0018
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0018
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0019
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0019
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0019
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0019
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0019
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0019
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0020
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0020
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0020
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0020
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0020
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0020
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0021
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0021
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0021
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0021
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0021
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0022
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0022
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0022
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0023
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0023
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0023
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0023
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0024
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0024
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0025
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0025
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0025
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0025
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0025
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0025
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0026
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0026
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0026
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0027
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0027
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0027
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0028
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0028
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0028
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0029
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0029
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0029
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0029
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0030
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0030
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0030
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0031
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0031
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0031
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0031
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0031
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0032
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0032
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0032
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0033
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0033
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0033
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0033
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0034
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0034
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0034
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0034
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0034
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0035
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0035
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0035
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0036
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0036
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0037
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0037
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0038
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0038
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0038
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0038
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0038
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0039
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0039
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0039


M. Ciszak, S. Olmi, G. Innocenti et al. Chaos, Solitons and Fractals 153 (2021) 111592 

[

 

[  

[

[

[

 

40] Fenichel N . Geometric singular perturbation theory for ordinary differential 
equations. J Differ Equ 1979;31(53) . 

[41] Martens EA , Barreto E , Strogatz SH , Ott E , So P , Antonsen TM . Exact results
for the Kuramoto model with a bimodal frequency distribution. Phys Rev E 

2009;79(026204) . 
42] Ott E , Antonsen TM . Low dimensional behavior of large systems of globally

coupled oscillators. Chaos 2008;18(037113) . 
43] Montbrió E , Pazó D , Roxin A . Macroscopic description for networks of spiking 

neurons. Phys Rev X 2015;5(021028) . 
8 
44] Strogatz SH . From kuramoto to crawford: exploring the onset of synchroniza- 
tion in populations of coupled oscillators. Physica D 20 0 0;143:1V20 . 

45] As an example of this convergence, we observed that similar accuracy with 
respect to the mean-field results can be achieved by employing a network 

with n = 10 , 0 0 0 rotators with the deterministic rule (5) and one with n =
1 , 0 0 0 , 0 0 0 rotators with the randomly generated natural frequencies. 

http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0040
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0040
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0041
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0041
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0041
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0041
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0041
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0041
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0041
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0042
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0042
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0042
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0043
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0043
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0043
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0043
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0044
http://refhub.elsevier.com/S0960-0779(21)00946-2/sbref0044

	Collective canard explosions of globally-coupled rotators with adaptive coupling
	1 Introduction
	2 Adaptive Kuramoto model and mean-field description
	3 Network and mean-field dynamics
	4 Collective canard explosions
	5 Emergent slow manifolds
	6 Conclusions and perspectives
	Declaration of Competing Interest
	References


