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Main Issues

Network of globally coupled identical LIF neurons

Stability of states with uniform spiking rate (Splay States)

The stability of the steady states for networks of globally coupled leaky integrate-and-fire
(LIF) neurons is still a debated problem

Results in literature

The splay state is stable only for excitatory coupling
[Abbott - van Vreeswijk Phys Rev E 48, 1483 (1993)]

Stable splay states have been found in networks with inhibitory coupling
[Zillmer et al. Phys Rev E 74, 036203 (2006)]

Summary

Stability of the splay states depends on the ratio between pulse-width 1/α and
inter-spike interval (ISI)

Stability can depend crucially on the number of neurons in the network

Splay states can be stable even for inhibitory coupling
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The Model

The dynamics of the membrane potential xi(t) of the i–th neuron is given by

ẋi = a − ηxi + gE(t) , xi ∈ (−∞, 1)

where

the single neurons are in the repetitive firing regime (a > 1)

g is the coupling - excitatory (g > 0) or inhibitory (g < 0)

each post-synaptic potential (PSP) has the shape Es(t) = α2te−αt

the field E(t) is due to the (linear) sovrapposition of all the past PSPs

the field evolution (in between consecutive spikes) is given by

Ë(t) + 2αĖ(t) + α2E(t) = 0

the effect of a pulse emitted at time t0 is

Ė(t+0 ) = Ė(t−0 ) + α2/N
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Event-driven map

By integrating the field equations between successive pulses, one can rewrite the
evolution of the field E(t) as a discrete time map:

E(n + 1) = E(n)e−ατ + NQ(n)τe−ατ

Q(n + 1) = Q(n)e−ατ +
α2

N2

where τ is the interspike time interval (ISI) and Q := (αE + Ė)/N .

Once the the membrane potentials are ordered their dynamics becomes simply:

xj−1(n + 1) = xj(n)e−τ + 1 − x1(n)e−τ j = 1, . . . , N − 1 ,

with the boundary condition xN = 0 and τ(n) = ln
h

x1(n)−a
1−gF (n)−a

i

A network of N identical neurons is described by N + 1 equations
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Splay state

In this framework, the periodic splay state reduces to the following fixed point:

τ(n) ≡
T

N

E(n) ≡ Ẽ , Q(n) ≡ Q̃

x̃j−1 = x̃je−T/N + 1 − x̃1e−T/N

where T is the time between two consecutive spike emissions of the same neuron.

A simple calculation yields,

Q̃ =
α2

N2

“

1 − e−αT/N
”

−1
, Ẽ = TQ̃

“

eαT/N − 1
”

−1
.

and the period at the leading order (N ≫ 1 ) is given by

T = ln

»

aT + g

(a − 1)T + g

–
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Stability of the splay state

In the limit of vanishing coupling g ≡ 0 the Floquet (multipliers) spectrum is
composed of two parts:

µk = exp(iϕk), where ϕk = 2πk
N

, k = 1, . . . , N − 1

µN = µN+1 = exp(−αT/N) .

The last two exponents concern the dynamics of the coupling field E(t), whose
decay is ruled by the time scale α−1

As soon as the coupling is present the Floquet
multipliers take the general form

µk = eiϕk eT (λk+iωk)/N

ϕk = 2πk
N

, k = 1, . . . , N − 1

µN = eT (λN+iωN )/N

µN+1 = eT (λN+1+iωN+1)/N

where, λk and ωk are the real and imaginary
parts of the Floquet exponents. -1.0 -0.5 0.0 0.5 1.0

Re{µκ}

-1.0

-0.5

0.0

0.5

1.0
Im{µk}

CNS*2007, Toronto 08/07/07 – p.6



Analogy with extended systems

The “phase” ϕk = 2πk
N

play the same role as the wavenumber for the stability analysis of
spatially extended systems:
the Floquet exponent λk characterizes the stability of the k−th mode

If at least one λk > 0 the splay state is unstable

If all the λk < 0 the splay state is stable

If the maximal λk = 0 the state is marginally stable

We can identify two relevant limits for the stability analysis:

the modes with ϕk ∼ 0 mod(2π) corresponding to ||µk − 1|| ∼ N−1

Long Wavelengths (LWs)

the modes with finite ϕk corresponding to ||µk − 1|| ∼ O(1)

Short Wavelengths (SWs)
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Finite Pulse-Width (I)

Post-synaptic potentials with finite pulse-width 1/α and large network sizes (N )

N → ∞ Limit

The instabilities of the LW-modes determine the stability domain of the splay state,
this corresponds to the Abbott-van Vreeswijk mean field analysis (PRE 1993)

The spectrum associated to the SW-modes is fully degenerate

ωk ≡ 0 λk ≡ 0

The splay state is always unstable for in-
hibitory coupling

For excitatory coupling there is a critical line
in the (g, α)-plane dividing unstable from
marginally stable regions
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Finite Pulse-Width (II)

Finite N situation

In finite networks, the maximum Floquet exponent approaches zero from below as 1/N2

Splay state are strictly stable in finite lattice
A perturbation theory correct to order
O(1/N) cannot account for such deviations

In the present case, even approximations
correct up to order O(1/N2) give wrong
reults

First and second-order approximation
schemes yeld an unstable splay state -π/2 0 π/2  ϕ
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Exact Results
Approx. to order O(1/N)

Approx to order O(1/N
2
)

Since event-driven maps are usually employed to simulate this type of networks, one
should be extremely carefull in doing approximate expansion 1/N of continuous models.
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Vanishing Pulse-Width (I)

The Abbott - van Vreeswijk mean field analysis does not reproduce the stability
properties of the splay state for δ-like pulses (PSPs):

The limit N → ∞ and the zero pulse-width limit do not commute

To clarify this issue we introduce a new framework where the pulse-width 1/α is
rescaled with the network size N :

α = βN

The relevant parameter is now β

Now, we deal with two time scales :

a scale of order O(1) for the evolution of the membrane potential;

a scale of order α−1 ∼ N−1 that corresponds to the field relaxation.

For finite β-values

with excitatory coupling (g > 0) the splay state is always unstable

with inhibitory coupling (g < 0) the splay state can be stable for sufficiently
large β
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Vanishing Pulse-Width (II)
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For inhibitory coupling (g < 0) the Fourier spectrum associated to the splay state is well
reproduced by the stability analysisi of the Short Wavelenght (SW) Modes.
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Vanishing Pulse-Width (III)

For inhibitory coupling (g < 0) the transition from stable to unstable splay states is well
captured by the instabilities of the π-mode:

λπ = −1 +
1

T
ln

"

1 +
1

a − 1 + 2β2Tg
`

1 + e2βT
´ `

e3βT − 2eβT + e−βT
´

−1

#

The relevant parameter for the transition is
the ratio between the ISI and the pulse-width

βT =
T/N

1/α

Strongly Unstable Regime:
the isolated eigenvalues λN,N+1 ∼ N
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Failure of the Mean Field
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The reason for the failure of the mean field approach is related to the fact that for Finite
Pulse-Width (constant α) the oscillations of E(t) decreases with N , while for Vanishing
Pulse-Width (constant β) the oscillations are independent of N .
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