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Population bursts in a large ensemble of coupled elements result from the interplay between the local excitable
properties of the nodes and the global network topology. Here, collective excitability and self-sustained bursting
oscillations are shown to spontaneously emerge in globally coupled populations of nonexcitable units subject to
adaptive coupling. The ingredients to observe collective excitability are the coexistence of states with different
degrees of synchronization joined to a global feedback acting, on a slow timescale, against the synchronization
(desynchronization) of the oscillators. These regimes are illustrated for two paradigmatic classes of coupled
rotators, namely, the Kuramoto model with and without inertia. For the bimodal Kuramoto model we analytically
show that the macroscopic evolution originates from the existence of a critical manifold organizing the fast
collective dynamics on a slow timescale. Our results provide evidence that adaptation can induce excitability by
maintaining a network permanently out of equilibrium.

DOI: 10.1103/PhysRevE.102.050201

Introduction. Complex networks composed of simple el-
ements, usually rotators, have been widely analyzed in the
last decades in order to identify the emergence of nontriv-
ial macroscopic phenomena, ranging from synchronization
to collective oscillations, quasiperiodicity, and chaos [1–6].
The field has particularly flourished in the last years owing
to the development of analytic techniques to obtain exact
low-dimensional mean-field descriptions for phase oscillator
networks [7].

Despite this intense activity only a few analyses have
reported signatures of collective excitable features in such
networks [8,9]. Excitable systems appear in many fields of
science and are particularly studied in the context of math-
ematical neuroscience as simplified descriptions of neural
systems [10,11]. They are characterized by a (quiescent) state
that is linearly stable, but susceptible to finite-amplitude per-
turbations. The return to equilibrium entails a large excursion
in the phase space corresponding to the emission of a pulse of
well-defined amplitude and duration. The reinjection mech-
anism to the excitable quiescent state is often related to the
competition of multiple timescales [12]. The dynamical sce-
nario emerging in these low-dimensional slow-fast systems
can be extremely rich, displaying regular as well as chaotic
spiking and bursting behaviors joined to complex bifurcation
structures [13–18].

Collective excitable responses and bursting activities have
been previously reported [19], e.g., in diffusively coupled,
spatially extended systems where they appear in the form of
excitable waves [20], as transient synchronization states in
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arrays of coupled units [21,22]. In all these cases, however,
the dynamics fully relies on excitable features of the nodes.

In this Rapid Communication we show that a self-sustained
adaptation mechanism can give rise to an out-of-equilibrium
scenario, where a population of nonexcitable nodes, per-
manently driven across a hysteretic phase transition, can
become collectively excitable. In particular, we investigate
the effects of a global linear feedback on the dynamics of
the Kuramoto model (KM) with and without inertia. In the
absence of adaptation, the considered networks display hys-
teretic first-order transitions involving asynchronous (AS)
and partially synchronized (PS) states, as well as standing
waves [23–26]. In the presence of the feedback, these systems
reveal collective dynamical features typical of excitable mod-
els, despite a nonexcitable single-node dynamics. The origin
of these behaviors is related to the competition of the fast
synchronization/desynchronization phenomena triggered by
the slow adaptation. For the bimodal KM, we derive an exact
three-dimensional slow-fast mean-field formulation, which al-
lows us to interpret all the observed collective regimes in
terms of an attractive invariant manifold, on which the (slow)
mean-field dynamics takes place. Finally, these phenomena
are shown to emerge also in the Kuramoto model with inertia
(KMI), confirming the generality of our results.

The model. We consider a globally coupled population of
N rotators with adaptive coupling strength S(t ), which reads
as

mθ̈l + θ̇l (t ) = ωl + S(t )

N

N∑
j=1

sin[θ j (t ) − θl (t )], (1a)

Ṡ(t ) = ε[−S(t ) + K − αR(t )], (1b)
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where θl (ωl ) are the phases (natural frequencies) of each
rotator and m their mass. As stated in Eq. (1b), the evolu-
tion of S(t ) is controlled, via a linear feedback [9], by R(t ),
which is the modulus of the complex Kuramoto order param-
eter Z (t ) = 1

N

∑N
j=1 eiθ j (t ) = R(t )ei�(t ) [27]. The macroscopic

variable R measures the level of synchronization among the
rotators: AS (PS) dynamics will correspond to R = 0 (0 <

R � 1). The gain of the feedback loop is controlled by α and
its bandwidth by ε, therefore, depending on the value of R(t ),
the coupling S(t ) can range between K − α (R = 1) and K
(R = 0). We assume 0 < ε � 1, i.e., the modulation of the
coupling is slow with respect to the switching times between
incoherent and coherent states.

In the absence of feedback (α = 0), Eq. (1a) reduces to the
KMI with coupling constant S(t ) ≡ K [25] and for m = 0 to
the standard KM [27]. For both these models, at sufficiently
low (large) coupling, one has a desynchronized (partially syn-
chronized) regime. If the transition from AS to PS dynamics
is continuous, as for the KM with unimodal frequency distri-
bution, the feedback (1b) has only the effect to rescale the
coupling strength, but the collective dynamics will always
converge to a stable fixed point for all the parameter values.
This is no longer the case if the uncontrolled system displays
a first-order hysteretic transition from incoherence to coher-
ence, as it occurs for the KMI [25,26,28] and for the KM
with a bimodal frequency distribution [24]. In this case, the
linear feedback introduced above can give rise to a wealth of
macroscopic behaviours over multiple timescales, including
excitability and periodic/chaotic spiking and bursting oscilla-
tions.

KM with bimodal frequency distribution. As our first
paradigmatic example of networks displaying hysteretic phase
transitions, we consider the KM with a bimodal distribution of
natural frequencies [24]. In particular, in order to be able to de-
rive an exact mean-field description of the model we consider
a bimodal distribution given by the sum of two Lorentzians
centered at ±ω0 and with half width at half maximum �

[29]. For the chosen parameters (ω0 = 1.8 and � = 1.4), in
the absence of feedback, we observe a coexistence regime
between traveling waves and PS states [30]. By fixing a finite
feedback gain α and the frequency cutoff ε and increasing the
control parameter K , we observe the sequence of macroscopic
regimes displayed in Fig. 1 in terms of the synchronization
parameter R(t ).

At small K values the population is essentially desyn-
chronized, apart finite-size fluctuations associated with R �
O(1/

√
N ). For K larger than a critical value, one observes

the emergence of periodic collective oscillations, alternating
PS phases with abrupt desynchronization events (spikes), as
shown in Fig. 1(a). Further increasing K leads first to an
increase of the interspike period and then to a chaotic phase
[see Fig. 1(b)]. In the chaotic and periodic spiking regimes
the system is excitable: Small perturbations of the collective
variable S(t ) elicit rapidly decaying responses in R(t ) (blue
traces), while sufficiently strong stimuli induce a large degree
of synchronization, corresponding to a burst with a well-
defined shape, amplitude, and duration [red traces in Figs. 1(a)
and 1(b)]. In Fig. 1(b) we also show that, except for the initial
rise time, the burst orbit is barely affected by higher-amplitude
perturbations (green trace), thus confirming an important fea-
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FIG. 1. Synchronization parameter R vs time for the bimodal Ku-
ramoto network for different dynamical regimes: (a) periodic spiking
(K = 7); (b) chaotic spiking (K = 7.403); (c) chaotic bursting (K =
7.405); (d) periodic bursting (K = 7.41). (a) and (b) display also the
system response to perturbations of different amplitudes A of the col-
lective variable S(t ): subthreshold responses for A = 0.102 55 (blue
triangle-shaped traces); excitable responses for A = 0.15 (dashed
red traces) and A = 0.1575 (dotted green trace). Other parameters:
ε = 0.01, � = 1.4, ω0 = 1.8, α = 5, and network size N = 500 000.

ture of excitable systems. The chaotic nature of the spiking
dynamics can be appreciated in Fig. 1(b), where in response
to perturbations of different amplitudes, the system relaxes
to different final trajectories, in contrast to what is shown in
Fig. 1(a) for a periodic spiking regime. By further increasing
the parameter K one observes the emergence of a regime
characterized by the presence of bursts separated by many
spikes, whose number appears to be irregular [Fig. 1(c)]. This
bursting phase is chaotic, as we will verify in the following.
As shown in Fig. 1(d), a further increase of K leads to a peri-
odic bursting state, where the bursts are separated by a fixed
number of spikes. The number of spikes decreases for growing
K and finally we observe a stationary regime characterized by
a finite value of R for sufficiently large K . Similar spiking
and bursting regimes, as well as period adding sequences,
are typical for low-dimensional slow-fast systems possessing
some attractive manifolds on which the dynamics evolves
slowly. In this context, a paradigmatic example is represented
by the Hindmarsh-Rose neuronal model [13,18]. Similarly, in
our network, collective excitability and bursting phenomena
originate from the existence of a critical manifold which or-
ganizes the mean-field dynamics on the slow timescale, as we
will show below.

Exact mean-field analysis. To better understand the ob-
served phenomenology we derive an exact mean-field dy-
namics for the network (1a), by extending the macroscopic
formulation derived in Refs. [8,30] for the bimodal KM, based
on the Ott-Antonsen ansatz [7] (for details, see the Supple-
mental Material [31]). In particular, by following Ref. [30],
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FIG. 2. (a) Bifurcation diagram of the mean-field model (1a).
The maxima of R are displayed as a function of the parameter K .
Time traces of R for the mean-field model are shown in (b) for
the chaotic bursting regime (K = 7.405) and in (c) for the periodic
bursting phase (K = 7.41). Symbols in (c) are the R values estimated
by the direct simulation of the network (1a) of size N = 500 000.
The (green) dashed vertical line in (a) refers to Kc. Other parameters:
ε = 0.01, ω0 = 1.8, � = 1.4, α = 5.

one can rewrite the complex order parameter Z in terms of two
subpopulation order parameters zk = ρkeiφk (k = 1, 2), each
relative to a Lorentzian distribution, as Z = 1

2 (z1 + z2). More-
over, by assuming ρ1 ≈ ρ2 = ρ, one arrives at the following
equations ruling the macroscopic evolution of the network,

ρ̇ = −�ρ + S

4
ρ(1 − ρ2)[1 + cos(φ)], (2a)

φ̇ = 2ω0 − S

2
(1 + ρ2) sin(φ), (2b)

Ṡ = −ε

[
S − K + αρ

√
1 + cos(φ)

2

]
, (2c)

where φ = φ2 − φ1 and the global feedback equation
(2c) directly follows from (1b) by noticing that R ≡
ρ
√

[1 + cos(φ)]/2.
The dynamics of the mean-field model (1a) is attracted

towards a stable fixed point corresponding to an AS regime
(R = 0) for K < KH = 4�, while at KH a supercritical Hopf
bifurcation takes place giving rise to a stable limit cycle
(periodic spiking). As shown in Fig. 2(a), the Hopf bifurca-
tion is followed by a period doubling cascade leading to a
chaotic spiking regime for K > 7.401. Both the regular and
chaotic spiking oscillators display excitable features analo-
gous to the collective ones displayed in Figs. 1(a) and 1(b)
for the corresponding network. At Kc � 7.404 77, we observe
an abrupt increase of the size of the attractor for R, that
corresponds to the appearance of chaotic bursts. This transi-
tion resembles a crisis that destabilizes the chaotic attractor
associated with the spiking phase, leading to the emergence
of a new chaotic attractor characterized by bursting dynamics,
as shown in Fig. 2(b). Similar transitions have been reported

for single excitable systems in Refs. [15,17]. Moreover, we
have measured the maximal Lyapunov exponent λm [32] for
the mean-field model (1a) and observed that this is positive for
K ∈ [7.401, 7.408], a region containing the transition point Kc

(see Fig. S2 in the Supplemental Material [31]). This demon-
strates that we can have collective chaos [5,6,33,34] also for a
single Kuramoto population with a self-generated collective
adaptation and not only in the presence of an external pe-
riodic forcing [8] or for multiple coupled populations [35].
Furthermore, λm shows a pronounced peak in correspondence
to K � Kc, similarly to what was reported in Ref. [18] for
the single Hindmarsh-Rose model. For K > 7.408 we observe
periodic bursting attractors, as the one reported in Fig. 2(c) for
the mean-field model. In Fig. 2(c) are also reported the data
obtained from the network, for the macroscopic indicator R:
The excellent agreement confirms the validity of the mean-
field reduction. For larger K we observe a decrease in the
number of spikes separating two successive periodic bursts
up to K = 8.158 43 when the system returns to a stable fixed
point with R > 0 via a subcritical Hopf bifurcation.

Geometric singular perturbation analysis of the mean-field
model. Since ε � 1, the adaptive variable S evolves at a much
slower rate than φ and ρ. Hence the dynamics of Eqs. (1a)
splits into periods of fast and slow motion that can be ana-
lyzed separately [36]. On the fast timescale t , the evolution
is described by the mean-field equations (2a) and (2b) (fast
subsystem) with S acting as a slowly varying adiabatic pa-
rameter. The equilibria of this dynamical subsystem lie on the
one-dimensional manifold � = �0 ∪ �ρ , where �0 is given
by the set of incoherent steady-state solutions �0 = {ρs =
0, sin(φs) = 4ω0/S, S}, and �ρ = {ρs, φs, S} is defined by the
equations S(1 + ρ2

s ) sin(φs) = 4ω0 and

S = 2ω2
0

�

1 − ρ2
s

(1 + ρ2
s )2

+ 2�

1 − ρ2
s

≡ F (ρs). (3)

On the slow timescale τ = εt , the motion is governed by
the feedback equation Eq. (2c) with the algebraic constraint
(ρ̇, φ̇) = (0, 0). The fixed points of the fast subsystem thus
define the critical manifold on which the slow dynamics take
place. Since the trajectories of Eqs. (2a) and (2c) will be
attracted by the stable parts of �, while they will be repelled
by the unstable ones [37], the stability properties of the critical
manifold determine the dynamics. Linearizing the fast sub-
system on �ρ , we find that it consists of a branch of stable
equilibria �S (solid line in Fig. 3) and an unstable one �R

(dashed line) coalescing in a saddle-node bifurcation at the
fold point F .

For ω0 > �, the equilibria along �0 (i.e., for S > 4ω0) are
always unstable. At lower values of S, the fast subsystem (2a)
and (2b) displays a supercritical Hopf bifurcation at SH = KH ,
leading to the emergence of a stable limit cycle with ρ > 0.

The critical manifold is thus composed by an attracting part
�S and two repelling parts �R and �0. Moreover, for some
values of the slow variable, the above stationary states coexist
with a multiplicity of stable limit cycles emanating from the
Hopf bifurcation at KH . On this basis, we can explain the
appearance of bursting in our system. In Fig. 3(a) we plot the
projection of the critical manifold on the (ρ, S) plane together
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FIG. 3. Critical manifold of the mean-field equations (2a) and
(2c) together with a bursting solution (blue solid line). (a) Pro-
jection on the (ρ, S) plane: Solid and dashed black lines indicate
the attracting (�S) and repelling (�R) manifolds, separated by the
fold point F . In the orange-shaded area, Ṡ > 0. The green curves
denote the extrema of the limit cycle (LC) emerging from the Hopf
bifurcation H . Inset: Enlarged view of the transition region from the
spiking regime towards �S occurring via a saddle homoclinic-orbit
bifurcation (HC). (b) Three-dimensional representation in the space
[S, ρ cos(φ), ρ sin(φ)] disclosing the bursting regime. Parameters are
ω0 = 1.8, � = 1.4, α = 5.0, ε = 0.01, K = 7.41.

with a solution of Eqs. (2a)–(2c) in the bursting regime (blue
solid line).

Starting, e.g., from a PS initial condition, the motion is
rapidly attracted by �S . Since Eq. (2c) dictates that S is always
decreasing on the curve F (ρs) [see Fig. 3(a)], the system is
driven towards the fold point F , where it forcibly leaves the
critical manifold turning on the fast dynamics transversal to it.
When the trajectory enters the region in which the fast subsys-
tem has a stable limit cycle [green lines in Fig. 3(a) and shaded
area in Fig. 3(b)], the slow monotonic evolution translates into
a sequence of nearly periodic spikes. Such an oscillatory state
persists until it collides with the repelling part of the manifold
where it disappears via a saddle homoclinic-orbit bifurcation
(HC). Since �R repels all neighboring trajectories, while �S

attract them, the motion is driven back to the upper state
where a new bursting cycle begins. Interestingly, the transition
from the spiking activity to the upper state exhibits the typical
features of canard explosions [38,39]: Due to the finiteness of
ε, the trajectories close to �R do not jump immediately to �S ,
but continue moving on the slow timescale along the unstable
portion of the manifold for a certain amount of time [see the
inset in Fig. 3(a)]. A more detailed analysis can be found in
the Supplemental Material [31].

The above scenario is known as fold-homoclinic bursting
[12]: It has been found in several low-dimensional neu-
ron models, including, e.g., the Hindmarsh-Rose [13], the
Morris-Lecar with current-feedback control [12], a modified
FitzHugh-Nagumo [40], the Chay model [41,42], a one-
compartment model of a Purkinje cell dendrite [43], and a
pancreatic β-cell model [16].

Excitability and chaotic bursting can be explained on the
same basis: When the system is in the regime of quasi-
harmonic oscillations, either periodic or chaotic, an external
perturbation or a sufficiently large chaotic fluctuation can
trigger the fast dynamics, giving rise to an excursion to the
upper stable branch �S before returning to the initial state
[44–46].
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FIG. 4. Time series of R(t ) for the unimodal KMI: (a) K = 4.5
(excitable response); (b) K = 4.75 (irregular bursting); (c) K = 10.3
(periodic bursting). For K = 4.75 we report also the interburst inter-
val (IBI) distribution for N = 20 000 (d) and the maximal Lyapunov
exponent vs N (e). The red dashed line in (e) refers to a power-
law fitting with exponent �0.259. Other parameters: N = 500 000,
m = 2, ε = 0.01, α = 30.

Dynamics of the KMI network. To further support the gen-
erality of the phenomenon, we now consider a KMI with mass
m = 2 and natural frequencies distributed according to either
a unimodal or a bimodal Gaussian distribution.

Typical time traces of R(t ) for the KMI with a unimodal
distribution centered in zero and with a unitary standard devi-
ation are plotted in Fig. 4 for different values of K . In this case
we observe collective excitability and fold-fold bursting [12],
but there is no trace of spiking dynamics. This is probably
due to the fact that the fast subsystem displays a hysteretic
transition from an AS to a PS regime, but no evidence of
standing waves as in the previous case. We have found irregu-
lar busting at low K (4.6 � K � 7), as shown in Fig. 4(b), and
periodic bursting for sufficiently large K � 7 [see Fig. 4(c)].
The erraticity in the bursting dynamics is confirmed by the
distribution of the interburst intervals (IBIs) among successive
bursts, which displays a clear exponential tail characteristic of
Poissonian processes shown in Fig. 4(d). The origin of the
irregular bursting is related to a weak form of chaos induced
by finite-size fluctuations [47]. Indeed, the maximal Lyapunov
exponent vanishes in the thermodynamic limit as λm ∝ N−1/4,
as shown in Fig. 4(e).

As a final example, we consider a KMI population with a
bimodal distribution composed of two almost nonoverlapping
Gaussians centered at ω0 = ±2 and with unitary standard de-
viations [26]. In this case we still observe regimes of irregular
bursting due to finite-size effects (8.5 � K � 10). Indeed, as
shown in Figs. 5(a)–5(c), the bursts become rarer for increas-
ing N , while the maximal Lyapunov exponent vanishes as
λm ∝ N−1/3 [see Fig. 5(d)]. Besides this regime, for larger K ,
we can also have periodic bursting. However, the oscillations
now emerge on the top of the burst, as shown in Fig. 5(e),
due to the coexistence of standing waves with the PS regime
for the fast subsystem as found in Ref. [26]. These bursts
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FIG. 5. Time series of R(t ) for the bimodal KMI. Erratic busting
behavior is reported in (a)–(c) at K = 9.45 for increasing system
sizes: (a) N = 100 000, (b) 200 000, and (c) 500 000. The corre-
sponding maximal Lyapunov exponent λm is reported in (d) vs N ,
and the dashed red line refers to a power-law fitting with exponent
�0.318. In (e), R(t ) is displayed vs time for K = 10.3 and N =
200 000; an enlargement is shown in the inset. Other parameters:
m = 2, ε = 0.01, α = 30.

resemble the so-called Hopf-Hopf bursting reported in
Ref. [12]. Similar bursting is also observed in the unimodal
KMI for large masses.

Conclusions. Our analysis indicates the minimal ingredi-
ents for the emergence of collective excitability and bursting
oscillations in populations of rotators with adaptive coupling.
The network dynamics without feedback, corresponding to
the fast subsystem, must display a hysteretic phase transition
connecting a low synchronization state to one with a higher
synchronization degree. The global feedback equation (slow
subsystem) introduces a state-dependent modulation of a con-
trol parameter (in our case, the coupling strength), driving the
system across the hysteresis cycle.

For the bimodal KM, an exact mean-field formulation can
be derived consisting of a three-dimensional (3D) system with

two fast and one slow variable. A detailed geometric singu-
lar perturbation analysis of this model allows us to explain
collective excitability in terms of the stability properties of a
1D slow invariant manifold [31]. This demonstrates that the
phenomenon persists in the thermodynamic limit and it is not
related to finite-size effects [9] for this autonomous model we
have shown the existence of different types of collective chaos
(namely, chaotic spiking and bursting) and characterized in
detail the transition between the two chaotic regimes. The
reported dynamical macroscopic scenario is fairly reminis-
cent of that observed for the Hindmarsh-Rose model for a
single neuron [15,17,18]. This analogy paves the way for
the application of our results in the context of computational
neurosciences.

For what concerns the KMI, we observe only bursting
dominated phases, which can be weakly chaotic, but in the
thermodynamic limit we expect regular trains of fold-fold
or Hopf-Hopf bursts [12] only. As shown in a previous
analysis [26], for sufficiently large masses, the KMI (in the
absence of feedback) can become chaotic, therefore for m 

1, we expect chaotic bursting regimes to appear also for this
model.

The exact reduction techniques developed for networks of
phase oscillators [7,30] do not apply to the KMI. In the latter
case, a promising approach to investigate, in order to derive
a low-dimensional mean-field description, is the so-called
circular cumulant expansion, recently applied with success
to noisy oscillator populations [48] and to stochastic systems
with small inertia [49].
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