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Accordingto a previousconjecture,spatialandtemporalLyapunovexponentsof chaoticextended
systemscanbeobtainedfrom derivativesof a suitablefunction, theentropypotential.Thevalidity
and the consequencesof this hypothesisare exploredin detail. The numericalinvestigationof a
continuous-timemodel providesa further confirmationto the existenceof the entropypotential.
Furthermore,it is shown that the knowledgeof the entropy potential allows determiningalso
Lyapunovspectrain generalreferenceframeswherethe time-like andspace-likeaxespoint along
genericdirectionsin thespace-timeplane.Finally, theexistenceof anentropypotentialimpliesthat
the integrateddensity of positive exponents~Kolmogorov-Sinaientropy! is independentof the
chosenreferenceframe. © 1997 American Institute of Physics. @S1054-1500~97!02704-3#

Out-of-equilibrium systems give rise to a rich variety of
phenomena that are often dealt with using ad hoc meth-
ods. Perhaps the main difficulty lying behind the devel-
opment of general tools is the lack of an appropriate
equivalent to the Gibbs-Boltzmann weight, which allows
estimating a priori the probability of each configuration
of an equilibrium system. Although the problem cannot
be „easily… overcome, it is tempting to explore the possi-
bility of extending concepts like Lyapunov exponents to
extract information about the invariant measure of a
high-dimensional system. For instance, on the one hand it
is well known that it is possible to estimate the fractal
dimension of a finite „low… dimensional attractor; on the
other hand, however, it is unclear how the local dynamics
arising in different regions of an extended system com-
bine to determine the global invariant measure. It is our
opinion that a sensible answer will be obtained only after
having extended the Lyapunov analysis, to account for
spatial propagation as well as temporal instabilities. The
chronotopic approach1,2 represents a tentative construc-
tion that goes in this direction, introducing a sort-of dis-
persion relation for chaotic systems. In this paper, we test
the general validity of the method both with numerical
simulations and by investigating its internal coherence.

I. INTRODUCTION

Lyapunovexponents,providing informationon the evo-
lution in tangentspaceare very useful in that they allow
characterizingthe invariant measure.3 This is particularly
clear in the caseof hyperbolic systemsas revealedby the

constructionof theBowen-Ruelle-Sinaimeasure,4 but is also
effectively true for the generaland more realistic classof
smoothnon-hyperbolicsystems.However,an effective ex-
ploitationof theseideasin spatiallyextendedsystemsis hin-
deredby the infinite-dimensionalityof the phase-spaceand
by the existenceof propagationphenomenathat requiresa
moredetailedunderstandingbesidesthatoneprovidedby the
knowledgeof the usual Lyapunov spectrum.5 In order to
reacha morecompletecomprehensionof phenomenaoccur-
ring in tangentspace,two familiesof Lyapunovspectrachar-
acterizingtemporal,resp.spatial,dynamicsof infinitesimal
perturbations have been introduced and discussed.1

Subsequently,2 it hasbeenshownthat the two families are
not independentof oneanother.More precisely,it hasbeen
conjecturedthat all the informationon Lyapunovexponents
canbeobtainedfrom a singleobservable:theentropy poten-
tial F, a functionof thetemporalandthespatialgrowthrates
l, m, respectively.The name‘‘entropy potential’’ follows
from the observationthat F(l50, m 5 0) coincideswith
the densityof Kolmogorov-Sinaientropy.6 However,sucha
conjectureis basedonly on a few simpleexamplesthat can
beanalyticallyworkedout andon numericalsimulationsper-
formedfor a chainof coupledmaps.Oneof the aimsof the
presentpaperis to strengthenthe validity of the conjecture
by performingnew testsin a morerealisticsystem.

Moreover,we intend to show a further connectionbe-
tweenspatialandtemporalLyapunovexponentsby studying
the evolution of perturbationsalong generic‘‘world-lines’’
in the space-time,i.e. alongdirectionsotherthanthe natural
spaceandtime axes.Theextensionof theusualdefinitionof
Lyapunov exponentsto this more generalclassof frames,
partially discussedin Ref. 7, is ratherappropriatefor char-
acterizing patternswith some anisotropy.Here, we prove
that this seeminglymoregeneralclassof spatiotemporal ex-
ponentscan be derived from the knowledgeof spatial and
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temporal Lyapunov spectra, which thus confirm to contain
all the relevant information.

The present paper is organized as follows. In Sec. II we
recall the definition of the entropy potential and present some
new test for its existence. Section III is devoted to Lyapunov
analysis in tilted reference frames i.e. to the definition of
spatiotemporal exponents, while Sec. IV deals with their re-
lationships with more standard dynamical indicators. Some
conclusive remarks are finally reported in Sec. V.

II. LYAPUNOV SPECTRA FROM AN ENTROPY
POTENTIAL

In this section, we first introduce the main classes of
models employed in the investigation of spatiotemporal
chaos. Then, we recall the notion of temporal ~TLS! and
spatial ~SLS! Lyapunov spectra with a particular emphasis to
their connection with the entropy potential. The very exis-
tence of the latter is then investigated in the last part, for a
specific continuous-time model.

Reaction-diffusion systems are among the most relevant
models for the study of spatiotemporal chaos. The standard
form for the evolution equations is5

] tu5F~u!1D]x
2u, ~1!

where the field u(x ,t) is defined on the domain @0,L# , with
periodic boundary conditions u(0,t)5u(L ,t). The nonlinear
function F accounts for the local reaction dynamics, while
the matrix D represents the spatial coupling induced by dif-
fusion.

A simplified class of models can be obtained by spatial
discretization, i.e. by considering a 1D lattice of coupled
oscillators8

u̇i5F~ui!1D~ui1122ui1ui21!, ~2!

where the index i labels each site of a lattice of length L
~assuming again periodic boundary conditions!.

A further simplification is achieved by discretizing also
the time, i.e. by considering coupled map lattices ~CML!,9

that in their usual form read as

un11
i

5 f S «

2
un

i11
1~12« !un

i
1

«

2
un

i21D , ~3!

where n is the time index, and « gauges the diffusion
strength. The function f , mapping a given interval I of the
real axis onto itself, simulates the nonlinear reaction process.
In particular, we will focus on the homogeneous f (x)
5rx(mod 1) and logistic f (x)54x(12x) CML with un

i

P@0,1# .
CML models have been also proposed to mimic 1D

open-flow systems,10 characterized by flux terms in the field
equation. For example the model

un11
i

5 f ~«~12a !un
i21

1~12« !un
i
1«aun

i11!, ~4!

with the parameter a bounded between 0 and 1, accounts for
the possibility of an asymmetric coupling, corresponding to
first order derivatives in the continuum limit.

Let us denote with d(x ,t) a generic perturbation that can
be assumed to possess an exponential profile both in space
and time,

d~x ,t !5a~x ,t !exp~2mx1lt !. ~5!

Depending whether m , or l is considered as a free param-
eter, one can define either the temporal or the spatial
Lyapunov spectrum. Let us first discuss the temporal
Lyapunov spectrum nl(l ,m): it is obtained in the usual way
by following the evolution in tangent space of a perturbation
of the form b(x ,t)emx, where m is fixed a priori. Obviously,
for m50, one recovers the standard Lyapunov spectrum. Al-
ternatively, one can consider the temporal growth rate l as a
free parameter and thereby determine the spatial spectrum
nm(l ,m). The latter procedure is symmetric to the previous
one: m and l are mutually exchanged, as well as x and t , i.e.
the tangent dynamics is followed along the spatial direction.

As a result of the above two approaches one is con-
fronted with a set of four variables: m , l , nm , and nl . The
main conclusion of Ref. 1 is that any two of them can be
taken as independent variables, the other two variables pro-
viding a complete characterization of spatiotemporal stability
properties. Furthermore, in Ref. 2, we have conjectured that
both integrated densities are not actually independent of one
another, but can be obtained from a single function F(l ,m),

]lF5nl, ]m F5nm , ~6!

that is called entropy potential as it coincides with the usual
Kolmogorov-Sinai entropy density along a suitable line ~see
Sec. IV!.

Since equivalent descriptions are obtained by choosing
any pair of independent variables, the appropriate entropy
potential is obtained by means of a Legendre transform in
the new variables. For instance, if one wishes to consider l
and nl as new conjugate variables, the new entropy potential
C(nl ,l) is given by

C[lnl2F , ~7!

and the following relations hold

]C

]nl
5l ,

]C

]m
52nm . ~8!

The existence of a potential has been conjectured on the
basis of analyticity properties of the relationship linking m
and l . The key steps to prove, e.g. ~8!, are ~i! the introduc-
tion of complex spatial and temporal ‘‘growth rates’’ m̃ and
l̃ , respectively; ~ii! the identification ~apart from a sign and
a multiplicative factor! of Im( l̃ ) and Im(m̃) with nm and nl ,
respectively ~obviously, Re( l̃ )5l and Re(m̃)5m).

As a matter of fact, we have been able to substantiate the
second point only in simple cases where the linear stability
analysis reduces to the an eigenvalue equation for a fixed
point or a periodic orbit. In the fully aperiodic regime, there
is only numerical evidence in a chain of coupled logistic
maps, where a test on the existence of a potential has been
performed by computing a certain circulation integral.2
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In order to test the general validity of our main ansatz,
we consider now a continuous-time model. Since the genera-
tion mechanisms of the multipliers in tangent space are not
important for our conclusions, we have assumed that they are
the result of stochastic processes, thus escaping the need to
integrate also some nonlinear equations in phase-space. We
shall refer to a model of coupled oscillators ~see Eq. 2!,
whose evolution in tangent space can be written as

ḋu i5m i~ t !du i1D~du i111du i21!, ~9!

where the random multipliers m i(t) are indirectly defined
through their power spectrum

S~v !5S0FexpS 2

~v2v0!2

s
D1expS 2

~v1v0!2

s
D G .

~10!

This choice implies that m i(t) is an analytic function of time
and possesses some degree of periodicity as one expects to
be the case of many deterministic chaotic signals.

From a numerical point of view, we have decided to
compute the derivative appearing in ~9! through a simple
finite difference ~Euler! scheme. This approach, although not
the most refined one, allows treating in a consistent way the
temporal integration and the recursive iteration in space. In-
deed, by expressing the perturbation as du i(t)5v i(t)
3 exp( 2 mi 1 lt), Eq. ~9! can be rewritten as

v i~ t1Dt !elDt
5v i~ t !1Dt@m i~ t !v i

1D~v i11em
1v i21e2m!# , ~11!

which can be easily iterated either in space or time to deter-
mine the TSL and the SLS. In principle, one should choose a
sufficiently small integration time step; in practice the spatial
recursion becomes soon unfeasible, since the dimension of
the ‘‘temporal’’ phase space is proportional to 1/Dt . Accord-
ingly, we have considered a few different values of Dt ,
namely 0.2, 0.1, and 0.05, paying more attention to testing
the existence of the potential in each case, rather than to
computing the actual limit spectra ~i.e. to the limit Dt→0).
In fact, although for a finite value of Dt , one cannot assert,
rigorously speaking, to have simulated Eq. ~2!, model ~11!
can nevertheless be considered as a dynamical system in it-
self worth being studied ~actually, it is a CML with a differ-
ent coupling scheme from that usually assumed!.

In Fig. 1, we have reported the borders of the spectra in
the (m ,l)-plane as estimated from the SLS and the TLS. The
agreement between the two sets of lines for every value of
Dt provides a first indication that each approximation of the
continuous model is in itself consistent with the findings of
Ref. 1. Each border is made of 4 distinct lines: an upper and
a lower curve representing the set of maxima and minima of
TLS; two symmetric lines representing the extrema of the
SLS. For Dt→0, we expect that the first two curves con-
verge to an asymptotic shape, while the latter two diverge to
6` . In fact, the maximum and the minimum spatial diver-
gence rate are limited by the time step Dt . This is a general
feature of continuous time systems as already remarked in
Ref. 1.

The variation of the lateral borders with Dt indeed con-
firms our expectations, while the dependence of the upper
and lower curves ~especially at high umu-values! indicates,
instead, that the convergence to the asymptotic form is rather
slow: this is clearly confirmed by the comparison with the
border of the TLS determined for a much smaller value of Dt
~0.00625! ~see solid curve in Fig. 1!.

In any case, the most relevant test that we wanted to
perform concerns the existence of an entropy potential F .
This can be numerically done by computing the integral

E
A

B

~nm ,nl!•wds ~12!

along different paths joining generic pairs A , B of points in
the (m ,l) plane. If the integral is independent of the path,
we have a clear indication of the existence of a potential. All
tests that we have performed for different choices of points
and of the time-integration steps have been successful, yield-
ing results that are equal within the numerical accuracy. In
Table I, we report a subset of the results, all referring to the
same end points but different values of Dt . We consider this
as a further clear evidence that the potential entropy indeed
exists and is a rather general feature of at least 1D spatiotem-
poral systems.

III. SPATIOTEMPORAL EXPONENTS

In the perspective of a complete characterization of
space-time chaos, one should consider the possibility of
viewing a generic pattern as being generated along directions
other than time and space axes. In fact, once a pattern is
given, any direction can, a priori, be considered as an appro-
priate ‘‘time’’ axis. Accordingly, questions can be addressed
about the statistical properties of the pattern when viewed in
that way. The extension of the Lyapunov formalism to ge-
neric orientations of the space-time coordinates does not fol-

FIG. 1. Boundaries ]D for the model ~9! as obtained from TLS ~lines! and
SLS ~symbols! for three different values of the time step Dt : 0.2 ~dotted
line and asterisks!, 0.1 ~dot-dashed line and diamonds! and 0.05 ~dashed line
and circles!. The asymptotic boundaries are also reported for Dt50.00625
~solid line!.
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low simply from an abstract need of completeness; it also
results from the attempt of generalizing the nonlinear time-
series analysis to patterns. The existence of low-dimensional
chaos led many researchers to investigate the possibility
whether a given irregular temporal signal might be the con-
sequence of a few nonlinearly coupled degrees of freedom.
The existence of space-time chaos leads to the equivalent
question whether a given pattern is the result of a determin-
istic 1D nonlinear process. At variance with temporal signals
which can be generated only by moving forward or back-
ward in time, in the case of patterns, the identification of the
most appropriate spatial and temporal directions is a new and
unavoidable element of the game. For this reason, in the next
subsection we shall introduce the notion of spatiotemporal
exponents.

A. Definitions

For the moment, we assume that the pattern is continu-
ous both along space and time directions; we shall discuss
later how the definitions can be extended to CML models.
Let us consider a given spatiotemporal configuration of the
field u(x ,t), generated, say, by integrating Eq. ~1!. When
arbitrary directions are considered in the (x ,t) plane, the
coordinates must be properly scaled in order to force them to
have the same dimension. We choose to multiply the time
variable by c , where c is a suitable constant with the dimen-
sion of a velocity. Moreover, let q denote the rotation angle
of the tilted frame (x8,ct8) with respect to the initial one
(x ,ct), adopting the convention that positive angles corre-
spond to clockwise rotations. Sometimes it will be more con-
venient to identify the new frame by referring to the velocity
v5c tan q. The limit cases v50 (q50) and v51` (q
5p/2) correspond to purely temporal and purely spatial
propagations, respectively. The coordinate transformation
reads as

ct85bS ct1
v

c
x D , x85b~2vt1x !, ~13!

where b[1/A(11v
2/c2). The physical meaning of v is

transparent: it can be interpreted as the velocity in the old
frame of a point stationary in the tilted frame ~constant x8).

The new field u(x8,ct8) can be thought of as being the
result of the integration of the model derived from the origi-
nal one after the change of variables ~13!. Although it is not
obvious whether the invariant measure in the initial frame is
still attracting in the new frame ~see Ref. 7 for a discussion

of this point!, one can anyhow study the stability properties
by linearizing and defining the Lyapunov exponents in the
usual way.

In CML models, the discreteness of both the space and
the time lattice leads to some difficulties in the practical con-
struction of tilted frames. In fact, only rational values of the
velocity v can be realized in finite lattices ~in this case, it is
natural to assume that the lattice spacing is the ‘‘same’’
along the spatial and the temporal directions and, accord-
ingly, to set c51). Moreover, writing the explicit expression
of the model requires introducing different site types. For
this reason, we discuss in the following the simplest non-
trivial case v51/2, the generalization to other rational ve-
locities being conceptually straightforward.

A generic spatial configuration in the tilted frame is de-
fined by sites of the spatiotemporal lattice (i ,n) connected
by alternating horizontal ~as in the usual case! and diagonal
bonds ~see Fig. 2!. By suitably adjusting the relative fraction
of the two types of links, all rotations between 0 and p/4 can
be reproduced. The explicit expression of the updating rule
requires a proper numbering of the consecutive sites. More-
over, as seen in Fig. 2, it involves the ‘‘memory’’ of two
previous states.

Finally, an exact implementation of the mapping rule
requires acausal boundary conditions, since the knowledge
of future ~in the original frame! states is required7 ~this is a
general problem occurring also in the continuous case!. As
we are interested in the thermodynamic limit, we bypass the
problem by choosing periodic boundary conditions. Such a
choice has been shown not to affect the bulk properties of the
dynamical evolution.7

In the updating procedure, two different cases are recog-
nized: the variable u is either determined from the past val-
ues in the neighbouring sites, or it requires the newly up-
dated u-value on the right neighbor ~see Fig. 2!. For v

51/2, this can be done by simply distinguishing between
even and odd sites,

FIG. 2. Lattice implementation of the definition of spatiotemporal Lyapu-
nov exponents for v51/2.

TABLE I. Entropy potential F for model ~9! (S051/3, s50.1, v051,
D51) computed by integrating along two different piecewise linear paths
of the (m ,l) plane, and for three different time steps. In the last row the
relative difference between the two values is reported: relative statistical
error in the computation of Lyapunov exponents is of the order of 1023.

Path Dt50.2 Dt50.1 Dt50.05

~0,0!→~0,1!→~2,1! 21.1419 21.1868 21.2303
~0,0!→~2,0!→~2,1! 21.1358 21.1838 21.2236

Relative difference 0.5% 0.2% 0.5%
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~14!

where i51, . . . ,L/2 (L is assumed to be even for simplic-
ity!, while

Y n11
j [Xn

j , ~15!

are additional variables introduced to account for the depen-
dence at time n21. Taking into account that Xn11

2i12 can be
determined from the X and Y variables at time n , the map-
ping can be finally expressed in the usual synchronous form
(Xn

i ,Y n
i )→(Xn11

i ,Y n11
i ), but with an asymmetric spatial

coupling with next and next-to-next nearest neighbors. The
Lyapunov exponents h j can now be computed with the usual
technique.11

In analogy with the original model, we expect again that,
in the limit of infinitely extended systems, the set of expo-
nents h j(v) will converge to an asymptotic form,

h j~v !→h~v ,nh!, ~16!

where nh5 j /L is the corresponding integrated density. We
will refer to this function as the spatiotemporal Lyapunov
spectrum ~STLS!. In the limit cases v50,1` (q50,p/2),
the STLS reduces to the standard temporal and spatial spec-
trum, respectively.

The recursive scheme ~14! implies an increase of the
phase-space dimension by a factor ~111/2! ~in general 1
1v). Actually, as we will argue, these new degrees of free-
dom are not physically relevant. However, for consistency
reasons with the original rescaling of the spatial variable, we
choose to normalize the spatiotemporal density between 0
and 11v ~the time units are, instead, left unchanged by the
above construction!.

The generalization to asymmetric maps ~4! is straightfor-
ward: it removes the degeneracy v→2v . Numerical results
for logistic maps, indicate that the dependence of the positive
exponents on the velocity is quite weak in the fully symmet-
ric case a51/2 ~for instance, the maximum exponent exhib-
its a 20% variation in the whole v range!, while it is remark-
able for asymmetric couplings. In every case, the negative
part of the spectrum sharply changes with the velocity. This
is consistent with the results obtained for delayed maps in
Ref. 7.

B. Representation in the „m,l… plane

Spatiotemporal exponents can be put in relation with m
and l by rewriting the general expression for a perturbation
in a frame rotated by an angle q ,

exp~mx1lt !5exp~m8x81l8t8!. ~17!

Such an equation induces a rotation of the same angle in the
(cm ,l) variables,

l85b~l1vm !, m85b~2~v/c2!l1m !. ~18!

The above equations allow studying the stability with respect
to generic perturbations with an exponential profile along x8.
For simplicity, we shall consider only uniform perturbations,

exp~mx1lt !5exp~ht8!, ~19!

where the growth rate h denotes the spatiotemporal expo-
nent. Notice that we have changed notations from l8 to h , to
understand that the condition m850 is fulfilled. From the
second of Eq. ~18!, uniform perturbations in the rotated
frame correspond to points along the line L

l5c2m/v , ~20!

in the (m ,l) plane.
Whenever the evolution of an exponentially localized

perturbation of type ~17! is considered, it is natural to intro-
duce the quantity V̂5l/m , which can be interpreted as the
velocity of the front.12 Equation ~20! connects this velocity
with that of the rotated frame,

V̂5c2/v . ~21!

Therefore, on the basis of definition ~19!, (x8,ct8) can be
interpreted as the reference frame in which the front associ-
ated with the perturbation propagates with an ‘‘infinite’’ ve-
locity.

The explicit expression for h is

h5sign~l !Al2
1~cm !2

5l/b . ~22!

Such a relation can be turned into a self-consistent equation
for the maximum Lyapunov exponent hmax by imposing the
constraint that the pair (m ,l) lies on the upper border l
5lmax(m) of the spectrum of the Lyapunov exponents,
namely

hmax5
1

b
lmaxS m5

v

c2 bhmaxD . ~23!

Some ambiguities arise when velocities v.c are considered,
since the line L intersects lmax(m) in two points as seen in
Fig. 3. This phenomenon was already noticed in Ref. 12,
while discussing the propagation of exponentially localized
disturbances in the original reference frame. Moreover, it has
been shown that only the front corresponding to the smaller
value of m is stable, except for some cases where a nonlinear
mechanism intervenes dominating the propagation process.13

At v5c2/V* the two intersections degenerate into a
single tangency point. This condition defines V* , which can
be interpreted as the slowest propagation velocity of initially
localized disturbances.12

The extension of Eq. ~23! to the rest of the spectrum
requires to connect nl and nm with nh . In the next section,
we will show how to perform such a step with the help of the
entropy potential. Here, we limit ourselves to discuss the
structure of the STLS for different values of the tilting angle
q . In Fig. 4, we report the borders of the bands, which can be
determined from the intersections of L with the border ]D

of the domain of allowed perturbations ~see Fig. 1 of Ref. 1
and Fig. 3!. For q50 ~temporal case! a single band is
present but, as soon as q.0, a second negative band arises
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from the intersections with the branch diverging to 2` at
m52mc . For q.p/4, the negative band disappears and a
positive band arises from the intersections with the branch
diverging to 1` with slope v5c . A single band spectrum is
again recovered for q>q*5atan(c/V*).

Notice that in symplectic maps, the STLS is symmetric
for any value of q ~see Ref. 1! so that positive and negative
bands appear and disappear simultaneously.

It is worthwhile to illustrate some of the above consid-
erations in the simple example of the linear diffusion equa-
tion

] tu5gu1D]x
2u , ~24!

that arise when dealing with the linear stability analysis of
uniform and stationary solutions u(x ,t)5u* of the scalar
version of Eq. ~1!. The expression for lmax(m) can be ob-
tained by assuming u(x ,t)5exp(mx1lt), so that

lmax~m !5g1Dm2. ~25!

Accordingly, Eq. ~23! reads as

bhmax5g1DS v

c2 bhmaxD 2

. ~26!

On the other hand, the model equation in the rotated frame
can be obtained from the substitutions

] t→b~] t82v]x8!, ]x→bS v

c2 ] t81]x8D . ~27!

By introducing the usual ansatz for the shape of the pertur-
bation,

u~x8,t8!;exp@ ikx81~h1iV !t8# , ~28!

separating the real from the imaginary part, and eliminating
V , we obtain the integrated density of spatiotemporal expo-
nents

k~h ,v !5bS 122D
v

2

c4 bh DAv
2

c4 ~bh !2
2

bh

D
1

g

D
~29!

and the corresponding STLS h(k ,v). Dimensional analysis
shows that k is an inverse length, as expected for a density of
exponents. Notice that Eq. ~26! is recovered, by setting k
5 V 5 0 in Eq. ~29!.

In this and more general continuous models, we should
remark that the line L intersects lmax(m) twice for any ar-
bitrarily small v . This is because the Laplacian operator sets
no upper limit to the propagation velocity of disturbances.

IV. FROM THE ENTROPY POTENTIAL TO
DYNAMICAL INVARIANTS

The present section is devoted to establish the conse-
quences of the existence of the entropy potential on the
Lyapunov spectra and other dynamical indicators such as the
Kolmogorov-Sinai entropy and the Kaplan-Yorke dimension
of the attractor. In order to keep the notations as simple as
possible, we assume that time and space coordinates are
scaled in such a way that c51.

A. Spatiotemporal exponents

The very existence of the entropy potential F implies
that the Lyapunov spectrum in a frame tilted at an angle q
~recall that q is the angle from the l-axis! can be obtained
by computing the derivative of F along the direction u
5(sin q,cos q) in the (m ,l) plane. In fact, this is a straight-
forward generalization of the previous findings that nm and
nl are the derivatives of F along the m and l direction,
respectively. Accordingly, the STLS is linked to the TLS and
SLS by the following general equation

nh~v ,h !5u•¹F5b@vnm1nl# , ~30!

where ¹5(]m ,]l) is the gradient in the (m ,l) plane, and
the r.h.s. of the above formula is evaluated for

m5vbh , ~31!

FIG. 3. Plot of the boundary ]D and of the line l5vm in the three velocity
regimes for the logistic CML «51/3. The three lines refer to the different
cases v,1 ~solid!, 1,v,1/V* ~dot-dashed! and v51/V* ~dashed!.

FIG. 4. Boundaries of the STLS versus the tilting angle q for the homoge-
neous chain (r52, «51/3).
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l5bh . ~32!

Such a relation can be directly verified for the diffusion
equation from Eqs. ~8! of Ref. 2 and Eq. ~29!. Further, more
significative tests have been performed by checking numeri-
cally the validity of Eq. ~30! in some lattice models involv-
ing, e.g. logistic and homogeneous chains, the spectra of
which are reported in Fig. 5 ~notice that, since the time units
have not been renormalized in the tilted frame, the factor b
is no longer needed!.

B. Entropy

The connection between the chronotopic approach and
the Kolmogorov-Sinai entropy HKS was already discussed in
Ref. 2. Here we recall the main concepts both for the sake of
completeness and since it can be more effectively phrased
with the help of the spatiotemporal representation.

As usual, we shall refer to the Pesin formula3 as a way to
estimate the rate of information-production from the positive
Lyapunov exponents. Although it provides an upper bound,
there is numerical evidence that the bound is actually satu-
rated in generic models. The reference to Pesin’s formula
suggests that HKS is an extensive quantity.6 For this reason, it
is convenient to introduce the entropy density hl which, in

the thermodynamic limit, can be obtained from the integral
of the positive part of the Lyapunov spectrum.

It is natural to extend the definition of entropy to a ge-
neric reference frame,

hh5E
0

hmax
nh~q ,h !dh , ~33!

where the integral is performed along the line L and hmax is
the maximum value of h which is reached in the intersection
point between L and D . In the limit q50, the above equa-
tion reduces to the usual definition of hl , while for q
5p/2 it reduces to the ‘‘spatial’’ entropy hm .

The existence of an entropy potential implies that

hh~q !5H hl uqu,q*
hm uqu>q*

~34!

where q* is the value for which the line L is tangent to D .
This is immediately seen by combining the observation that
hh follows from an integral along the straight line defining
the corresponding l-axis with the observation that one of the
two extrema is always the same ~the origin! while the others
lie along an equipotential line.

The independency of hh of v has an immediate physical
interpretation, which we also consider as a strong argument
in favor of the existence of an entropy potential. The
Kolmogorov-Sinai entropy density is, in fact, the amount of
information necessary to characterize a space-time pattern of
temporal duration T and spatial extention S ~apart from the
information flow through the boundaries6! divided by its area
S3T . Therefore, hKS is expected to be independent of the
way the axes are oriented in the plane, i.e. of the velocity v .
As a consequence, hh5hKS for all v,1.

The above conclusion still holds when the STLS exhibits
a positive band as well ~which is always the case in continu-
ous models!, provided that the content of such a band is
discarded. Accordingly, we can conclude that the new de-
grees of freedom, associated to the positive band, which ap-
pear in the rotated frame are just physically irrelevant direc-
tions which turn the original attractor into a repellor. If v

.c2/V* , the two bands merge together and it is not any-
more possible to distinguish between unstable but irrelevant
directions and the unstable manifold of the original attractor.
Presumably, this means that the repellor is turned into a
strange repellor with a singular measure along some ~all!
unstable directions.

C. Dimension

A second important indicator of the ‘‘complexity’’ of a
spatiotemporal dynamics is the fractal dimension of the un-
derlying measure. An upper bound DKY to it is given by the
Kaplan-Yorke formula.3 The existence of a limit Lyapunov
spectrum, implies that DKY is proportional to the system
size, so that it is convenient to introduce the dimension den-
sity dKY ,6 i.e. the number of independent degrees of freedom
actively involved in the asymptotic evolution per unit length.
In the framework of the present paper, it is natural to extend
the concept of dimension density to a frame oriented in a

FIG. 5. Comparison between the STLS obtained by direct numerical com-
putation and formula ~30! for ~a! homogeneous (r52) with v54/5 and ~b!

logistic CMLs with v53/5 ~in both cases «51/3).
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generic way in the space-time plane. A straightforward gen-
eralization of the Kaplan-Yorke formula leads to the integral
equation,

E
0

dKY
h~v ,nh!dnh50. ~35!

As for the entropy density, Eq. ~35! can be more easily in-
terpreted with reference to the (nm ,nl) plane. In this repre-
sentation the entropy potential is

F̃5lnl1mnm2F . ~36!

In fact, the curve implicitly defined by the constraint ~35! is
the equipotential line C

F̃~nm ,nl!50. ~37!

The dimension density dKY(v) can, in turn, be determined
from Eq. ~30! at the intersection point between C and the
image of L in the plane (nm ,nl).

At variance with the entropy density, dKY(v) changes
with v ~see Fig. 6! even if we avoid considering the second
positive band. In fact, while hh is an information divided by
a space-time area, dKY(v) is a number of degrees of freedom
divided by a length, measured orthogonally to the propaga-
tion axis. Thus, at least from a dimensional point of view, it
is meaningless to compare dKY(v) for different velocities.
However, one can reduce temporal to spatial lengths by in-
troducing the scaling factor c and, in turn, ask himself how
the dimension changes with c . It is easily seen that the scal-
ing dependence on c is expressed by the following relation,

dKY~v ,c1!A11S v

c1
D 2

5dKY~v ,c2!A11S v

c2
D 2

. ~38!

The ~completely arbitrary! choice of c reflects in different
dependences of dKY on v . A natural procedure to fix c is by
minimizing the dependencies of dKY on the observation
angle. This amounts to choosing the time units in such a way
as to make the 2D pattern as isotropic as possible. In homo-
geneous CMLs, the procedure is so effective that a suitable
choice of c allows removing almost completely the velocity
dependence as seen in Fig. 6~a!, where the results for the
natural value c51 are compared with those for c53.

More in general, however, it is not possible to achieve
such a complete success. This is, for instance, the case of the
logistic CML, where the dimension drop for c51 is too
large to be compensated by any choice of c ~see Fig. 6~b!,
where the curve for c51 is compared with the best results
obtained for c51`).

A further indicator which is sometimes useful in charac-
terizing the chaoticity of a given extended system is the di-
mension density du of the unstable manifold. This dimension
is nothing but nh in the point where h50, i.e. in the origin,
and its expression simply reads as

du5bnl~0,0! ~39!

being nm(0,0)[0. The choice c51` of the scaling factor
removes exactly the dependence on the orientation of the
reference frame. This choice is equivalent to measuring
lengths in the untilted frame.

V. CONCLUSIONS AND OPEN PROBLEMS

In this paper we have provided further numerical evi-
dence for the existence of an entropy potential in 1D spa-
tially extended dynamical systems. The result appears to fol-
low from the possibility to order the Lyapunov vectors
according to their average wavenumber that thus becomes
equivalent to the integrated density of exponents. This inter-
pretation, if confirmed, would imply the possibility to define
and attribute some meaning to the imaginary part of the ex-
pansion rates. This line of thought is very reminiscent of the
rotation numbers introduced by Ruelle in the context of
Hamiltonian systems.14 It is certainly worth to fully explore
this route in the hope to arrive at a more rigorous justification
of our theoretical construction: work in this direction is in
progress.

Furthermore, we have seen that, among the conse-
quences of the existence of an entropy potential, there is the
possibility to insert very coherently in this scheme a more

FIG. 6. Kaplan-Yorke dimension density dKY obtained from the STLS ver-
sus the tilting angle q for ~a! homogeneous (r51.2) and ~b! logistic CMLs:
in both cases «51/3. Circles refer to the scaling factor c51, while crosses
correspond to c53, 1` in ~a!, ~b!, respectively.
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general class of Lyapunov exponents corresponding to vari-
ous directions of propagation in the space-time. As a result,
we have found that the asymmetry between the temporal and
the spatial axes can be revealed by the dependence of the
density of dimension on the orientation of the reference
frame. This is not true for the Kolmogorov-Sinai entropy
density which, as already remarked in Ref. 2, should be re-
garded as a ‘‘super-invariant’’ dynamical indicator.
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