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ABSTRACT

Coupling among neural rhythms is one of the most important mechanisms at the basis of cognitive processes in the brain. In this study,
we consider a neural mass model, rigorously obtained from the microscopic dynamics of an inhibitory spiking network with exponen-
tial synapses, able to autonomously generate collective oscillations (COs). These oscillations emerge via a super-critical Hopf bifurcation,
and their frequencies are controlled by the synaptic time scale, the synaptic coupling, and the excitability of the neural population. Fur-
thermore, we show that two inhibitory populations in a master–slave configuration with different synaptic time scales can display various
collective dynamical regimes: damped oscillations toward a stable focus, periodic and quasi-periodic oscillations, and chaos. Finally, when
bidirectionally coupled, the two inhibitory populations can exhibit different types of θ–γ cross-frequency couplings (CFCs): phase-phase and
phase-amplitude CFC. The coupling between θ and γ COs is enhanced in the presence of an external θ forcing, reminiscent of the type of
modulation induced in hippocampal and cortex circuits via optogenetic drive.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5125216

Under healthy conditions, the brain’s activity consists of a series
of intermingled oscillations, generated by large ensembles of
neurons, which provide a functional substrate for information
processing. Understanding how single neuron properties influ-
ence neuronal population dynamics could help in the compre-
hension of the collective behaviors emerging during cognitive
processes. Here, we consider a neural mass model, which repro-
duces exactly the macroscopic activity of a network of spik-
ing Quadratic Integrate-and-Fire (QIF) neurons. This mean-field
model is employed to shed some light on an important and per-
vasive neural mechanism underlying information processing in
the brain: the θ–γ cross-frequency coupling. In particular, we
will explore in detail the conditions under which two coupled
inhibitory neural populations, characterized by slow and fast
synaptic kinetics, can generate these functionally relevant coupled
rhythms.

I. INTRODUCTION

Neural rhythms represent the fundamental elements of infor-
mation coding in the brain.16 These rhythms emerge due to
the activity of large populations of neurons that orchestrate
their firing in partially synchronous bursts and selectively com-
municate with other populations, producing complex functional
interactions.18,60

One of the most prominent rhythmic interactions appearing
in the brain is the θ–γ coupling, exhibited between the slow oscil-
lating θ band (4–12 Hz) and the faster γ rhythm (25–100 Hz).40 This
specific frequency interaction is an example of a more general mech-
anism termed Cross-Frequency-Coupling (CFC).18,34 CFC has been
proposed to be at the basis of sequence representation, long distance
communication, sensory parsing, and de-multiplexing.31,34 CFC can
manifest in a variety of ways depending on the type of modula-
tion that one rhythm imposes on the other (amplitude–amplitude,
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amplitude–frequency, phase–amplitude, frequency–frequency, fre-
quency–phase, or phase–phase).34

In this article, we will mainly focus on Phase–Phase (P–P)
coupling of θ and γ rhythms, with some analysis also of
Phase–Amplitude (P–A) coupling. In particular, P–P coupling refers
to n:m phase locking between γ and θ phase oscillations.54 This
rhythmic interaction has been demonstrated to play a role in visual
tasks in humans30 and it has been identified in the rodent hippocam-
pus during maze exploration.8 The P–A coupling (or θ-nested γ

oscillations) denotes the fact that the phase of the theta-oscillation
modifies the amplitude of the gamma waves. P–A coupling has been
shown to support the formation of new episodic memories in the
human hippocampus39 and to emerge in various parts of the rodent
brain during optogenetic theta stimulations in vitro.3,13,14,50

Phase–amplitude θ–γ CFC is believed to serve as a mechanism
to transfer information from large-scale brain networks, operating
at low-frequency, to fast timescale, associated with local cortical
circuits.18 In this context, it has been reported that P–A CFC can
emerge in the primary visual cortex of anesthetized macaques under
naturalistic visual stimuli. These experimental results have been well
reproduced by considering sparsely connected excitatory–inhibitory
networks under external forcing.45,46 However, on a general ground,
it is still unclear if γ rhythms in the brain arise due to pyrami-
dal–interneuron circuits (PING mechanism) or to purely inhibitory
networks (ING mechanism).18 In particular, recent optogenetics
studies on the rodent hippocampus in vitro demonstrate that ING50

or PING14 mechanisms can be both at the basis of γ oscillations.
Furthermore, there are also indications that θ activity can be gener-
ated by multiple local circuits7 and it can be regulated by inhibitory
networks.62

In a seminal work, White et al.61 have shown that two inhibitory
neural populations with fast and slow GABAA kinetics1 can provide
a substrate for θ–γ rhythms. The model was inspired by a series
of experimental evidence: first, distinct populations of interneurons
in the hippocampus generate inhibitory post-synaptic potentials
(IPSPs) mediated via GABAA,fast or GABAA,slow receptors;5 second,
the existence of projections from GABAA,slow to GABAA,fast cells.6

In an attempt to understand the complex interactions emerging
during CFC, several mathematical models describing the activity of
a large ensemble of neurons have been proposed.22 Widely known
examples include the phenomenologically based Wilson–Cowan63

and Jansen–Rit33 neural mass models. While the usefulness of these
heuristic models has been demonstrated in a variety of applica-
tions, they are not related to any underlying microscopic dynamics
of a neuronal population. Furthermore, these models are expected
to provide appropriate levels of description for many thousands of
near identical interconnected neurons with a preference to operate
in synchrony.21

Recently, the Ott–Antonsen ansatz has allowed us to exactly
obtain the macroscopic evolution of phase oscillator networks, fully
coupled via a purely sinusoidal field.49 It is possible to transfer this
approach to ensembles of pulse-coupled Quadratic Integrate-and-
Fire (QIF) neurons and, therefore, to derive in an exact manner,
a macroscopic description for these neural populations.21,43,47,51 The
QIF neuronal model is particularly relevant, since it can be related
by a change of variable, to the θ-neuron, which represents the nor-
mal form of Hodgkin’s class I excitable membranes. Therefore, the

QIF neuron is expected to describe the dynamics of all class I neu-
rons in proximity to the saddle-node on a limit cycle bifurcation.27

In particular, in Ref. 47, the authors have been able to derive, for a
network of fully coupled QIF neurons with instantaneous synapses,
an exact neural mass model in terms of the population firing rate
and the average membrane potential. This reduced model allows us
to describe, exactly, the dynamics of a microscopic heterogeneous
population in terms of macroscopic variables for any level of syn-
chronization among the neurons, at variance with usual neural mass
models.21,47

In this paper, inspired by the work of White et al.,61 we will
employ the exact neural mass model derived by Devalle et al.24 for
one population of globally coupled QIF neurons with exponen-
tial synapses to study the emergence of mixed θ–γ oscillations in
coupled inhibitory populations with fast and slow synaptic kinet-
ics. In particular, in Subsection III A, we will characterize the
dynamical behavior of a single population and review the condi-
tions required to observe collective oscillations (COs). Afterward,
in Subsection III B, we will analyze the response of the popula-
tion to an external sinusoidal forcing paying special attention to the
emergence of phase synchronization. We will then consider in Sub-
section III C the possible macroscopic dynamics displayed by two
coupled inhibitory populations characterized by different synaptic
time scales in a master–slave configuration, where the slow popula-
tion drives the fast one. Finally, Subsection III D is focused on the
study of the emergence of θ–γ CFCs among the COs displayed by
the two bidirectionally coupled populations.

II. MODEL AND METHODS

A. Network dynamics

Throughout this paper, we will examine either one or two
populations of QIF neurons interacting via inhibitory post-synaptic
potentials (IPSPs) with an exponential profile. In this framework,
the activity of the population l ∈ {A, B} is described by the dynamics
of the membrane potentials V(l)

i of its neurons and of the associated
synaptic fields S(l)

i . Here, we will assume a fully coupled topology for
all networks, hence each neuron within a certain population is sub-
ject to the same synaptic field S(l), where the neuron index has been
dropped. Therefore, the dynamics of the network can be written as

τ V̇(l)
i = (V(l)

i )
2
+ η

(l)
i + JllτS(l) + JklτS(k) + I(l)(t),

τ
(l)
d Ṡ(l) = −S(l) +

1

N(l)

∑

t
(l)
j

δ(t − t(l)j ), (1)

i = 1, . . . , N(l), l, k ∈ {A, B},

where τ = 10 ms is the membrane time constant which is assumed
equal for both populations, η

(l)
i is the excitability of the ith neuron

of population l, Jlk is the strength of the inhibitory synaptic cou-
pling of population l acting on population k, and I(l)(t) is a time
dependent external current applied on population l. The synaptic
field S(l)(t) is the linear super-position of the all exponential IPSPs

s(t) = e−t/τ
(l)
d emitted within the l population in the past. Due to the

quadratic term in the membrane potential evolution, which allows
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the variable to reach infinity in a finite time, the emission of the jth

spike in the network occurs at time t(l)j whenever V(l)
i (t

(l)−
j ) → +∞,

while the reset mechanism is modeled by setting V(l)
i (t

(l)+
j ) → −∞,

immediately after the spike emission.
For reasons that will be clear in the next paragraph, we will

also assume that the neuron excitability values η
(l)
i are randomly

distributed according to a Lorentzian probability density function
(PDF)

gl(η) =
1

π

1(l)

(η − η̄(l))
2
+ (1(l))

2 , (2)

where η̄(l) is the median and 1(l) is the half-width half-maximum
(HWHM) of the PDF. For simplicity, we set η̄ = 1 throughout the
paper, unless otherwise stated.

In order to characterize the macroscopic dynamics, we will
employ the following indicators:

r(l)(t) =
1

N(l)1t

∑

t
(l)
j

δ(t − t(l)j ), v(l)(t) =
1

N(l)

N(l)
∑

j

V(l)
j (t),

which represent the average population activity of each network
and the average membrane potential, respectively. In particular, the
average population activity of the l-network r(l)(t) is given by the
number of spikes emitted in a time unit 1t, divided by the total
number of neurons. Furthermore, the emergence of COs in the
dynamical evolution, corresponding to periodic motions of r(l)(t)
and v(l)(t), will be characterized in terms of their frequencies ν(l).

B. Mean-field evolution

In the limit of infinitely many neurons N(l) → ∞ we can
derive, for each population l, the evolution of the PDF ρ(l)(V|η, t)
describing the probability distribution of finding a neuron with
potential V and excitability η at a time t via the continuity equation

∂ρ(l)(V|η, t)

∂t
= −

∂F (l)(V|η, t)

∂V(l)
,

F
(l)(V|η, t) = ρ(l)

(

(V(l))
2
+ η(l) + I(l)

τ

)

,

(3)

where F (l)(V|η, t) is the probability flux, while I(l) = JllτS(l)

+ JklτS(k) + I(l)(t) (for l, k ∈ {A, B}) is the contribution of all synap-
tic currents plus the external input. The continuity equation (3) is
completed with the boundary conditions describing the firing and
reset mechanisms of the network model (1), which reads as

lim
V→−∞

F
(l)(V|η, t) = lim

V→∞
F

(l)(V|η, t). (4)

Following the theoretical framework developed by Montbrió et al.,47

one can apply the Ott-Antosen ansatz49 to obtain an exact macro-
scopic description of the infinite-dimensional 2-population system
(1) in terms of collective variables. In order to obtain exact analytic
results it is crucial to assume that the distribution of the neuronal
excitabilities is a Lorentzian PDF. In the case of the QIF model, the
macroscopic variables for each l-population are the instantaneous

firing rate r(l), the average membrane potential v(l), and the mean
synaptic activity s(l), which evolve according to the following:

ṙ(l) =
1(l)

τ 2π
+

2r(l)v(l)

τ
, (5)

v̇(l) =
(v(l))

2
+ η̄(l) + I(l)(t)

τ
+ Jlls

(l) + Jkls
(k) − τ(πr(l))

2
,

ṡ(l) =
1

τ
(l)
d

[−s(l) + r(l)]

for l, k ∈ {A, B}.
As shown by Montbrió et al.,47 the reported approach can be

extended to Gaussian or uniform distributions of the excitabili-
ties; for all these distributions, the observed dynamical regimes are
essentially the same as for the Lorentzian distribution.

C. Dynamical indicators

We make use of two dynamical indicators to characterize the
evolution of the mean-field (MF) model (5): a Poincaré section and
the corresponding Lyapunov Spectrum (LS).

The considered Poincaré section is defined as the manifold
ṙ(A)(t̄) = 0 with ṙ(A)(t̄−) > 0, which amounts to identify the local
maxima rmax of the time trace r(A)(t). On the other hand, to com-
pute the LS, one should consider the time evolution of the tan-
gent vector δ = {δr(A), δv(A), δs(A), δr(B), δv(B), δs(B)}, resulting from
the linearization of the original system Eq. (5), namely,

δṙ(l) =
2(r(l)δv(l) + v(l)δr(l))

τ
, (6)

δv̇(l) =
2v(l)δv(l)

τ
+ Jllδs(l) + Jklδs(k) − 2π 2τ r(l)δr(l),

δṡ(l) =
−δs(l) + δr(l)

τ
(l)
d

for l, k ∈ {A, B}.
The LS is thus composed of six Lyapunov Exponents (LEs) {λi}

(three LEs in the case of one population), which quantify the aver-
age growth rates of infinitesimal perturbations along the different
orthogonal manifolds estimated as

λi = lim
t→∞

1

t
log

|δ(t)|

|δ0|
, (7)

by employing the well known technique described in Benettin et al.9

to maintain the tangent vectors ortho-normal during the evolution.
In particular, in a dissipative system, one has a fixed point when-
ever the maximal Lyapunov is negative, a periodic motion if λ1 = 0
and λ2 < 0, a quasi-periodic motion on a Torus TN if λ1 = λ2 = . . .

= λN = 0, and a chaotic motion if the maximal Lyapunov is
positive2,48

From the knowledge of the LS, one can obtain an estimation of
the fractal dimension of the corresponding invariant set in terms of
the so-called Kaplan–Yorke dimension DKY,35 defined implicitly as

DKY
∑

i=1

λi ≡ 0. (8)
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From this definition, a simple linear interpolation gives the follow-
ing explicit expression:

DKY = k +

∑k
i=1 λi

|λk+1|
, (9)

where k is the maximal value for which the sum of the first k
Lyapunov exponents is still positive (for more details, see Ref. 48).

D. Locking characterization

To investigate the capability of two interacting populations
to lock their dynamics in a biologically relevant manner, we mea-
sure the degree of phase synchronization in the reduced system
(5). Therefore, we extract the phase of the population activity by
performing the Hilbert transform H[·] of the firing rate for each
population l ∈ {A, B}, thus obtaining the imaginary part of the ana-
lytic signal: namely, φ(l)(t) := r(l)(t) + jH[r(l)(t)]. The evolution of
the phase in time is then obtained as 8(l)(t) = arg[φ(l)(t)]. A gen-
eralized phase difference of the n : m phase-locked mode can be
defined as

18nm(t) = n8(A) − m8(B), (10)

and the degree of synchronization in the phase locked regime can be
quantified in terms of the Kuramoto order parameter for the phase
difference, namely,

ρnm = |〈ej18nm(t)〉|, (11)

where 〈·〉 denotes a time average, and | · | is the norm of the complex
number.8,36

III. RESULTS

A. Self sustained oscillations in one population

First, by following the procedure outlined by Devalle et al.,24

we analyze the case of a single population with self-inhibition in
the absence of any external drive. Without lack of generality, we
take into account just population A: this amounts to a set of only
three equations in (5) with JBA = I(A)(t) = 0. For simplicity in the
notation, we finally drop the indices denoting the populations.

In the fully coupled QIF network, oscillations can be observed
only for IPSPs of finite duration—namely, exponential in the present
case. In particular, COs appear when the equilibrium point of the
macroscopic system (r0, v0, s0) undergoes a Hopf bifurcation. Sim-
ulations of the QIF network model and the corresponding MF
dynamics are compared in Fig. 1, revealing a very good agreement
both in the asynchronous and in the oscillatory state. In particular,
for the parameters considered in Fig. 1, the super-critical Hopf bifur-
cation takes place at τ

(H)

d = 4.95 ms and Figs. 1(a)–1(c) refer to a

stable focus for the MF at τd < τ
(H)

d , while Figs. 1(d) and 1(e) to a

stable limit cycle for τd > τ
(H)

d .
Due to the simplicity of the reduced model, it is also possi-

ble to parametrize the Hopf boundaries, where the asynchronous
state loses stability as a function of the marginally stable solution

FIG. 1. Oscillations in a self inhibited QIF population: Left and right columns refer to damped and self-sustained COs, respectively. From top to bottom: raster plots (a) and
(d); instantaneous firing rate r(t) (b) and (e); and average membrane potential v(t) (c) and (f). The network simulations are reported as black dots, while the mean-field
dynamics (5) is shown as a red line. For the network simulation, N = 10 000 QIF units are simulated. Left and right panels were obtained with τd = 3ms and τd = 8ms,
respectively. Other parameters: η̄ = 1, 1 = 0.05, J = −20, and τ = 10ms.
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(r0, v0, s0). In particular, taking τd and J as bifurcation parameters, one can verify that the boundaries of the Hopf bifurcation curves are
defined by the following:

τ
(H)

d =
9τv2

0η̄τ − π 2r2
0τ

3 ± τ

√

(

η̄ − π 2r2
0τ

2
)2

+ 2v2
0

(

9η̄ − 41π 2r2
0τ

2
)

+ 17v4
0

16
(

π 2r2
0τ

2v0 + v3
0

) , (12)

J(H) =
η̄ + v2

0

r0τ
− π 2r0τ . (13)

The equilibrium values are related by the equalities
v0 = −1/(2τπr0) and s0 = r0, with r0 acting as a free parameter
(see the Appendix for more details).

The phase diagrams showing the existence of self sustained
oscillations in the {r0, τd} plane are displayed in Fig. 2(a), for three
values of 1: the region inside the closed curves corresponds to the
oscillating regime. Upon decreasing the dispersion of the excitability
(1), the region of oscillatory behavior increases. This result high-
lights that some degree of homogeneity in the neural population is
required in order to sustain a collective activity. In particular, for
dispersions larger than a critical value 1c, it is impossible for the
system to sustain COs (for the parameter employed in the figure,
1c ≈ 0.1453).

The inset in Fig. 2(a) displays the same boundaries in the {τd, J}
plane. From this figure, one can observe that the ranges of inhibitory
strengths and of synaptic times required to sustain oscillations are
negatively correlated with 1: upon increasing (decreasing) 1, the
range of inhibitory strength and of synaptic times required to sus-
tain oscillations decreases (increases). Thus indicating that the more
heterogeneous the system, the more the parameters J and τd should
be finely tuned in order to have COs. It is worth mentioning that for

instantaneous synapses (corresponding to τd → 0), no oscillations
can emerge autonomously in fully coupled systems with homoge-
neous synaptic coupling as shown by Devalle et al.24 and in Fig. 2.
However, COs can be observed in sparse balanced networks with
instantaneous synapses and in the absence of any delay in the signal
transmission.25

In order to understand the role played by the different param-
eters in modifying the frequency of the COs, we have estimated this
frequency for 1 = 0.01 in the (τd, J)-plane. The results are shown as
a heat-map in Fig. 2(b). It turns out that the frequency decreases for
increasing values of τd and of |J| and that frequencies in the γ range
are observable only for τd ≤ 10 ms and J > −20.

It is also worth noticing the fundamental role played by the self-
inhibition in sustaining the autonomously generated oscillations, as
it becomes clear from Eq. (12), since the Hopf bifurcations exist only
for negative values of J.

From these results, we can conclude that a single popula-
tion of QIF neurons can self sustain oscillations with a wide
range of frequencies ν ' 5 − 30 Hz thanks to a finite synaptic
time and to the self-inhibitory action of the neurons within the
population.

FIG. 2. Oscillation stability region: (a) Hopf bifurcation boundaries in the (r0, τd) plane obtained from (12) for four different values of the heterogeneity: 1 = 0.01 (blue),
1 = 0.05 (red), 1 = 0.1 (yellow), 1 = 0.14 (purple). Inset: Hopf bifurcation boundaries in the (τd , J) space for the same 1-values. (b) Heat map of the frequencies of
oscillation of the instantaneous firing rate in the (τd , J) plane, for 1 = 0.01. The black curve coincides with the Hopf boundary denoted in blue in the inset of panel (a). To
quantify the frequencies of COs, a transient time tt = 1 s is discarded and then the number of peaks in r(t) are counted and divided by the simulation time ts = 2 s. For this
figure, τ = 10ms and η̄ = 1.
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B. One population under external forcing

Another relevant scenario in the framework of CFC31 is the case
in which an oscillatory drive I(t) is applied to a neural population
exhibiting COs. The forcing term can represent an input generated
from another neural population or an external stimulus. Therefore,
we examine the behavior of the MF model driven by the following
harmonic signal:

I(t) = −I0(1 + sin(2πν0t)), (14)

characterized by a driving frequency ν0 and an amplitude I0. Note
that we have chosen a strictly negative harmonic signal to assess
the effect on the population dynamics of a driving signal originating
from a distinct inhibitory population.

The results of this analysis are illustrated in Fig. 3. First, we
study the phase locking of the population dynamics, characterized
by an oscillatory frequency ν, to the modulatory input, for different
forcing frequencies ν0 and amplitudes I0 [see Fig. 3(a)]. For small
amplitudes, the external modulation is only able to lock the dynam-
ics into a given n : m mode [measured in terms of the indicator (11)]
for a limited range of forcing frequencies ν0, while the ratio n : m
decreases for increasing ν0. Furthermore, the range where phase

locking is observable increases with the amplitude I0, thus giving rise
to the Arnold tongues shown in Fig. 3(a).

To better understand how the locking emerges, we consider
the ratio ν/ν0 between the CO frequency and the forcing frequency
for a large interval of ν0-values and for a fixed amplitude value
I0 = 0.4, denoted as a red dashed line in Fig. 3(a). The results are
reported in Fig. 3(b). The ratio ν/ν0 reveals a structure similar to
a devil’s staircase, presenting plateaus (corresponding to the locked
modes) intermingled with regions where the ratio does not always
exhibit a monotonic behavior. For the same parameters, we also
report the maxima rmax of the instantaneous firing frequency of the
forced system and the corresponding Lyapunov Spectrum (LS) in
Figs. 3(c) and 3(d), respectively. From these two indicators, one can
infer that most of the phase-locked regions correspond to regular
periodic motion, as revealed by the single value of rmax joined with
the fact that λ1 = 0 and λ2 < 0 over a large portion of the devil’s
staircase plateaus. On the other hand, for ν0 > 15 Hz the regions,
where the r(t) presents peaks of different heights are in correspon-
dence with the non-flat regions of the devil’s staircase. In particular,
these regions are associated with quasi-periodic motions, as con-
firmed by the existence of two zero LEs in the LS. A zoom in the
region ν0 = [4, 14] Hz, corresponding to 1 : 1 locking, is reported

FIG. 3. Single population driven by a harmonic signal: (a) Phase locking diagram of a single inhibitory population driven by a purely inhibitory harmonic external drive (14)
in the (I0, ν0)-plane. Colors denote Arnold tongues with different phase locking ratios. The dashed line indicates the value I0 = 0.4 analyzed in the subsequent panels. (b)
Ratio of the system’s oscillation frequency ν and of the driving frequency ν0 as a function of ν0, showing a devil’s staircase structure. Maxima of r (c) and the corresponding
Lyapunov exponents (d) as a function of ν0. In particular, the first, second, and third LEs are reported as blue, red, and green lines, respectively. The dashed rectangles
indicate the zoomed regions in (c) and (d) shown in the corresponding insets. (e) Kaplan–Yorke fractal dimension DKY vs ν0. The dashed red line denotes a value of two. The
employed parameters are J = −10, η̄ = 1, 1 = 0.01, τ = 10ms, and τd = 80ms. For the estimation of rmax and of the Lyapunov exponents, a transient time of tt = 1 s
was discarded and then the maximum values were stored over a time interval ts = 3 s, while for the LS the tangent space was followed for a period ts = 20 s. The oscillation
frequency of the unforced system is ν = 10.4 Hz.
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in the insets of Figs. 3(c) and 3(d). These enlargements show the
emergence of chaotic windows, where rmax assumes values over con-
tinuous intervals and the maximal LE is positive. Furthermore, in
these chaotic windows, DKY is slightly larger than two, as shown in
Fig. 3(e), indicating that the chaotic attractor is low dimensional.
This is confirmed by the stroboscopic attractor reported in Fig. 4(b),
obtained by reporting the macroscopic variables at regular time
intervals equal to integer multiples of the forcing period ν−1

0 .
Indeed, the points of the attractor cover a set with a dimension

slightly larger than one, since one degree of freedom is lost due to the
stroboscopic observation. Interestingly, the chaotic motion appears
despite the 1:1 locking; this means that the time trace of r(t) always
presents a single oscillation within a cycle of the external forcing but
characterized by different amplitudes,52 as shown in Fig. 4(a).

C. Two populations in a master–slave configuration

Despite the fact that at a macroscopic level the network dynam-
ics of a single population with exponential synapses is exactly
described in the limit N → ∞ by three degrees of freedom (5),
our and previous analyses24 have not reported evidences of chaotic
motions for a single inhibitory population. The situation is different
for an excitatory population, as briefly discussed by Bi et al.,10 or in
the presence of external forcing as shown in Sec. III B.

FIG. 4. Chaotic attractor for a single driven population: (a) Time trace of the aver-
age firing rate r(t) (blue solid line) and profile of the forcing term I(t) (red dashed
line) are shown for a chaotic regime. The chaotic dynamics are clearly locked
to the frequency of the external drive. (b) Stroboscopic attractor: the values of
(r , v, s) are recorded at regular time intervals corresponding to integer multiples
of the forcing period ν−1

0 . Parameters for this figure as in Fig. 3 with ν0 = 10.4 Hz.

In this subsection, we want to analyze the dynamical regimes
emerging when a fast oscillating population (indicated as A) is
driven by a slowly oscillating population (denoted by B) in a mas-
ter–slave configuration corresponding to JBA 6= 0 and JAB = 0. This
is done in analogy with evidences found in the hippocampus, where
an inhibitory population with slow synaptic kinetics projects toward
interneurons with fast kinetics.6 Particular attention will be devoted
to chaotic regimes. An exhaustive parameter study has shown that
the possible dynamical scenarios can be captured by the two param-
eter sets here analyzed, denoted as C1 and C2,

C1 := {τ
(A)

d = 10 ms, JAA = −10, τ (B)

d = 50 ms, JBB = −16},

C2 := {τ
(A)

d = 2.5 ms, JAA = −10, τ (B)

d = 80 ms, JBB = −20}.

In particular, we have considered parameter sets with biologi-
cally plausible synaptic time scales; indeed, they can correspond
to populations of interneurons generating IPSPs mediated via
GABAA,fast and GABAA,slow receptors, which have been identified in
the hippocampus5 and in the cortex.55 The coupling between the two
populations JBA and the network heterogeneity 1 = 1(A) = 1(B)

will be employed as control parameters, while we will assume for
simplicity η̄(A) = η̄(B) = 1.

FIG. 5. Bifurcation diagram for the parameter set C1. (a) Bifurcation diagram
in the plane (1, JBA) for the master–slave coupled system. The codimension 2
bifurcation point (red circle) divides the plane in four different regions (I–IV) corre-
sponding to different dynamical regimes. The supercritical Hopf bifurcation points

for the uncoupled populations A and B are denoted as 1
(H)

A
and 1

(H)

B
and indi-

cated by the arrows. The Hopf bifurcations (black lines) separate foci from limit
cycles, while the Torus bifurcations (blue lines) denote the emergence of Tori T2

from limit cycles. A sample trajectory for each one of the four regions are shown
in panels (b)–(e). The vertical red dashed line in (a) indicates the value of 1

considered in Fig. 6.
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Let us first consider the set of parameters C1. In this case, the
analysis of the possible bifurcations arising in the {1, JBA} plane
reveals the existence of a codimension two bifurcation point at
(1(H), J(H)

BA ) ≈ (0.078, −4.75), namely, the intersection of two Hopf
bifurcation lines, which organizes the plane into four different
regions. In these regions, labeled I–IV, the prevalent dynamics cor-
responds to stable foci in I, stable limit cycles in II and III, and
to stable Tori T2 in IV [see Fig. 5(a)]. For each region, we report
in Fig. 5(b) a corresponding sample trajectory projected in the
sub-space {r(A), v(A)} taken in proximity of the codimension two
point.

To better understand the emergence of the codimension two
point, it is important to consider the uncoupled system, correspond-
ing to JBA = 0 and depicted as a horizontal dashed line in Fig. 5(a).
In this uncoupled regime, one expects to observe two indepen-
dent supercritical Hopf bifurcations, one for each population, as
discussed in Subsection III A. The first Hopf bifurcation, corre-
sponding to the uncoupled fast population A, occurs at 1(H)

A ≈ 0.122
while the second one, associated with the slow uncoupled popula-
tion B, is located at 1

(H)
B ≈ 0.078. Obviously, since the coupling is

unidirectional from population B to A, the locus of the Hopf bifur-
cations emerging at 1

(H)
B is not influenced from the value of JBA and

it corresponds to a vertical line 1(H) ≡ 1
(H)
B in the {1, JBA} plane.

Conversely, as population A is forced by the activity of population

B, the Hopf curve emerging from 1
(H)
A has a dependence on the JBA

coupling that leads this bifurcation curve to cross the line 1(H) in
the codimension two point. Therefore, the vertical Hopf 1(H) line
divides foci (I) from stable oscillations (III) for JBA < J(H)

BA , while at
larger coupling JBA, it becomes a secondary Hopf (or Torus) bifurca-
tion line (blue solid), separating periodic (II) from quasi-periodic
motions (IV). Moreover, the region III of stable limit cycles is
divided by region IV, where Tori T2 emerge from an another Torus
bifurcation line (blue solid).

We will now focus on the case 1 = 0.01 [corresponding to
the red dashed line in Fig. 5(a)] to analyze the different regimes
observable by varying JBA. To this aim, similarly to what was done
in Sec. III B, we characterize the dynamics of the system in terms
of the values of the Poincaré map r(A)

max and of the associated LS. In
particular, in Fig. 6(a) are reported the values of r(A)

max in the range of
cross-inhibition JBA = [−10, 0]. At very negative values of the cross-
coupling, we observe a single value for r(A)

max, which corresponds to
periodic COs. This is confirmed by the values of the LS reported
in Fig. 6(b): the LEs are all negative except for the first one, which
is zero. At JBA ≈ −6.05, a broad band appears for the distribution
of r(A)

max, indicating that the time trace now displays maxima of dif-
ferent heights. This is due to the Torus bifurcation leading from
a periodic to a quasi-periodic motion. The emergence of quasi-
periodic motions is confirmed by the fact that in the corresponding

FIG. 6. Characterization of the dynamics for the parameter set C1. (a) and (c) Local maxima r
(A)
max of the firing rate of the populations (A) and (B), (d) LEs as a function of the

coupling strength JAB. In panels (b) and (d), the blue curve represents the first LE, the orange the second LE, and the green one the third LE. The dashed rectangle in panels
(a) and (b) indicate the zoomed region presented in panels (c) and (d). For the evaluation of the maxima, a transient time of tt = 10 s was discarded and then maximum
values were stored during ts = 15 s. For the LEs estimation, after discarding the transient time tt , the evolution of the tangent space was followed for a period t = 500 s.
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intervals, the first two LEs are zero [Fig. 6(d)]. For larger values
of the cross-coupling (namely, JBA ≈ [−5.8 : −5]), a period three
window is clearly observable. Beyond this interval, one observes
quasi-periodic motions for almost all the negative values of the
cross-coupling, apart from narrow parameter intervals where lock-
ing of the two frequencies of the COs occur, as expected beyond a
Torus bifurcation.37

We then proceed to study the parameter set C2. First, we show
that the bidimensional bifurcation diagram in the plane {1, JBA}

presents a similar structure to that reported in Fig. 5(a). Indeed, also
in the present case, a codimension two point located at {1(H), J(H)

BA }

≈ {0.06, 0} divides the phase space in four regions analogous to
those observed for the parameter set C1 and separated by the same
kind of bifurcations [see the inset of Fig. 7(a)]. As in the previous
case, we select the value 1 = 0.01 for analyzing the distribution of
maxima of the firing rate r(A) and the associated Lyapunov spectra
(see Fig. 7). For highly negative values of the cross-inhibition, we
observe a periodic behavior of the firing rate r(A). At the intersec-
tion with the torus bifurcation (occurring at JBA = −7.48), quasi-
periodicity emerges similarly to what observed for the parameter
set C1. However, at larger values of the cross-inhibition (namely,
JBA ∈ [−7.3445, −7.3217]), we observe a period-doubling cascade
leading to chaos for JBA ' −7.32. The system remains chaotic in the
interval JBA ∈ [−7.32, −7.18] apart from the occurrence of periodic

windows. This is confirmed by the fact that the maximal LE becomes
positive in the corresponding interval, as shown in Fig. 7(d). An
example of chaotic attractor is reported in Fig. 7(f) with a fractal
dimension slightly larger than two, as confirmed by the estimation
of DKY presented in Fig. 7(e). As in the case of the single forced
population, the macroscopic chaotic attractor is low dimensional.
For JBA > −7.18, we have periodic and quasi-periodic activity, but
no more chaos. In particular, for JBA > −4.2, we essentially observe
mostly quasi-periodic motions up to JBA = 0.

Although we have been able to find chaotic bands for other sets
of parameters, we have preferred to focus on a case where the synap-
tic time scale of the master population τ

(B)

d is of the order of the
kinetics expected for IPSPs mediated via GABAA,slow receptors.5,55

D. Cross-frequency-coupling in bidirectionally

coupled populations

As previously mentioned, a fundamental example of CFC is
represented by the coupling of the θ and γ rhythms. Gamma oscilla-
tions are usually modulated by theta oscillations during locomotory
actions and rapid eye movement (REM) sleep in the hippocampus40

as well as in the neocortex.56 While gamma oscillations have been
shown to be crucially dependent on inhibitory networks,17 the origin
of the θ-modulation is still under debate. It has been suggested to be

FIG. 7. Characterization of the dynamics for the parameter set C2. (a) and (c) Values of r
(A)
max as a function of JBA. The inset shows the bifurcation diagram in the (1, JBA)

plane. This reveals the same structure as the diagram in Fig. 5(a). Here, region (II) is not shown since it corresponds to the region of excitatory cross-coupling. (b) and (d)
First three LEs as a function of cross-inhibitory coupling JBA. The red dashed rectangles in panels (a) and (b) denote the zoomed regions presented in panels (c) and (d),
respectively. (e) Kaplan–Yorke dimension DKY in the parameter interval where chaos is present. (f) Chaotic attractor in the (r(A), v(A), s(A)) space at JBA = −7.25. For the

evaluation of r
(A)
max, a transient time of tt = 10 s was discarded and then maximal values were stored during ts = 15 s. For the LEs estimation, after the same transient time

as before, the evolution of the tangent space was followed during t = 50 s.
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due either to an external excitatory drive15 or to a cross-disinhibition
originating from a distinct inhibitory population.29,61

In this subsection, we analyze the possibility that two bidirec-
tionally interacting inhibitory populations could be at the basis of
the θ–γ CFC. Inspired by previous analysis, we propose the dif-
ference in the synaptic time kinetics as a possible mechanism to
achieve CFC.61 Therefore, we set the synaptic time scales of the
fast and slow populations to τA,d = 9 ms (τB,d = 50 ms), which cor-
respond approximately to the time scales of IPSPs generated via
GABAA,fast (GABAA,slow) receptors. Regarding the other parameters
internal to each population, these are chosen in a such a way that the
self-generated oscillations correspond roughly to θ and γ rhythms,
respectively.

First, we consider the case in which no external modulation
is present, i.e., I(l)(t) = 0. Depending on the value of the cross-
coupling parameters JAB and JBA, different types of m : n P–P cou-
pling can be achieved. In particular, as shown in Fig. 8(a), we observe
1:1 and 2:1 phase synchronization in large regions of the (JAB; JBA)

plane, while 3:1 and 5:2 locking emerge only along restricted stripes
of the plane. In particular, we focus on the values of cross-inhibition
Jlk for which it is possible to achieve a 3:1 phase synchronization,
corresponding to a θ–γ coupling. As evident from the green area in

Fig. 8(a), this specific P–P coupling occurs only for low values of JAB,
namely, JAB ∈ [0.5, 2.5].

Among the parameter values corresponding to 3:1 locking, we
choose for further analysis the ones for which the order parameter
ρ31 is maximal [denoted as a red circle in Fig. 8(a)]. In particular,
we performed simulation of the network (1) as well as of the corre-
sponding MF model (5). The raster plot in Fig. 8(b) confirms that
the two populations display COs locked in a 3:1 fashion. During the
burst emitted from the slow population, the fast displays irregular
asynchronous activity followed by three rapid bursts (each lasting
around 10 ms), before the next CO of the slow population. The fact
that the slow population emits bursts of longer duration is con-
firmed by the analysis of the instantaneous firing rates reported in
Fig. 8(d). Indeed, r(A) has oscillations of much greater amplitude
than r(B), indicating that more neurons are recruited for a burst of
population A with respect to population B. This difference in the
oscillation amplitude can also explain why the 3:1 locked mode is
observable for JAB � JBA; indeed, for larger JAB, the activity of the
slow population would be silenced. It is worth noticing in Figs. 8(b)
and 8(c) the strong agreement between the firing rates obtained
from the network simulations (dots) and from the evolution of the
MF model (line).

FIG. 8. CFC in bidirectionally coupled populations. (a) Heat map of the order parameter locking modes for different values of the cross-coupling. Colored symbols denote
three pairs of parameters {JAB, JBA} corresponding to 3:1 locking examined in (e) for different disorder values. In particular the red circle denotes the couple {JAB, JBA} for
which one obtains the maximal value of ρ31 and these parameter values are employed for the simulations reported in (b) and (c). (b) Raster plot of the network model Eq. (1)
showing the fast and slow population in blue and red colors, respectively. (c) Instantaneous firing rates of the two populations obtained from the evolution of the MF dynamics
(5) [same color code as in panel (b)]. (d) Power spectrum of the time trace r(A)(t) shown as a blue line in panel (c). In the inset, an enlargement of the spectrum corresponding
to the θ -band is shown. (e) Ratio of the fast and slow frequencies of the COs ν(A)/ν(B) vs the disorder1 := 1A = 1B. The ratio shows the extent of the 3:1 locking interval

for the three values of {JAB, JBA} denoted by the symbols of the same color in (a). Parameters for fast population are τ
(A)

d
= 9ms, η̄A = 2, JAA = −2 and for the slow one

τ
(B)

d
= 50ms, η̄B = 1.5, JBB = −18. Common parameters:1 = 0.05 [for panels (a)–(d)] and τ = 10. The time traces used for the phase locking analysis were taken over

a period of t = 10 s after discarding an initial transient time tt = 10 s. For the network simulations in (b), NA = NB = 10 000 neurons. In the figure, only half of them are
depicted. The spectrum in (d) was obtained by averaging 50 power spectra, each calculated over a time trace of duration t = 16.384 s with 215 equispaced samples, after a
transient time of tt = 10 s.
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An analysis of the power spectrum of r(A) [shown in Fig. 8(d)]
reveals that the amount of power in the θ band is quite small (see
the peak around 10 Hz in the inset) with respect to the power in the
γ band. This indicates that a CFC among the two bands is indeed
present, but the interaction is limited.

FIG. 9. CFC in bidirectionally coupled populations with an external θ modulation.
(a) Locking modes for different values of the cross-coupling. Red circle denotes
the pair {JAB, JBA} giving rise to the maximum value of ρ31 which is used for
simulations in (b)–(c). Black diamond and blue square correspond also to 3:1
modes with a smaller order parameter value. (B) Power spectrum of the time trace
r(A)(t) for the case denoted by the red circle in panel (a). The inset displays an
enlargement corresponding to the θ -band. (C) Ratio of the fast and slow pop-
ulation frequencies ν(A)/ν(B) showing the extent of the 3:1 mode for the three
values of {JAB, JBA} depicted by the symbols in (a) at varying values of disorder

1 := 1(A) = 1(B). For the θ -forcing current, we set I
(B)

0 = 0.5 and νθ = 10 Hz,
all the other parameters as in Fig. 8.

Furthermore, varying the amplitude of the heterogeneity, as
measured by 1 = 1(A) = 1(B), we can verify the capability of the
network to sustain the 3:1 locked mode even in the presence of dis-
order in the neural excitabilities. It can be seen that the system loses
the ability to sustain such a locked state already for 1 > 0.1, indi-
cating that CFC can occur only for a limited amount of disorder
in the distribution of the neuronal excitabilities in agreement with
the results reported by White et al.61 [see Fig. 8(e)]. For large disor-
ders, the only possible locked state is that corresponding to 1:1 phase
synchronization.

So far, we have analyzed the possibility that θ and γ rhythms
were locally generated in inhibitory populations with different
synaptic scales. However, the results of several optogenetic experi-
ments performed in different areas of the hippocampus and entorhi-
nal cortex suggest that a θ frequency drive is sufficient to induce in
vitro θ–γ CFCs.3,13,14,50 However, the interpretation of these experi-
ments disagrees on the origin of the locally generated γ oscillations.
Two mechanisms have been suggested: namely, either inhibitory3,50

or excitatory–inhibitory feedback loops.13,14 Therefore, to clarify if
recurrently coupled inhibitory populations with different synaptic
time scales under a θ-drive can display θ–γ CFC, we drive the
slow population via an external current I(B) = I(B)

0 sin(2πνθ t) with
νθ = 10 Hz, while the rest of the parameters remains unchanged.

As before, we look for the range of cross-inhibitions in which a
3:1 phase-locked mode emerges. Results are plotted in Fig. 9(a). We
observe that the region where θ–γ CFC can be observed definitely
enlarges in the presence of an external θ-modulation. Furthermore,
as observable from the power spectrum reported in Fig. 9(b), the

FIG. 10. P–P and P–A couplings in the presence of a θ forcing. (a) Raster plot
of the network model Eq. (1) showing the fast and slow population in blue and
red colors, respectively, for the same system analyzed in Fig. 9 with the opti-
mal pair {JAB, JBA} = {−1,−6.63} and 1 = 0.05. (b) Time traces of r(t) for
the fast (blue) and slow (red) populations for the case depicted in the raster plot
in (a). (c)–(d) Same as in (a)–(b) for the same parameters except for 1 = 0.2.
Parameters as in Fig. 9.

Chaos 30, 053121 (2020); doi: 10.1063/1.5125216 30, 053121-11

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

power in the θ band is noticeably increased as a consequence of the
external modulation with respect to the non-modulated case. More-
over, the θ–γ CFC is now observable over a wider range of disorder
on the excitabilities; indeed, the 3:1 locked state survives up to 1 ≈

0.2–0.3, as shown in Fig. 9(c). These findings are consistent with
those previously reported by White et al.,61 in which adding a slow
modulation to the θ-generating population was sufficient to render
more robust the observed CFC to the presence of disorder in the
excitability distribution.

Finally, if we consider the network activity, we observe two dif-
ferent scenarios corresponding to the 3:1 locked mode: (1) a P–P
locking at low disorder and (2) a P–A coupling (or θ-nested γ

oscillations) at larger disorder. The first scenario is characterized by
the fast population displaying clear COs slightly modulated in their
amplitudes by the activity of the slow population, but tightly locked
in phase with the slow ones [see Figs. 10(a) and 10(b)]. The sec-
ond scenario presents a firing activity of the fast population strongly
modulated in its amplitude by the slow population as observable in
Figs. 10(a) and 10(b). In this latter case, the neurons in population
A fire almost asynchronously with a low firing rate, thus the forcing
of the slow population B on the fast one A is reduced with respect to
the previous case. However, the coupling with the activity of the slow
population B is reflected in a clear modulation of the firing rate r(A),
analogously to what has been reported for θ-nested γ oscillations
induced by optogenetic stimulation.14,50

IV. CONCLUDING REMARKS

In this paper, we have considered a heterogeneous inhibitory
population with exponentially decaying synapses, which can be
described at a macroscopic level by an exact reduced model of three
variables: the firing rate, the average membrane potential, and the
mean synaptic activity. As demonstrated previously by Coombes
et al.21 and Devalle et al.,24 the presence of the synaptic dynamics
is at the origin of the COs, emerging via a super-critical Hopf bifur-
cation. In particular, we have shown that the period of the COs is
controlled by the synaptic time scale and that, for increasing het-
erogeneity, the observation of COs requires finer and finer tuning
of the model parameters. Moreover, we have characterized in detail
the effect of an inhibitory periodic current on a single self-oscillating
population. The external forcing leads to the appearance of locking
phenomena characterized by Arnold tongues and devil’s staircase.
We have also identified chaotic windows, where the instantaneous
firing rate of the forced population display oscillations which are
irregular in amplitude, but tightly locked in frequency to the external
signal oscillations.52

Furthermore, we considered two inhibitory populations con-
nected in a master–slave configuration, i.e., unidirectionally cou-
pled, where the fast oscillating population is forced by the one
with slower synaptic dynamics. For a single uncoupled popula-
tion, we observe focus solutions at large heterogeneity 1, which
give rise to collective oscillations via a super-critical Hopf bifur-
cation at lower 1. Clearly, the scenario becomes more complex
by considering two coupled populations. In particular, we observe
four distinct dynamical regimes organized around a codimension
two bifurcation point: namely, the observed dynamics correspond

to foci, periodic, and quasi-periodic motions. Each region is sep-
arated by the others via super-critical Hopf or Torus bifurcation
lines. Depending on the parameter values, a period doubling cas-
cade leading to chaotic behavior is observable just above the Torus
bifurcation from periodic to quasi-periodic dynamics. In particular,
the corresponding chaotic attractor is quite low-dimensional, with a
fractal dimension slightly larger than two and a single positive Lya-
punov exponent, despite the fact that the two coupled neural mass
models are described by six degrees of freedom. The macroscopic
solutions we have found in the master–slave configuration are sim-
ilar to those identified by Luke et al.44 for θ-neurons populations
coupled via pulses of finite width.

Even though the dichotomy between chaos and reliability in
brain coding is a debated topic,4,32,38,41 it is of great importance to
establish the microscopic or collective nature of such behavior, as
well as the conditions of its occurrence. Here, we focused on the
emergence of collective chaos, i.e., chaos at the level of popula-
tion dynamics, in networks of simple neuronal models that are not
independently chaotic. Collective chaos has been reported in sin-
gle globally coupled heterogeneous populations in the presence of
an external time scale, which can be due to an (effective) delay23,42,59

or a periodic forcing.44,57 In the present work, we have shown that
collective chaos can be considered as a further example of cross-
frequency coupling between two oscillating neural populations in
a master–slave configuration, or in a single oscillating population
locked to an external sinusoidal forcing. The functional role of this
chaotic cross-frequency-coupling for the brain activity is a open
problem that deserves further experimental and theoretical analysis.

We finally explored the possibility that two mutually inter-
acting inhibitory networks could give rise to θ–γ CFC emerging
as a consequence of the interaction between fast and slow GABAA

kinetics.61 In the original setup, θ–γ CFC coupling was observed
only in a narrow region of parameters and for a limited range of
heterogeneity. The addition of a θ-forcing on the slow population
renders the system more robust to the disorder in the excitability
distribution and enlarges the observability region of the θ–γ CFC.
Furthermore, we observed two kinds of CFCs: P–P (P–A) coupling
for low (high) heterogeneity. It is interesting to notice that P–P
coupling emerges only when the slow population is sufficiently syn-
chronized to exert a strong forcing on the fast population, while
for weaker synchronization (forcing) the P–A coupling is observ-
able. This result is analogous to what recently found for a single
sparse inhibitory population under external periodic forcing.10 Both
of these scenarios have been reported experimentally for θ–γ oscil-
lations: P–A coupling has been reported in vitro for optogenetic
θ-stimulations of the hippocampal areas CA114 and CA3,3 as well as
of the medial entorhinal cortex;50 P–P coupling has been observed
in the hippocampus of behaving rats.8,20

Our analysis shows, for the first time to our knowledge, that the
θ–γ CFC reported for two globally coupled inhibitory populations
of Hodgkin–Huxley neurons by White et al.61 can be reproduced
at the level of exact neural mass models. Furthermore, our find-
ings indicate that the mechanism responsible of θ–γ CFC in two
coupled inhibitory populations is quite general, since this emerges
in networks of conductance-based class II neurons,61 as well as for
current-driven class I neurons. Our results pave the way for fur-
ther studies of other CFC mechanisms present in the brain, e.g.,
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by employing analytically estimated macroscopic phase response
curves26 to characterize phase synchronization in multiscale net-
works of QIF neurons.

A further relevant step in the development of realistic mean-
field models for neural systems is to extend the approach here dis-
cussed to sparse networks, where COs can emerge due to unavoid-
able endogenous fluctuations.11,12,25 In this context, the MF descrip-
tion has been successfully achieved in terms of the correspond-
ing Fokker–Planck equation for the distribution of the membrane
potentials.11,12,19,58 This MF framework allows us to include, in the
macroscopic formulation, the effect of the fluctuations present in
the microscopic dynamics. However, it comes with the downside of
the high-dimensionality of the model, since the MF dynamics can
be obtained by solving a partial differential equation. An extremely
relevant challenge is to derive exact low dimensional neural mass
models for sparse networks: first attempts in this direction have
been reported in Refs. 25 and 10. However, in these works, the
sparseness is treated as a source of quenched disorder in the net-
work, thus lacking the inclusion of the dynamical effects related to
the random distribution of the in-degrees. A promising approach
in this direction is represented by the application of circular cumu-
lant reductions to obtain the macroscopic dynamics of coupled QIF
neurons.28,53
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APPENDIX: HOPF BOUNDARIES

In the case of a single population of inhibitory neurons with no
external input, the fixed point solutions (v0, r0, s0) of MF model (5)
are given by the following set of equations:

v0 = −
1

2τπr0
, (A1)

v2
0 + η̄ − (πτ r0)

2 + τ Js0 = 0, (A2)

s0 = r0. (A3)

In order to study the linear stability of the equilibrium point,
we consider the corresponding eigenvalue problem, namely,

det





2v0/τ − 3 2r0/τ 0
−2π 2τ r0 2v0/τ − 3 J

1/τd 0 −3 − 1/τd



 = 0, (A4)

where 3 are the complex eigenvalues which can be found by solving
the following characteristic polynomial:

p(3) = τdτ
233 + A32 + 3 (τdB − 4τv0) + (B − 2r0Jτ), (A5)

where A = (τ 2 − 4v0τdτ) and B = (4v2
0 + 4π 2r2

0τ
2).

In order to obtain a parameterization of the Hopf bifurcation
curve, we impose 3 = i� with � ∈ < \ {0} and solve p(i�) = 0,
which can only be satisfied if

Re[p(i�)] = 0 and Im[p(i�)] = 0. (A6)

Solving for � in Eqs. (A6), we end up with

�Re = ±

√

(B − 2r0Jτ)

A
, (A7)

�Im = ±

√

(τdB − 4τv0)

τdτ 2
. (A8)

By equating (A7) and (A8) we can find the values of J(H), where
the Hopf bifurcation occurs, namely,

J(H) =
2v0

[

τ 2
(

4π 2τ 2
d r2

0 + 1
)

+ 4τ 2
d v2

0 − 4τdτv0

]

τdr0τ 2
. (A9)

Finally, by introducing Eqs. (A9) in (A2), and noticing from
Eq. (A3) that s0 = r0, one can derive the values of the synaptic time
scale τ

(H)

d that bounds the oscillating region and that is reported in
Eq. (12). Notice that the dependence on 1 is implicitly introduced
in the expression of v0; therefore it is possible to obtain also the
critical value 1(H) associated with the Hopf transition by substitut-
ing (A1) in (A2) and solving for 1. It should be stressed that this
approach cannot distinguish between super-critical and sub-critical
Hopf bifurcations. As a matter of fact, for an inhibitory QIF popu-
lation with exponential synapses no sub-critical bifurcations have
been reported for homogeneous synaptic couplings,24 while these
emerge whenever a disorder is introduced either in the synaptic
couplings or in the link distribution.10
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