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Abstract

We analyze the Eckhaus instability of plane waves in the one-dimensional complex Ginzburg–Landau equation (CGLE) and
describe the nonlinear effects arising in the Eckhaus unstable regime. Modulated amplitude waves (MAWs) are quasi-periodic
solutions of the CGLE that emerge near the Eckhaus instability of plane waves and cease to exist due to saddle-node (SN)
bifurcations. These MAWs can be characterized by their average phase gradientν and by the spatial periodP of the periodic
amplitude modulation. A numerical bifurcation analysis reveals the existence and stability properties of MAWs with arbitrary
ν andP . MAWs are found to be stable for large enoughν and intermediate values ofP . For different parameter values
they are unstable to splitting and attractive interaction between subsequent extrema of the amplitude. Defects form from
perturbed plane waves for parameter values above the SN of the corresponding MAWs. The break-down of phase chaos with
average phase gradientν �= 0 (“wound-up phase chaos”) is thus related to these SNs. A lower bound for the break-down of
wound-up phase chaos is given by the necessary presence of SNs and an upper bound by the absence of the splitting instability
of MAWs.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The emergence of chaotic behaviour from ordered
states in spatially extended systems has been the sub-
ject of many recent experimental and theoretical inves-
tigations[1,2]. Nonetheless, the mechanisms leading
from stationary regimes to chaotic (or spatially irregu-
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lar) phases still pose many challenging questions. One
of the most studied instabilities in extended oscilla-
tory systems is the Eckhaus instability of plane waves
[3].

The occurrence of this instability has been exper-
imentally observed in many quasi one-dimensional
systems like the oscillatory instability of a Rayleigh–
Bénard convection pattern[4], hydrothermal waves
[5–8], heated wire convection[9], sidewall convection
[10], the Taylor–Dean system[11] and internal waves
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excited by the Marangoni effect[12]. The Eckhaus in-
stability also plays an important role in the radial dy-
namics of spiral waves in the Belousov–Zhabotinsky
reaction[13].

The complex Ginzburg–Landau equation (CGLE)
[2,14] is the appropriate amplitude equation to de-
scribe the slow dynamics near a supercritical transi-
tion to unidirectional traveling waves. In one spatial
dimension, the CGLE reads

∂tA = A + (1 + ic1)∂
2
xA − (1 − ic3)|A|2A, (1)

where c1 and c3 are real coefficients and the field
A = A(x, t) = |A(x, t)|eiϕ(x,t) has complex values.
As exact solutions the CGLE admits plane waves of
the formAq(x, t) = aq ei(qx−ωq t), whereq indicates
the wavenumber,aq =

√
1 − q2 and ωq = −c3 +

q2(c1 + c3).
A linear stability analysis[15] of these solutions can

be performed by considering the perturbed solution
Ãq(x, t) = (aq+δa)ei(qx−ωq t), whereδa ∝ eikx eσ(k)t .
The growth rates associated to the complex perturba-
tion δa is

σ(k)= −k2 − 2iqc1k − (1−q2) ± {(1 + c2
3)(1−q2)2

−[c1k
2 − 2iqk− c3(1 − q2)]2}1/2. (2)

The plane waves become linearly unstable to
long wavelength perturbations(k → 0) for q =
qE ≡

√
(1 − c1c3)/(2(1 + c2

3) + 1 − c1c3). This
limit is called Eckhaus instability[3]. Above the
Benjamin–Feir–Newell (BFN) line 1− c1c3 = 0, all
plane waves are unstable to homogeneous perturba-
tions. For a givenq ≥ qE, the corresponding plane
wave is linearly unstable against perturbations with
wavenumbersk inside the interval 0< |k| < kc. kc

increases for increasing values of the parametersc1

andc3.1

As noticed in[16,17], the Eckhaus instability is a
convective instability. Thus, it is relevant in the sys-
tems with periodic boundary conditions considered

1 The perturbation with wavenumberkc of a plane waveq travels
with a velocity vc = −Im[σ(kc)]/kc. At the Eckhaus instability,
in the infinite system,kc → 0 and vc equals the group velocity
vg = ∂ωq/∂q = 2q(c1 + c3). For finite system sizekc > 0 and
vc �= vg.

here, while it would be suppressed in fixed boundary
conditions, e.g. zero-flux or Dirichlet boundary con-
ditions. In the latter geometries, the absolute instabil-
ity of the plane waves has to be computed. It occurs
for sufficiently largeq and/orc1, c3 values inside the
Eckhaus unstable range.

Another interesting aspect of the Eckhaus instability
is found when the nonlinearities of the CGLE are taken
into account. A weakly nonlinear analysis[4] revealed
that for

c2
1(1 − 6c2

3) + c1(2c
3
3 + 16c3) − (8 + c2

3) > 0, (3)

the Eckhaus instability becomes supercritical, i.e.
the instabilities are saturated and the emerging
quasi-periodic solutions coexist with the unstable
plane waves of uniform amplitude[18]. We call these
quasi-periodic solutions modulated amplitude waves
(MAWs). Series expansions of the MAWs[19,20]
and their linear stability properties within a phase ap-
proximation near the Eckhaus instability[21,22]have
been obtained. Numerical simulations[4,23–26]pro-
vided examples of stable MAWs. They have also been
observed in experiments on surface-tension-driven
hydrothermal waves[6] as well as on the Taylor–Dean
system[11] and on internal waves excited by the
Marangoni effect[12].

In addition, the CGLE exhibits two qualitatively dif-
ferent spatiotemporal chaotic states known as phase
chaos (when the modulus of the field|A| is bounded
away from zero) and defect chaos (when the phase of
A displays singularities where|A| = 0) [27–30]. The
subclass of MAWs with zero average phase gradient is
important for understanding the transition from phase
to defect chaos (see solid curve inFig. 1) [31,32]. In
the phase chaos regime states with nonzero average
phase gradientν have a dynamics quite different from
that atν ∼ 0. In particular, these states can be either
chaotic or regular depending on the initial conditions
and on the parametersc1, c3 andν. In this paper we
will focus on MAWs with ν �= 0 and on the dynam-
ical regime associated to them, that is referred to as
“wound-up” phase chaos[24]. It will be shown that
MAWs and wound-up phase chaos exist between the
dashed and the solid curves inFig. 1.
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Fig. 1. Phase diagram of the CGLE. The dotted curve indicates the BFN line. Plane waves undergo an Eckhaus instability at values of
c1, c3 below this curve depending on their wavenumber. Above the dashed curve the Eckhaus instability is supercritical, whereas it is
subcritical below[4]. MAWs and wound-up phase chaos withν > 0 can be observed between the dashed and the solid curves. Defect
chaos can occur only above the solid curve[31,32] which denotes the saddle-node (SN) bifurcation of MAWs withν = 0 andP → ∞.
The vertical dot-dashed line indicates the cut of the parameter space atc1 = 3.5 studied in this paper.

In Section 2the analysis of MAWs introduced in
[31,32] is extended to arbitrary values of the average
phase gradients of the field. The two parameter fam-
ily of MAW solutions is parametrized by the spatial
periodP of the modulation and by the average phase
gradient

ν := 1

P

∫ P

0
dx ϕx. (4)

For plane wave solutions,ν equals the wavenumber
q. In analogy, the phase gradientϕx is often called
“local wavenumber”. A linear stability analysis will
show that MAWs withν �= 0 can be stable even
in infinitely large systems. For systems with periodic
boundary conditions the average phase gradient of the
whole system can only be changed, if a space–time
defect occurs:|A(x, t)| drops to zero andϕx locally
diverges at a defect. Persistent phase chaos with con-
servedν ≤ νM �= 0 has been observed in numeri-
cal simulations of the CGLE(1) [24,25]. The maxi-
mum conserved average phase gradientνM decreases
as function of the coefficientsc1, c3 [24,25] and van-
ishes at the apparent transition from phase to defect

chaos.νM was therefore suggested[25] as an order
parameter for this transition. We extended the numeri-
cal determination ofνM towards smallerc3 and report
the corresponding data inFig. 2.

In Section 3, a nonlinear analysis of the Eckhaus
instability allows to estimate the parameter values for
which defects occur. Lower and upper bounds for the
limit νM of wound-up phase chaos are derived from the
existence and stability properties of the MAWs. For
increasingν the degree of chaoticity associated with
the wound-up phase chaos decreases[25]. For large
enoughν the dynamics can even become regular and
stable quasi-periodic MAWs appear. The diamonds
in Fig. 2 indicate this stability limit for numerical
simulations with fixedc1 = 3.5. The analysis in
Section 2.3will clarify this observation.

The large number of parameters (c1, c3, ν, P ) calls
for restrictions. We limit our analysis to fixedc1 = 3.5
since most previous numerical work has been done
at this value[25,30]. The results will be presented as
projections of theP direction onto the (c3, ν) plane as
well as in cuts through the parameter space spanned
by c3, ν, and P . Additional investigations of the
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Fig. 2. Maximum (filled circles) conserved average phase gradientνM(c3) for fixed c1 = 3.5 obtained from numerical simulations (with
system sizeL = 1024–2048 and integration timest ∼ 105) for 50–70 different initial conditions (noise added to plane wave with
wavenumberq = ν). For ν ≤ νM no defects were present while aboveνM at least one initial condition caused defects. The solid curve
denotes the Eckhaus instability of plane waves that converges to the BFN line atc3 = 1/c1 for ν = 0. For ν above the diamonds regular
states were observed after a transient phase chaotic dynamics but below the diamonds most initial conditions led to persistent spatio-temporal
chaos[25]. L1 denotes the lower bound for the occurrence of defect chaos in the thermodynamic limit as calculated in[31,32].

existence domains of MAWs revealed qualitatively
similar results for fixedc1 = 0.4, 1.2, 2.1, and 5 and
variablec3 as well as for fixedc3 = 0.83 and variable
c1. Two of these choices were studied by numerical
simulations in[24]. A similarity transformation maps
coherent structures onto each other along curves(c1+
c3)/(1− c1c3) = const. in coefficient space[14]. The
parametersν, P, ω, v are transformed accordingly.
One can thereby extend the results presented here to
other values of the coefficientc1. Section 4discusses
possible observations of MAWs in experimental sys-
tems. Finally,Section 5summarizes the main results.

2. Existence and stability of MAWs

2.1. Coherent structure approach

In analogy to the linear stability analysis of plane
waves we make the following ansatz for saturated
modulations:

A(x, t) = a(z)eiφ̃(z) ei(qx−ω̃t), (5)

and rewrite it as

A(x, t) = a(z)eiφ(z) eiωt , (6)

wherea andφ are real-valued functions ofz := x−vt
andφ(z) = φ̃(z) + qz, andω = qv − ω̃. Herea(z)
andφ(z) represent coherent structures[33]. Coherent
structures have been studied extensively[25,31–34]
and play an important role in various regimes of the
CGLE [4,23–25,31–35].

Substitution of ansatz(6) into the CGLE(1) yields
the set of three coupled nonlinear ordinary differential
equations (ODEs):

az = b,

bz =ψ2a − γ−1[(1 + c1ω)a + v(b + c1ψa)

−(1 − c1c3)a
3],

ψz = −2bψ

a

+γ−1
[
c1 − ω + v

(
c1b

a
− ψ

)
−(c1+c3)a

2
]
,

(7)

where b := az, ψ := φz and γ := 1 + c2
1.2 The

continuation software AUTO97[36] is used to com-
pute the periodic orbits of the ODEs(7) that corre-
spond to spatially periodic functionsa(z) andφ(z).

2 By substitutingκ := az/a one reproduces the form of the
ODEs used in[33] which is more appropriate for studies of fronts.
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In order to choose a unique solution from the contin-
uous two-parameter family of periodic orbits we set
the system sizeL equal to the periodP of the peri-
odic orbit and fix its average phase gradient byν =
1/L

∫ L

0 ψ dz.
The continuation procedure starts from a fixed point

(a, b, ψ) = (
√

1 − q2,0, q) that corresponds to a
plane wave solution. Varyingc3, a Hopf bifurcation
(HB) (filled square inFig. 3) is detected in the ODEs
where the mode with the smallest possible wave num-
berkHB = 2π/P destabilizes the plane wave. Contin-
uing the resulting branch of MAWs the free parameters
ω and v are adjusted by the continuation algorithm.
The continuation follows a unique branch of MAWs
with ν = q andP = L. Fig. 3 shows examples of
resulting bifurcation diagrams.

Fig. 3. (a) Example of a bifurcation diagram showing the maximum of the modulus for MAWs withν = 0.25, c1 = 3.5, and
P = 2π/ν = 25.13. The plane wave that is stable (unstable) against modes of wavelengthP is represented by the thin solid (dashed) line.
The stable lower branch (unstable upper branch) of MAWs is denoted by the thick solid (dashed) curve. HB denotes the Hopf bifurcation
(square) of the plane wave solution, whereas SN stands for the saddle-node bifurcation (triangle) that limits the existence of MAWs. Spatial
portraits of (b) the modulus and (c) the phase gradient are shown for a choice of solutions. The dotted line represents the plane wave,
whereas thin solid and thick solid curves give MAWs at locations labeled by A and SN in (a). The dashed curve denotes the saddle-type
upper branch solution at C in (a). (d) shows the oscillation frequencyω̃ = qv−ω and (e) the velocityv vs. c3. In (e) the dotted line denotes
the group velocity (k = 0) and the line below gives the velocityvc corresponding to the mode with finite wavelengthP (see Footnote 1).

2.2. Existence limits of MAWs

Upon increasing ofc3 amplitude modulations grow
and develop a localized depression|A|min whereφx
has a maximum (seeFig. 3b and c). As forν = 0,
these MAWs are called thelowerbranch in contrast to
the coexistingupperbranch MAWs. The upper branch
MAWs are always unstable, while the MAWs of the
lower branch can be stable in appropriate parame-
ter regions. Examples of these lower branch MAWs
have been obtained by numerical simulations earlier
[4,23–25]. They have been analyzed in detail in[26].
Numerical simulations can neither uncover unstable
upper branch MAWs nor elucidate the limits of ex-
istence of MAWs. The bifurcation analysis presented
here reveals that upper and lower branch meet and
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Fig. 4. Bifurcation diagram with exclusive upper branch MAWs forν = 0.68 andP = 2π/ν ≈ 9.24. The solid line indicates stable and
the dashed curve unstable solutions. HBs are both subcritical.

terminate in a SN bifurcation (filled triangle inFig. 3a,
d and e). Due to the SN bifurcation the upper branch
MAWs always have at least one unstable eigenmode,
see also[34,35]. The upper branch continues to nega-
tive c3 and there connects to another instability of the
plane wave with identicalν andP . In the following
we will concentrate on the lower branch MAWs.

For largeν and smallP , HB is no longer super-
critical and an unstable branch emerges directly from
the plane wave. This is in agreement with analytical
predictions[4]. Fig. 4 shows an example which also
includes the second HB at negativec3. For ν = 0 the
MAWs emerge stationary[31,32] and acquirev �= 0

Fig. 5. Bifurcation diagrams showing the velocityv vs. c1. (a) Branches withv �= 0 emerge at the DP bifurcation forc3 = 2, P = 25, and
ν = 0. (b) The bifurcation is unfolded forν �= 0, herec3 = 2, P = 25, andν = 0.01. An equivalent pair of branches exists forν → −ν

and v → −v.

above a subsequent drift pitchfork (DP) bifurcation
[37]. In the present caseν �= 0 the plane wave already
breaks the reflection symmetry, the initial MAW has
a nonzero velocity and the DP bifurcation (filled dia-
mond) is unfolded. SeeFig. 5 for an example at fixed
c3 = 2. The branch emerging at the HB inFig. 5b
represents the MAWs as discussed above. The second
branch inFig. 5b emerges at the period doubling (PD)
bifurcation (open square) of MAWs with half the pe-
riod. It always has unstable eigenmodes that drive the
dynamics away from it to the coexisting MAWs of
shorter period. Therefore this (upper) branch plays no
essential role and is not treated further.
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Fig. 6. Existence domains of MAWs with periodP projected onto the (c3, ν) parameter plane. Thin curves denote the HB for variousP

which occurs supercritical (solid curve) or subcritical (dashed curve) depending onν andP . The left most of these curves corresponds to
the Eckhaus instability (P → ∞). The thick curves give the SN for selected periodsP . Three examples of existence domains forP = 15
(right, dark shaded domain),P = 30 (middle, empty domain), andP → ∞ (left, light shaded domain) are shown. The superposition of
all existence domains is bounded by the dotted curve.

2.2.1. Infinite system size
We have analyzed the existence of lower branch

MAWs in the entire parameter space (c3, ν, P ) at fixed
c1 = 3.5. The system size is assumed infinitely large
in order to allow for arbitrary periodsP of MAWs.
Fig. 6 shows examples of existence domains forP =
15, P = 30, andP → ∞. We find that both HB and
SN shift to largerc3 as the periodP is decreased. The
same behavior has already been observed in the special
caseν = 0 [31,32]. The dotted curve inFig. 6indicates
the “envelope” of all SN bifurcations for MAWs of
any period and therefore is the upper boundary for the
existence domain of the MAWs.

2.2.2. Medium system size
Experimental setups and numerical simulations

are restricted to finite system sizeL. Often periodic
boundary conditions (corresponding to an annular ge-
ometry) are used in order to study bulk effects of ex-
tended systems and to minimize boundary effects. The
periodic boundary conditions also restrict possible
modes of perturbations. As described byEq. (2) the
instability threshold of plane wave solutions depends

on the wavenumberk of the perturbation. Since in the
studied range of coefficients the Eckhaus instability is
a long-wavelength instability the plane waves will be
stabilized in small systems. The instability threshold
is shifted to larger values of the coefficientsc1, c3

and can be computed fromEq. (2)settingk = 2π/L.
Clearly the selection of perturbations by periodic

boundary conditions also restricts possible MAWs.
Their average phase gradientν and the periodP have
to be consistent with the system size and this renders
the two-parameter family of MAWs discrete. It is thus
convenient to parametrize MAWs by the average phase
gradientν and the ration of wavelength

n := P

2π/ν
. (8)

The ratio n takes values of integer fractions where
the nominator counts the number of underlying wave
length and the denominator the number of humps of
the modulation. Hence this quantity is easily accessi-
ble in experiments. The existence domains of MAWs
with respectiven are presented in the (c3, ν) para-
meter plane inFig. 7.
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Fig. 7. Existence domains of lower branch MAWs are denoted by shaded areas for (a)n = 1, (b) n = 1/2, and (c)n = 1/4. They are
limited by HB (solid curve) at smallc3 and by the SN (dashed curve) at largec3. Spatial profiles of coexisting MAWs atν = 0.05, c3 = 0.5
are shown for (d)n = 1, (e) n = 1/2, and (f)n = 1/4, corresponding to filled circles in (a)–(c).

2.2.3. Small system size
Here we focus on the extreme case. The short-

est possible system with periodic boundary conditions
only contains one wavelength of the plane wave, con-
sequently its lengthL is given byL = 2π/ν. In [25]
the quantityνU was determined in analogy toνM for
large systems.νU denotes the largestν for which none

Fig. 8. For short system sizeL = 2π/ν plane waves are stable for parameter choices inside the light shaded area. MAWs with a single
hump (P = L) exist inside the dark shaded area bounded by the supercritical HB to the left and the SN to the right. Thin curves give
the limits of MAWs with two humpsP = L/2 (dashed curve) and three humpsP = L/3 (dotted curve). See the legend for the different
cases. Symbols denote maximalν = νU that did not create defects but resulted in stable asymptotic states in simulations of the short
system. Plane waves and single MAWs (squares), multi-hump MAWs with two humps (triangles) and three humps (asterisks) have been
observed atν = νU. DataνU are taken from[25].

of the random initial conditions (different realizations
of noise added to a plane wave) produced a defect. In
the following these data (symbols inFig. 8) are com-
pared to the existence domains of MAWs.

Within the light shaded area inFig. 8 plane wave
solutions with wavenumberν are stable in the short
system. The stability area extends over the phase chaos
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and into the defect chaos region. We stress this result
because from the experimental observation of stable
plane waves one cannot necessarily infer that the dy-
namics of the system may be reproduced by the CGLE
with coefficientsc1, c3 in the Benjamin–Feir stable
region. The dashed curve denotes a subcritical insta-
bility. Only unstable upper branch MAWs exist to the
left of this curve. For smallerν the instability again
turns supercritical and stable lower branch MAWs ex-
ist inside the dark shaded region. The thick solid curve
gives the SN bifurcation for MAWs withP = L.
The thin curves show the respective limits of MAWs
with shorter period. Defects are expected beyond the
SN [31,32] and the subcritical instability which well
reproduces the data from numerical simulations[25]
except at smallν. Simulations withν ≤ νU resulted
in modulations with a single hump (squares) or with
two (triangles) or three (asterisks) humps of different
size [25]. The latter two are observed above the SN
of MAWs with P = L. Here the initial conditions
select MAWs with shorter period which only coexist
at smallν. The SN withP = L nevertheless gives a
lower bound for the formation of defects.

2.3. Instabilities of MAWs

A linear stability analysis of MAWs as in[32] yields
the spectrum of eigenvalues as shown inFig. 9 for a
typical example. FromFig. 9we conclude that for this
example the entire spectrum in the infinite system will
be confined to the left half-plane. Thus MAWs should

Fig. 9. (a) Spectrum of eigenvaluesλ of a stable lower branch MAW. Parameters arec3 = 0.4, ν = 0.184, andP = 2π/ν. (b) Blow-up of
the leading part of the spectrum. The dots correspond to system sizeL = 100P = 3415 and have been calculated using the Bloch method
[32,38].

be found in experiments, that can be well described
by the CGLE for appropriate control parameters. In
this section we present a detailed study of the stabil-
ity properties of MAWs. MAWs with a single hump
per periodP will be called “single MAWs”. Their ex-
istence domains were studied in the previous section.
However, the effective interaction between adjacent
periods of a single MAW can be repulsive or attractive
(seeFig. 11). PD bifurcations (open squares) occur
at the transitions from repulsive to attractive interac-
tion [39]. There, new branches of MAWs with longer
period but many humps per period emerge from the
primary branch of single MAWs. We will call these
solutions “multi-hump MAWs”. In their profile some
humps gain more space and others are compressed in
an alternating fashion. The new branches extend to
largerc3 than the corresponding single MAWs.Fig. 10
shows how these branches arrange in a system with
four interacting humps (L = 4P ). As long as the PD
bifurcations are supercritical, the multi-hump MAWs
are stable. They represent the saturated solution for at-
tractive interaction between subsequent modulations.
For large systems a whole sequence of PD bifurcations
will lead to multi-hump MAWs with an overall period
equal to the system size. Hence they appear as an er-
ratic spatial sequence of humps and depressions. This
spatial sequence propagates in a coherent fashion. We
named these patterns multi-hump MAWs to empha-
size the connection among the coherent structures.

Examples of these stable aperiodic patterns were
already observed in numerical simulations. Montagne
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Fig. 10. (a) Bifurcation diagram forν = 0.184, P = π/ν, andL = 4P = 68.3 hence four pulse-like modulations interact. The maximum
of the amplitude gradient is plotted since the interaction causes pulse shifts and the amplitude of single humps changes little. Thicker lines
correspond to smaller overall period of the modulation. Typical solutions are shown in (b)–(d) as indicated by arrows in (a).

et al. [24] denote this behavior as “frozen phase
turbulence” while Torcini and coworkers[25] use the
term “solutions of typeβ”.

The observed coexistence of a large number of sta-
ble multi-hump MAWs results in a strong dependence
of the final state on the initial conditions of the nu-
merical simulation. Although each regular final con-
figuration must be consistent with a particular single
or multi-hump MAW it is difficult to predict how the
selected final patterns depend on the initial conditions.

Fig. 11. Stability domain (dark area) of single MAWs for (a)ν = 0.25, L → ∞ and (b) c3 = 0.5, L → ∞. MAWs exist between
supercritical HB (dashed curve) and SN (solid curve). The tick marks at the right frames give the asymptotic values forP → ∞. The
dot-dashed curve denotes the subcritical HB. MAWs are unstable to splitting within the light shaded domain at largeP . Within the white
domain at smallP single MAWs are unstable to interaction.

MAWs with large periodP undergo a “splitting”
instability as in the limit caseν = 0 [32]. Roughly,
the spatial profiles of these MAWs consist of a local-
ized hump and a plane wave part. Since the extended
plane wave is linearly unstable the splitting instabil-
ity is reminiscent of the Eckhaus instability. It creates
more humps on the plateau of the unstable MAW and
reduces the periodP of MAWs on average.

Fig. 11a and b represents cuts through the parame-
ter space at fixedν = 0.25 andc3 = 0.5, respectively.
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They show the typical arrangement of stable and un-
stable parameter regions for single MAWs. Other ex-
amined cuts forc3 = 0.1, 0.2, 0.3, 0.4, 0.6, and 0.7
qualitatively show the same order.

The cut through parameter spacec3, ν, P at ν =
0.25 is shown inFig. 11a. The HB (dashed curve in the
figure) approaches the Eckhaus instability forP →
∞ as the lower bound of the existence domain. From
above the domain is limited by the SN (solid curve).
For smallP (largec3) the HB is subcritical and only
unstable upper branch MAWs exist to the left. In the
infinite system MAWs are found to be linearly stable
for a broad range of parameters (dark shaded area). At
low P the interaction instability occurs (white area),
whereas at largeP the long plateau of the MAW is
unstable to splitting (light shaded area). Forc3 < 0.45
most random initial conditions will evolve to stable
MAWs.

A cut perpendicular to the previous one is shown in
Fig. 11b. Curves and shadings have the same mean-
ing as discussed above. Starting from random initial
conditions atν > 0.1 a transient may again lead to
a stable MAW with local periodsP inside the stable
windows. At lowerν < 0.1 the probability of ap-
proaching a stable configuration decreases since only
a third of the previous stableP intervals remains.
Below ν = 0.02 no stable state can be prepared at
all. Instead one observes wound-up phase chaos with
an associated maximal Lyapunov exponent that in-
creases for decreasingν. As in the limit caseν = 0
(phase chaos), the dynamics is driven by the attractive
interaction and annihilation of localized modulations
in competition with the splitting instability that pro-
duces new peaks in the modulations. In particular
for decreasingν, the splitting instability extends to
shorter periodsP and significantly overlaps with
the interaction instability. With the above arguments
many results obtained by numerical simulations of
the CGLE can be well interpreted. In particular it
has been observed in[25] for the same choice of
parameters (c1 = 3.5 andc3 = 0.5) that the maximal
Lyapunov exponent (averaged over many different
initial conditions) is positive forν = 0 and decreases
monotonously towards zero for increasingν. Above
ν = 0.09 no chaotic solutions have been observed.

3. Defect formation in wound-up phase chaos

In this section the formation of defects and the re-
sulting change of the average phase gradient are stud-
ied. Forν �= 0, the scenario of defect formation past
the SN bifurcation of the relevant MAW is analo-
gous to the previously studied caseν = 0 [31,32],
seeSection 3.1. In particular, the dependence of the
final selected average phase gradientνf on the initial
value νi found in numerical simulations[24] can be
interpreted.Section 3.2is then devoted to the limitνM

of wound-up phase chaos. For a certain range of pa-
rameters the limitνM is reproduced by means of the
stability properties of MAWs at the SN bifurcation.
These arguments work well for defect creation with
ν > 0.1. At smaller values ofν various instabilities
(splitting and interaction) of MAWs compete and a
general statement is more difficult, compare also[32].

3.1. Beyond the SN bifurcation

The role of the SN bifurcation for the dynamics
has been studied in[31,32] for the limit caseν = 0.
For ν �= 0 we find similar behavior.Fig. 12 gives
examples forν = 0.25 andP = 2π/ν. Perturbations
of a plane wave lead to defects only above the SN,
whereas below the SN such perturbations have to be
very large to overcome the saddle-type upper branch
MAW.

There are no SNs for parameters below the SN cor-
responding toP → ∞. Thus, starting from random
initial conditions defects may only form at parame-
ters above the SN ofP → ∞. The SN ofP → ∞
represents a lower bound for defect formation.

For large systems the formation of defects depends
on the local period of initial perturbations in a similar
way as forν = 0 [31,32]. The peak to peak distances
of ϕx(x, t) are used to determine local periodsp. In
that context, the following explanation of defect for-
mation has been proposed. Defects are observed in the
phase turbulent regime whenever local structures, sim-
ilar to MAWs, with spatial periodsp larger thenPSN

occur in the system. WherePSN denotes the period of
the MAWs at the SN (that coincides with the maximal
MAW-period) for the considered choice of parameters.
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Fig. 12. (a) Bifurcation diagram as inFig. 3 showing the minimum modulus of the MAWs. (b)–(e) Numerical simulations illustrate the
dynamics near the SN corresponding to the arrows in (a). (b) Plane wave perturbed at one point and (c) unstable saddle-type MAW plus
noise converge to the stable MAW. (d) Unstable saddle-type MAW plus a different realization of noise evolves to a defect that changesν

to 0. (e) As (b) but beyond the SN which makes defect formation possible for arbitrarily small perturbations of the plane wave. Note the
long living transient of a noncoherent modulation. Parts (b)–(d) are atc3 = 0.5 below the SN and (e) belongs toc3 = 0.55 above the SN
for ν = 0.25 andP = L = 2π/ν = 25.13.

For larger values ofν or c3 the SN occurs for smaller
PSN as shown inFig. 11. Therefore, at largerν, c3

local periodsp beyond the SN and subsequent defect
formation are more probable. In contrast to the case
ν = 0, there is only a short transient of phase chaos
in the simulations with nonzero initialνi > νM. The
distribution of local periodsp of the perturbations is
given by the realization of the noise in the initial con-
dition. For local periods slightly above the relevant
SN (as inFig. 12e), the perturbation first increases
to a modulation similar to MAWs and appears almost
saturated for some transient time until finally a defect
appears. This transient of defect formation becomes
shorter as the distance to the SN grows. If initial con-
ditions are prepared withνi � νM, then some local
periods will be far beyond the corresponding SNs.
The transients of defect formation are shorter in this
case.

These two observations suggest an interpretation of
the curveν(t) representing the temporal evolution of

ν during transients withνi > νM [24]. The larger the
initial νi is chosen the smaller is the final valueνf . The
time scales of competing processes have to be consid-
ered. Local defect formation will not instantaneously
effect distant spatial locations along the system. In-
stead the local change of the average phase gradient
ν via a defect will take a transient time to relax over
the entire system. Forνi much larger thanνM, defect
formation happens on a short time scale and indepen-
dently leads to defects at many different spatial loca-
tions before the relaxation of the decreased average
phase gradientνf � νM can stop defect formation.
For νi just aboveνM defects form slowly and the re-
ducedνf can relax the phase gradient at distant loca-
tions before other defects occur.

Let us now verify if the mechanisms proposed to
explain defect formation in the phase chaos regime
for solutions withν ≈ 0 still hold for the wound-up
phase chaos regime. Forν ≈ 0, defects form if and
only if the periodp of local structures is larger than
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PSN, wherePSN is the period for which a SN occurs
at the chosen coefficientsc1 andc3 [31,32]. We have
considered two cuts in the parameter space atc3 =
0.5 andc3 = 0.65 and investigated the distributions
of periodsp for solutions with average phase gradi-
ent ν ∼ νM. In particular, 50 realizations of a system
of lengthL = 512 initialized as a plane wave with
wavenumberν plus noise in the amplitude and in the
phase have been considered. Then these different ini-
tial conditions have been followed for an integration
time t = 500,000–1,000,000. The last part of the run
has been examined in order to extract the length of
the coherent structure with the maximal periodpmax

occurring during the evolution.
From these simulations we obtain the following: if

defects occur thenpmax > PSN in all observed cases.
However, it is not true that a defect is formed any time
we observepmax > PSN. If we let the system relax for
a long time (t = 500,000) and measurepmax, then the
number of initial conditions leading to apmax > PSN

without defect formation is noticeably reduced. For
c3 = 0.65 the maximal conserved phase gradient is
νM ∼ 0.1. In the simulations we do not observe a de-
fect for ν = 0.086 andν = 0.098 but in the first case
only 2% of all runs showpmax > PSN, while in the
latter case this percentage increases to 8%. Increasing
ν the maximal periodpmax increases and more and
more situations withpmax > PSN are found upon ap-
proachingνM.

The difference to theν = 0 case may be explained
by the coexistence of chaotic and stable not-chaotic
attractors. Depending on the initial conditions, the so-
lution of the CGLE can evolve towards one or the
other. Therefore the system may exhibit local struc-
tures similar to multi-hump MAWs that possess SN
bifurcations at parameter values larger than those of
single MAWs (compareFig. 10). In that case, some
periodsp may even exceedPSN.

3.2. Limit of wound-up phase chaos

For random initial conditions withν in the narrow
range between the SN ofP → ∞ and the existence
limit of MAWs (see Fig. 6), it depends on the spe-
cific realization of the noise whether a defect can form

or a stable MAW results. No defects form below the
line νM(c3). In order to understand this observed limit
νM(c3) of wound-up phase chaos, it is sufficient to
consider the SNs of single MAWs.

Although initial conditions with largeP beyond a
SN could lead to defects, this is often prevented by
the action of the splitting instability. Then the period
is decreased before a defect can form. Following the
SN curve inFig. 11a and b one encounters a transition
from SNs with a splitting instability at largeP to SNs
without this instability at shortP . Defect formation
in wound-up phase chaos withν > 0.1 occurs for
parameters where the splitting instability isnotpresent
near the SN, i.e. above the dotted line inFig. 13.

Fig. 13 summarizes the bounds found so far for
the limit of wound-up phase chaos. The domain of
stable plane waves at lowc3 is limited by the Eckhaus
instability (thin curve). Within the shaded area only
supercritical HBs of different periodP occur but no
SNs. This area is limited by the lowest SN curve of
P → ∞ (thick solid curve). No defects do form from
random initial conditions within the shaded area. The
dashed curve denotes the upper limit of the existence
domain of MAWs with any period. SN bifurcations
exist in the window between this dashed curve and the
thick solid curve for the SN withP → ∞. Defects
will always form for any choice of initial conditions at
parameters above the dashed curve. The dotted curve
gives the transition from active (below) to inactive
(above) splitting modes at the SN. This transition is
computed by linear stability analysis along cuts like in
Fig. 11. Splitting inhibits defect formation below this
dotted curve. Filled circles correspond toνM obtained
from numerical simulations as in[25]. Diamonds refer
to the transition from chaotic (below) to nonchaotic
(above) asymptotic states.

The SN forP → ∞ (thick solid curve) is a lower
bound for defect formation which also holds in the
limit ν = 0. The pointL1 marks the transition from
phase to defect chaos studied earlier[31,32].

As long as the dynamics is regular (ν > 0.1), the
upper bound for the limit (onset of splitting at SN, dot-
ted curve) of wound-up phase chaos reproduces well
the numerical observations. For chaotic states with
ν < 0.1 defect formation eventually becomes possi-
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Fig. 13. Theoretical bounds forνM(c3) (filled circles): SN ofP → ∞ as lower bound (thick solid curve) and the presence of splitting at
SN as upper bound (dotted curve). The thick dashed curve limits the existence of MAWs (compareFig. 6), other curves as inFig. 2. See
text for details.

ble even despite the presence of the splitting instabil-
ity. This coincides with the increasing weight of the
instability of single MAWs to attractive interaction of
subsequent amplitude peaks.

4. Experimental observations

A variety of experimental observations in quasi
one-dimensional geometries can be well interpreted
by MAWs. These systems shall also serve for testing
further properties of MAWs[40].

(i) For the oscillatory instability of Rayleigh–Bénard
convection patterns in an annular cell, Janiaud
et al. report long living transients of modulated
waves that eventually cause defects[4]. The un-
derlying Eckhaus instability was found to be sub-
critical. Then, we expect the modulation to grow
roughly exponentially, whereas the long transient
of an almost saturated modulation is similar to
the dynamics near the SN bifurcation as shown in
Fig. 12e. In the latter case the Eckhaus instability
is supercritical and stable MAWs may exist for
nearby values of the experimental parameters, see
also the discussion in[41]. In all cases a single
pulse-shaped modulation with the period equal to

the cell length was present in the system and led
to a defect. The excitation of several modulations
per cell and thereby smaller period can stabilize
the modulated pattern and provide more exam-
ples of the dynamics near the SN bifurcation.

(ii) Hydrothermal waves have been studied in
ring-shaped cells[6] as well as in linear cells
[5,7,8]. Mukolobwiez et al. report a supercritical
Eckhaus instability, stable MAWs with the pe-
riod equal to the cell length and defect formation
after a parameter change[6]. Garnier et al. ob-
serve modulated waves with both the wavenum-
ber and the period of modulations being selected
by one of the longitudinal boundaries[7]. Ther-
mal or mechanical forcing at the boundary may
yield more insight into the multistability of the
two-parameter family of MAWs.

(iii) In rotating Rayleigh–Bénard convection Liu
et al. observe the subcritical Eckhaus instabil-
ity of a traveling wave sidewall mode[10].
The authors suggest higher order corrections
to the CGLE in order to explain the observed
discrepancy between the linear group velocity
and the observed velocity of finite wavelength
perturbations. However, this difference already
follows from the linear analysis of the Eckhaus
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instability (see Footnote 1) and can be used as a
test for the assumed coefficients of the CGLE.

(iv) For the Taylor–Dean system Mutabazi and co-
workers report a stable MAW that they called
“triplet state” because of the length scale ratio of
modulation and underlying wave[11]. They also
observe the formation of defects. Clearly the
triplet state is just one realization of the two-para-
meter family of MAWs.

(v) Finally we mention the heated wire convection
[9], internal waves[12] and the oscillatory vari-
ant of the Belousov–Zhabotinsky reaction[13]
where further investigations of the observed
Eckhaus instabilities may also reveal MAWs.

5. Discussion

The bifurcation analysis of MAWs has been ex-
tended to nonzero average phase gradient (ν �= 0).
Small amplitude MAWs (“lower branch”-MAWs) of
specific spatial periodP exist between a supercriti-
cal HB and a SN bifurcation. The HB asymptotically
reaches the Eckhaus instability from above asP goes
to infinity. MAWs are a direct consequence of the Eck-
haus instability of plane waves; they are obtained by
a computer-assisted nonlinear analysis of this insta-
bility. We encounter SNs with decreasing values ofP

as c1, c3 andν are increased. These SNs govern the
formation of defects from random initial conditions
as well as many aspects of the evolution of wound-up
phase chaos. The SNs bound the existence region of
MAWs in the Eckhaus unstable regime.

A linear stability analysis of MAWs revealed that
they can be linearly stable even in systems of infinite
size. These domains are limited by the interaction
instability at low and the splitting instability at high
values of the spatial periodP of the MAW. The
competition of the two instabilities drives wound-up
phase chaos and determines the degree of chaoticity
of the dynamics. For fixed coefficientsc1 andc3, the
SN associated toP → ∞ occurs at the lowest value
of ν. This SN establishes a “lower” bound for defect
formation and thereby for the limitνM of wound-up
phase chaos. The splitting instability can inhibit de-

fect formation if the SN occurs at largeP hence
defects are created more frequently for parameters
above a second curve where the splitting instability
vanishes at the SN. Thereby an “upper” bound for
the limit νM of wound-up phase chaos is obtained.
Earlier numerical observations onνM(c3) are well
reproduced forν > 0.1, respectively, smallc3. For
ν < 0.1, the description of phase chaos relies on con-
siderations similar to those already discussed in the
limit caseν = 0 [31,32]. Finally, several experimental
observations were interpreted in terms of MAWs.
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