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Coexistence of fast and slow gamma oscillations in one population of inhibitory spiking neurons

Hongjie Bi,1,* Marco Segneri,1,† Matteo di Volo,1,2,‡ and Alessandro Torcini1,§

1Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise, CNRS, UMR No. 8089,
95302 Cergy-Pontoise Cedex, France

2Unité de Neuroscience, Information et Complexité, CNRS FRE No. 3693, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France

(Received 28 December 2018; revised manuscript received 29 June 2019; published 13 January 2020)

Oscillations are a hallmark of neural population activity in various brain regions with a spectrum covering
a wide range of frequencies. Within this spectrum γ oscillations have received particular attention due to
their ubiquitous nature and their correlation with higher brain functions. Recently, it has been reported that
γ oscillations in the hippocampus of behaving rodents are segregated in two distinct frequency bands: slow and
fast. These two γ rhythms correspond to different states of the network, but their origin has been not yet clarified.
Here we show theoretically and numerically that a single inhibitory population can give rise to coexisting slow
and fast γ rhythms corresponding to collective oscillations of a balanced spiking network. The slow and fast
γ rhythms are generated via two different mechanisms: the fast one being driven by the coordinated tonic
neural firing and the slow one by endogenous fluctuations due to irregular neural activity. We show that almost
instantaneous stimulations can switch the collective γ oscillations from slow to fast and vice versa. Furthermore,
to draw a connection with the experimental observations, we consider the modulation of the γ rhythms induced
by a slower (θ ) rhythm driving the network dynamics. In this context, depending on the strength of the forcing
and the noise amplitude, we observe phase-amplitude and phase-phase coupling between the fast and slow γ

oscillations and the θ forcing. Phase-phase coupling reveals on average different θ -phase preferences for the two
coexisting γ rhythms joined to a wide cycle-to-cycle variability.
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I. INTRODUCTION

The emergence of collective oscillations in complex sys-
tem has been a subject largely studied in recent decades
from an experimental as well as from a theoretical point of
view (for a recent review see [1]). In particular, the transition
from asynchronous to collective dynamics in networks of
heterogeneous oscillators has been characterized in terms of
methods borrowed from statistical mechanics [2–4] and non-
linear dynamics [5–7]. Exact analytic techniques to reduce the
infinite-dimensional dynamics of globally coupled inhomo-
geneous phase oscillators to a few mean-field variables have
became available in the past decade [8], allowing for notice-
able progress in the field [1]. Quite recently, these reduction
techniques have been applied to globally coupled spiking
neural networks [9], thus opening alternative perspectives for
the study of large ensembles of spiking neurons and for the
understanding of the mechanisms underlying brain rhythms.

Oscillatory dynamics is fundamental for the functioning of
the mammalian brains. Rhythms ranging from 1 to 500 Hz
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have been measured at a mesoscopic level, corresponding
to the dynamics of neural populations, by employing elec-
troencephalography, magnetoencephalography, or local field
potential (LFP) [10].

In particular, γ oscillations (30–100 Hz) have been sug-
gested to underlie various cognitive and motor functions.
Oscillations in the γ band have been related to attention se-
lection [11], memory formation and retrieval [12,13], binding
mechanisms for sensory awareness [14], and human focal
seizures [15].

Gamma oscillations have been observed in many areas of
the brain and their emergence has been shown to be crucially
dependent on inhibitory networks [16,17]. It was shown in
[16] that γ oscillations in purely inhibitory networks can
emerge only via two mechanisms: Single neurons can fire pe-
riodically locked in phase [18] or each neuron can have irreg-
ular activity, but sufficiently strong recurrent interactions can
render the asynchronous state unstable against fluctuations
and collective oscillations (COs) can arise [19–21]. The role
of the synaptic mechanisms in promoting tonic synchroniza-
tion in the γ range has been clarified in [17,22], while [23–27]
have shown that fast network oscillations with irregular neural
discharges can emerge when the neurons are operating in the
so-called balanced state. This is a typical cortical state where
the balance of excitation and inhibition allows for healthy
activity in the brain. The balanced state has been observed in
vitro and in vivo experiments in the cerebral cortex [28,29]
and reported in simulations of networks of excitatory and
inhibitory spiking neurons [20,30,31] as well as of purely in-
hibitory circuits driven by external excitatory currents [32,33].
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Gamma oscillations are usually modulated by θ oscil-
lations in the hippocampus during locomotory actions and
rapid eye movement (REM) sleep; θ frequencies correspond
to 4–12 Hz in rodents [34,35] and to 1–4 Hz in humans
[36,37]. Two mechanisms of entrainment (or cross-frequency
coupling) between θ and γ oscillations have been reported,
namely, phase-amplitude (PA) and phase-phase (PP) coupling.
The PA coupling (or θ -nested γ oscillations) corresponds
to the fact that the phase of the θ oscillation modifies the
amplitude of the γ waves [38,39], while PP coupling refers
to n:m phase locking between γ - and θ -phase oscillations
[35,40].

Recently, the coexistence of γ oscillations in three distinct
bands has been reported for the cornu ammonis area 1 (CA1)
of the hippocampus [35], namely, a slow one (�30–50 Hz),
a fast (or intermediate) one (�50–90 Hz), and a so-called
ε band (�90–150 Hz). However, only the two lower bands
show a clear correlation (PP coupling) with the θ rhythm
during maze exploration and REM sleep, thus suggesting their
functional relevance [35]. There is further evidence that these
two γ bands correspond to different states of the hippocampal
network [41]. In particular, in freely behaving rats, place cells
code differently the space location and the running speed
during θ -nested slow or fast γ rhythms [41–43]. Moreover,
γ rhythms with similar low- and high-frequency subtypes
occur in many other brain regions besides the hippocampus
[44,45]. Despite their relevance, the mechanisms behind the
emergence of these two distinct γ bands are not yet clarified.

Concerning the hippocampus, experiments show that slow
γ rhythms couple the activity of the CA1 to synaptic inputs
from CA3, while fast γ rhythms in CA1 are entrained by in-
puts from medial entorhinal cortex (mEC) [45]. Slow and fast
oscillations have been recorded also in CA3, where fast γ are
entrained by synaptic inputs from mEC [46]. These findings
suggest that CA3-activated interneurons drive slow γ , while
mEC-activated interneurons drive fast γ . Nonetheless, it has
been shown that a substantial proportion of CA1 interneurons
phase lock to both slow and fast γ LFP oscillations [35,46,47].
Therefore, as suggested by Colgin in [45], such interneurons
may be part of a network that can generate either slow or fast
γ , depending on the state of the network. Furthermore, there
is experimental evidence that γ rhythms can be generated
locally in vitro in the CA1, as well as in the CA3 and mEC,
due to optogenetic stimulations [39,48,49] or pharmacological
manipulations, but at lower γ frequencies with respect to
optogenetics [50–53]. A recent theoretical work has analyzed
the emergence of γ oscillations in a neural circuit composed
of two populations of interneurons with fast and slow synaptic
timescales [54]. Based on the results of this idealized rate
model and on the analysis of experimental data sets for the
CA1, the authors showed that multiple γ bands can arise
locally without being the reflection of feedforward inputs.

In the present work we show that a single inhibitory popu-
lation, characterized by only one synaptic time, can display
coexisting fast and slow γ COs corresponding to different
network states. In particular, the slow γ oscillations are
associated with irregular spiking behaviors and fluctuations
driven, while the fast γ oscillations coexist with a much more
regular neural dynamics and can be characterized as mean
driven [55,56]. Furthermore, in the presence of θ forcing,

we observe different θ -γ cross-frequency coupling scenarios
depending on the forcing amplitude. For small amplitudes
we have θ -nested γ oscillations resembling those reported
for various brain areas in vitro under optogenetic sinusoidal
θ stimulation [39,48,49]. At larger amplitudes the two types
of γ COs phase lock to the θ rhythm, similarly to what
has been reported experimentally for the CA1 region of the
hippocampus [35,46]. More specifically, we have studied
balanced sparse inhibitory networks of quadratic integrate-
and-fire (QIF) neurons pulse coupled via inhibitory postsy-
naptic potentials (IPSPs), characterized by a finite synaptic
timescale. For this sparse network we derived an effective
mean field by employing recently developed reduction tech-
niques for QIF networks [9,21,57,58]. In the mean-field (MF)
model, in proximity to the subcritical Hopf bifurcations, we
report regions of bistability involving one stable focus and one
stable limit cycle. In direct simulations of the corresponding
spiking network we observe the coexistence of two distinct
COs with frequencies in the slow and fast γ bands. The slow
γ COs are due to the microscopic irregular dynamics, char-
acteristic of the balanced dynamics, which turns the damped
oscillations towards the MF focus in sustained COs. The fast
γ COs are instead related to the oscillatory branch emerging
via the subcritical Hopf bifurcation from the asynchronous
state. The network can be driven from one kind of CO to the
other by transiently stimulating the neurons. In the presence
of a θ forcing, nested γ oscillations characterized by a PA
coupling appear for small forcing amplitudes, while at inter-
mediate amplitudes slow and fast γ phases lock to the θ phase
displaying PP coupling between the rhythms. For even larger
amplitudes only fast γ are observable, with a maximal power
corresponding to the maximum of the stimulation.

The paper is organized as follows. In Sec. II we introduce
the model for an inhibitory sparsely balanced network of
QIF neurons as well as the macroscopic and microscopic
indicators employed to characterize its dynamics. Section III
is devoted to the derivation of the corresponding effective MF
model and to the linear stability analysis of the asynchronous
state. Simulation results for the network for high and low
structural heterogeneity are reported in Sec. IV and compared
with MF forecasts. The coexistence and transitions from slow
(fast) to fast (slow) γ oscillations are analyzed in Sec. V
together with the cross-frequency coupling between θ and γ

oscillations. A concise discussion of the results and possible
future developments is reported in Sec. VI. Appendix A is
devoted to the analysis of coexisting γ oscillations in Erdős-
Rényi networks and Appendix B discusses a general mecha-
nism for the coexistence of noise-driven and tonic oscillations.

II. METHODS

A. Network model

We consider N inhibitory pulse-coupled QIF neurons [59]
arranged in a random sparse balanced network. The mem-
brane potential of each neuron evolves according to

τmv̇i(t ) = I + v2
i (t ) − τmJyi(t ), (1a)

τd ẏi(t ) = −yi(t ) +
∑

j

ε jiδ(t − t j (m)), (1b)
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where τm = 15 ms represents the membrane time constant and
I an external DC, encompassing the effects of distal excitatory
inputs and of the internal neural excitability. The last term
in (1a) is the inhibitory synaptic current, with J the synaptic
coupling and yi the synaptic field experienced by neuron i.
Whenever the membrane potential vi reaches infinity, a spike
is emitted and vi is reset to −∞.

The field yi is the linear superposition of all the exponential
IPSPs s(t ) = exp(−t/τd ) received by the neuron i from its
presynaptic neurons in the past, namely,

yi(t ) = 1

τd

∑
j∈pre(i)

∑
m|t j (m)<t

ε ji�(t − t j (m))s(t − t j (m)), (2)

where τd is the synaptic time constant, t j (m) is the spike
time of the mth spike delivered by the jth neuron, �(t ) is
the Heaviside function, and ε ji is the adjacency matrix of
the network. In particular, ε ji = 1 (0) if a connection from
node j to i exists (or not) and ki = ∑

j ε ji is the number of
presynaptic neurons connected to neuron i, or in other terms
its in-degree.

In order to compare the simulation results with an exact
mean field derived recently [9,21,57], we consider sparse net-
works where the in-degrees ki are extracted from a Lorentzian
distribution

P(k) = 	k

(k − K )2 + 	2
k

(3)

peaked at K and with a half-width at half maximum (HWHM)
	k , the parameter 	k measures the level of structural het-
erogeneity in the network, and analogously to Erdős-Rényi
networks we assume the following scaling for the HWHM:
	k = 	0

√
K . The DC and the synaptic coupling are rescaled

with the median in-degree K as I = I0

√
K and J = J0/

√
K ,

as usually done to achieve a self-sustained balanced state for
sufficiently large in-degrees [23–25,27,31]. In this paper we
will usually consider I0 = 0.25, N = 10 000, and K = 1000,
unless stated otherwise.

B. Simulation protocols

The network dynamics is integrated by employing a
standard Euler scheme with an integration time step 	t =
τm/10 000. The coexistence of solutions in proximity to a
subcritical Hopf bifurcation is analyzed by performing adi-
abatic network simulations where a control parameter, e.g.,
the synaptic time τd , is slowly varied. In particular, these
are performed by starting with an initial value of τ

(0)
d and

arriving at a final value τ
(1)
d in M steps, each time increasing

τd by 	τd = (τ (1)
d − τ

(0)
d )/(M − 1). Once the final value τ

(1)
d

is reached, the synaptic time is decreased in steps 	τd down
to τ

(0)
d . Each step corresponds to a simulation for a time

Ts = 90 s during which the quantities of interest are measured,
after discarding a transient Tt = 15 s. The initial condition for
the system at each step is its final configuration at the previous
step.

Concerning the analysis of the crossing times tc from
slow (fast) to fast (slow) γ in a bistable regime, reported in
Sec. V A, we proceed as follows. Let us first consider the
transition from slow to fast γ COs. We initialize the system in

the slow γ state at a current I0 ≡ I1 ensuring the bistability of
the dynamics. Then we increase the DC to a value I0 ≡ I2 for
a time interval TP, after which we return to the original value
I0 ≡ I1 and we check, after a period of 1.5 s, if the system
is in the slow or fast γ regime. Then we repeat the process
M = 30 times for each value of TP considered and we measure
the corresponding transition probability. The crossing time tc
is defined as the minimal TP giving 80% probability that the
transition will take place. To analyze the transition from fast
to slow, we initialize the system in the fast γ state at a DC I1,
decrease the current to a value I0 ≡ I3 for time TP, and then
proceed as before. To examine the influence of noise on such
transitions we add to the membrane potential evolution a noise
term of zero average and amplitude An.

C. Indicators

To characterize the collective dynamics in the network we
measure the mean membrane potential V (t ) = ∑N

i=1 vi(t )/N ,
the instantaneous firing rate R(t ), corresponding to the number
of spikes emitted per unit of time and per neuron, and the
mean synaptic field Y (t ) = ∑N

i=1 yi(t )/NK .1

The microscopic activity can be analyzed by consider-
ing the interspike interval (ISI) distribution as characterized
by the coefficient of variation cvi for each neuron i, which
is the ratio between the standard deviation and the mean of
the ISIs associated with the train of spikes emitted by the
considered neuron. In particular, we will characterize each
network in terms of the average coefficient of variation de-
fined as CV = ∑

i cvi/N . Time averages and fluctuations are
usually estimated on time intervals Ts � 90 s, after discarding
transients Tt � 15 s.

Phase entrainment between an external forcing character-
ized by its phase θ (t ) and the collective oscillations induced
in the network can be examined by considering the phase
difference

	nm(t ) = nθ (t ) − mγ (t ), (4)

where γ (t ) is the phase of the COs defined by considering
the time occurrences Tk of the k maximum of the instanta-
neous firing rate R(t ) of the network, namely, γ (t ) = 2π (t −
Tk )/(Tk+1 − Tk ) with t ∈ [Tk, Tk+1].2 We have an n:m phase
locking whenever the phase difference (4) is bounded during
the time evolution, i.e., |	nm(t )| < const.

This somehow qualitative criterion can be made more
quantitative by considering statistical indicators measuring the
level of n:m synchronization for irregular or noisy data. In
particular, an indicator based on the Shannon entropy has been
introduced in [40], namely,

enm = Emax − E

Emax
with E = −

M∑
k=1

pk ln(pk ), (5)

1In the definition of the mean synaptic field we have divided the
sum also by the median in-degree K because on average a neuron is
subject to K spike trains.

2This definition of the phase avoids spurious phase-locking in-
dications in terms of the Kuramoto order parameter arising with
imperfectly harmonic signals as pointed out in [61].
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where E is the entropy associated with the distribution of
	nm(t ) and Emax = ln(M ) with M number of bins.

The degree of synchronization among the phases can be
also measured by the so-called Kuramoto order parameter,
namely [35,60],

ρnm =
∣∣∣∣∣ 1

L

L∑
k=1

ei	nm (tk )

∣∣∣∣∣, (6)

where | · | represents the modulus and tk = k TW
L are L succes-

sive equispaced times within the considered time window TW .
For completely desynchronized phases ρnm ∝ 1/

√
L, while

partial (full) synchronization will be observable whenever ρnm

is finite (one).
To assess the stationarity and the statistical significance of

the obtained data we measured the above indicators within
a time window TW and we averaged the results over several
distinct time windows in order to obtain also the correspond-
ing error bars. Furthermore, to avoid the detection of spurious
phase locking due to noise or bandpass filtering one should
derive significance levels e(S)

nm and ρ (S)
nm for each n:m phase

locking indicators enm and ρnm [40,61]. The significance levels
have been estimated by considering surrogate data obtained by
randomly shuffling the original time stamps of one of the two
phases considered. Moreover, following [61], we considered
also two other types of surrogates for the generation of 	nm(t )
(4) within a certain time window TW : the time-shift surrogate,
obtained by time shifting the origin of one time series for the
phases with respect to the original one in the definition of (4),
and the random permutation surrogate, obtained by randomly
choosing the origins of two time windows of duration TW to
estimate 	nm(t ).

III. EFFECTIVE MEAN-FIELD MODEL
FOR A SPARSE QIF NETWORK

Following [21], we derive an effective MF formulation for
the model (1). As a starting point we consider an exact macro-
scopic model recently derived for fully coupled networks of
pulse-coupled QIF neurons [9]; in particular we focus on
inhibitory neurons coupled via exponentially decaying IPSPs
[57]. For a structurally inhomogeneous network made of
identical QIF neurons, with the synaptic couplings randomly
distributed according to a Lorentzian, the MF dynamics can be
expressed in terms of only three collective variables (namely,
V , R, and Y ), as

τmṘ = 2RV + �

π
Y, (7a)

τmV̇ = V 2 + I + ḡτmY − (πτmR)2, (7b)

τdẎ = −Y + R, (7c)

where ḡ is the median and � the HWHM of the Lorentzian
distribution of the synaptic couplings.

At a mean-field level, the above formulation can be ap-
plied to a sparse network; indeed, the quenched disorder in
the connectivity distribution can be rephrased in terms of a
random synaptic coupling. Namely, each neuron i is subject
on average to an inhibitory synaptic current of amplitude
g0kiY/

√
K proportional to its in-degree ki. Therefore, at a first

FIG. 1. Comparison of the spiking dynamics with the mean-field
results. Collective variables (a) V , (b) R, and (c) Y versus time,
obtained from simulations of the spiking network (1) (blue circles)
and from the MF formulation (8) (black line). (d) Corresponding
raster plot, revealing clear COs with frequency νosc � 24 Hz. The
dynamics of the network is for N = 10 000 neurons with median in-
degree K = 1000 and 	0 = 0.3. The other parameters are I0 = 0.25,
J0 = 1.0, and τd = 15 ms.

level of approximation we can consider the neurons as fully
coupled but with random values of the coupling distributed as
a Lorentzian of median ḡ = −J0

√
K and HWHM � = J0	0.

The MF formulation (7) is now expressed as

τmṘ = 2RV + 	0J0

π
Y, (8a)

τmV̇ = V 2 +
√

K (I0 − J0τmY ) − (πτmR)2, (8b)

τdẎ = −Y + R. (8c)

As verified in [21], for instantaneous PSPs this formulation
represents a quite good guidance for the understanding of
the emergence of sustained COs in the network, despite the
fact that the MF asymptotic solutions are always stable foci.
Instead, in the present case, analogously to what was found for
structurally homogeneous networks of heterogeneous neurons
in [57], we observe that for IPSPs of finite duration oscilla-
tions can emerge in the network as well as in the mean field,
as shown in Fig. 1. The data reported in the figure confirm
that the MF formulation (8), despite not including current
fluctuations, reproduces quite well the macroscopic evolution
of the network in the oscillatory regime also for a sparse
network. Therefore, we can safely employ such effective MF
model to interpret the phenomena observed in the spiking
network and to obtain theoretical predictions for its dynamics.

In the two following sections we will first study analyt-
ically the linear stability of the asynchronous state, which
corresponds to a fixed point of (8), and then describe the
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bifurcation and phase diagrams associated with the MF model
(8).

A. Linear stability of the asynchronous state

The fixed point solution (V ∗, R∗,Y ∗) of (8) is given by

V ∗ = −	0J0

2π
, (9a)

R∗τm = J0

√
K

2π2

(√
1 + 4π2

√
K

I0

J2
0

+ 	2
0

K
− 1

)
, (9b)

Y ∗ = R∗. (9c)

By performing a linear stability analysis around the fixed point
solution (V ∗, R∗,Y ∗) we obtain the secular equation∣∣∣∣∣∣

2V ∗ − �τm 2R∗ −2V ∗

−2(πτm)2R∗ 2V ∗ − �τm −J0

√
Kτm

1 0 −1 − �τd

∣∣∣∣∣∣ = 0. (10)

In a more explicit form this is

(1 + �τd )[(�τm − 2V ∗)2 + (2πR∗τm)2]

+2V ∗(�τm − 2V ∗) + 2J0

√
KR∗τm = 0. (11)

In the present case, for inhibitory coupling, i.e., J0 > 0,
the solutions of the cubic equation (11) are one real and two
complex conjugates. The real one is always negative (thus
irrelevant for the stability analysis), while the couple of com-
plex eigenvalues � = �R ± i�I can cross the imaginary axes,
giving rise to oscillatory behaviors via Hopf bifurcations. The
presence of the two complex conjugate eigenvalues implies
that whenever the asynchronous state is stable, this is always
a focus characterized by a frequency of relaxation towards the
fixed point given by νD = �I/2π . For excitatory coupling,
the real eigenvalue can become positive, with an associated
saddle-node bifurcation and the emergence of collective chaos
[62,63]. By following [57], the Hopf boundaries can be iden-
tified by setting � = i2πνO in (11) and setting equal to zero
the real and imaginary parts of the resulting equation, namely,
one gets

(1 − 4τdV ∗)(2πνO)2

R∗ − (2π )2R∗τm − 2J0

√
K = 0,

[(2πνO)2τm − 4(V ∗)2 − (2πR∗τm)2] − 2
τmV ∗

τd
= 0. (12)

B. Phase diagrams of the mean-field model

Apart from the linear stability of the asynchronous state
and the associated Hopf boundaries which can be worked out
analytically, the limit cycle solutions of the MF model and the
associated bifurcations have been obtained by employing the
software XPP AUTO developed for orbit continuation [64]. The
MF model (8), apart from the membrane time constant τm,
which sets the system timescale, and the median in-degree K ,
which we set equal to 1000, is controlled by four independent
parameters 	0, J0, I0, and τd . In the following we will give
an overview of the possible behaviors of the MF model in
terms of two-parameter phase diagrams for the most relevant
combinations of the four parameters mentioned. The results
of these analyses are summarized in Figs. 2 and 3.

FIG. 2. Phase diagrams of the mean-field model in (a) and (b) the
(τd , J0 ) plane and (c) and (d) the (τd , I0) plane for (a) and (c) 	0 =
0.3 and (b) and (d) 	0 = 3. The red (black) line corresponds to
subcritical (supercritical) Hopf bifurcations and the blue line indi-
cates saddle-node bifurcations of limit cycles. In region I (white)
the only stable solutions are foci and in region II (lightly shaded)
these are limit cycles. The dark shaded area (III) represents the region
of coexistence of stable foci and limit cycles. The colored symbols
indicate the states analyzed in Sec. IV. The parameters are K = 1000
and (a) and (b) I0 = 0.25 and (c) and (d) J0 = 1.0.

Our analysis of the stationary solutions has revealed three
possible regimes: stable foci (region I), stable COs (region II),
and the coexistence of these two stable solutions (region III).
The stability boundaries of the COs are delimited by three
kind of bifurcations: supercritical Hopf bifurcations (black
lines in the figures), subcritical Hopf bifurcations (red lines),
and saddle-node bifurcations of limit cycles (blue lines).
Stable (unstable) COs emerge from stable foci at supercritical
(subcritical) Hopf bifurcations, while stable and unstable limit
cycles merge at the saddle-node bifurcations.

A fundamental parameter controlling the emergence of
COs in the MF model is the synaptic time τd ; indeed, in the
absence of this timescale, no oscillations are present at the MF
level [21]. On the other hand, too large values of τd also lead to
COs suppression, since the present model reduces to a Wilson-
Cowan model for a single inhibitory population, which is
know to be unable to display oscillations [57]. As shown in
Figs. 2 and 3, oscillations are observable for intermediate
values of τd and not too large J0, since large inhibition leads to
a quite reduced activity of the neurons not sufficient to ignite a
collective behavior. This is in agreement with the fundamental
role played by γ aminobutyric acid (GABA) in the emergence
of epileptic seizures, characterized by an anomalous level of
synchronization among the neurons. Indeed, the occurrence
of seizures seems strongly correlated with a GABA deficit,
corresponding to a reduction of J0 in our case [65,66]. More-
over, in order to observe COs, the excitatory drive I0 should
be larger than some critical value, as shown in Figs. 2(c) and
2(d). This is consistent with the observation of the emergence
of γ oscillations in hippocampal slices induced through the
acetylcholine agonist carbachol [50,67], which leads to a
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FIG. 3. Phase diagrams of the mean-field model in (a)–(c) the (τd , 	0 ) plane and (d)–(f) the (J0, 	0 ) plane. The line colors, colored
symbols, and regions are defined as in Fig. 2. The parameters are I0 = 0.25 and K = 1000.

decrease of the conductance of potassium channels, which
can be mimicked as an increase of I0 [68,69]. Indeed, by
increasing the structural heterogeneity (measured by 	0),
which acts against coherent dynamics, larger values of I0 are
required for COs as well as smaller synaptic couplings [see
Figs. 2(b), 2(d), and 3(d)–3(f)]. Therefore, the emergence of
COs can be triggered by self-disinhibition as well as by an
external excitatory drive, and we expect to observe in both
cases the same scenarios.

As already mentioned, for infinitely fast synapses (τd → 0)
the only possible solutions of the mean field are foci character-
ized by two complex conjugate eigenvalues. Nevertheless, in
the corresponding network the irregular firings of the neurons,
due to the dynamical balance, can sustain COs, which are
predicted to relaxed toward the fixed point in the mean field.
In the next section we will analyze the role of these micro-
scopic fluctuations in triggering the network dynamics also for
finite τd .

IV. NETWORK DYNAMICS

We investigate in this section the dynamics of the network
by considering the parameter plan (τd , J0). In particular, we
want to examine the role of structural heterogeneity (mea-
sured by 	0) in shaping the dynamical behaviors. This charac-
teristic of the network structure is extremely relevant, as it can
even determine if the system is in a balanced or an imbalanced
regime [21,70,71].

A. High structural heterogeneity

We consider first a relatively high value for the struc-
tural heterogeneity, namely, 	0 = 3.0. For sufficiently large
coupling J0, the bifurcation diagram reveals the emergence
of oscillations in the MF model (8) via supercritical Hopf

bifurcations, analogously to what has been reported for glob-
ally coupled networks [57]. An example of the bifurcation dia-
gram, displaying the extrema of the mean membrane potential
V as a function of τd , is reported in Fig. 4(a) for J0 = 1.6.
In particular, we observe for instantaneous synapses (τd → 0)
a stable focus, as expected from the analysis previously re-
ported in [21]. The focus is stable up to τ

(H )
1 , where it is

substituted by a stable oscillatory state via a supercritical Hopf
bifurcation. Oscillations are observable up to τ

(H )
2 , where via

a second supercritical Hopf bifurcation they disappear and the
unique stable solution for the MF system remains a focus.
The typical stable regimes are denoted in Fig. 4(a) by three
capital letters: A corresponds to a focus, B to a limit cycle,
and C to another focus. The network dynamics corresponding
to these typical MF solutions is examined in the remaining
panels of Fig. 4. For the focus solutions the network dynamics
is asynchronous, as clearly visible from the corresponding
raster plots in Figs. 4(b) and 4(d). Furthermore, the dynamics
of the neurons is quite regular in this case, as verified by
the values of the average coefficients of variation, namely,
CV � 0.14 and CV � 0.04, corresponding to the distributions
reported in Figs. 4(e) and 4(f), respectively. At intermediate
values of τd , as predicted by the MF analysis, we observe
COs with frequency νosc � 34 Hz in the network dynamics
[see Fig. 4(c)]. However, also in this case the dynamics is
dominated by suprathreshold neurons with an associated very
low CV, as evident from the large peak present at cvi � 0 in
the distribution P(cvi ) shown in Fig. 4(g).

For lower synaptic coupling J0 the phase portrait changes,
as shown in Fig. 5(a) for J0 = 0.5. In this case the MF
analysis indicates that the transition from a stable focus to
the oscillatory state occurs by increasing τd via a subcritical
Hopf bifurcation. At large synaptic coupling, the stable focus
is recovered via a supercritical Hopf bifurcation taking place
at τ

(H )
2 , analogously to what has been seen for larger coupling.
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FIG. 4. High structural heterogeneity: supercritical Hopf bifur-
cation. (a) Bifurcation diagram of the MF model (8) displaying the
extrema of V versus τd . The red solid (black dashed) lines refer
to the stable (unstable) focus, while green solid lines refer to the
oscillatory state. The supercritical Hopf bifurcations take place for
τ

(H )
1 = 3.14 ms and τ

(H )
2 = 10.59 ms. The capital letters in (a) denote

three stationary states corresponding to different synaptic timescales,
namely, A, τd = 0.15 ms; B, τd = 4.5 ms; and C, τd = 45 ms. The
network dynamics corresponding to these states is reported in (b) and
(e) A, (c) and (f) B, and (d) and (g) C. Also shown are (b)–(d) the
corresponding raster plots and (e)–(g) the distributions of the {cvi}
of the single neurons. The network parameters are N = 10 000,
K = 1000, and 	0 = 3.0. The other parameters are I0 = 0.25 and
J0 = 1.6. The states A, B, and C are denoted in Fig. 2(b) as a red
circle, a blue square, and a green triangle, respectively.

An interesting regime is observable between τ (S), where the
stable and unstable limit cycles merge via a saddle-node
bifurcation, and τ

(H )
1 , where the focus become unstable. In

this interval the MF model displays two coexisting stable
solutions: a limit cycle and a focus. It is important to verify
if also the finite-size sparse network displays this coexistence.
Indeed, as shown in Fig. 5, depending on the initial conditions,
the network dynamics can converge towards COs or towards
an asynchronous state. In particular, we observe that the
asynchronous dynamics is associated with extremely low cv
values [see Fig. 5(d)], suggesting that this can be considered as
a sort of irregular splay state [72]. However, also the COs with
νosc � 58 Hz are characterized by a low average coefficient of
variation, namely, CV � 0.014, indicating that the dynamics
is mean driven. The subcritical Hopf, as expected, is associ-
ated with a hysteretic behavior; this effect can be revealed by
considering simulations concerning an adiabatic variation of
τd . The results of these simulations are shown in Fig. 5(b),
where the maximal values of the instantaneous firing rate RM

are given as a function of τd for the adiabatic protocol and
compared with the MF estimations of RM . From the figure it is
clear that the transition from the focus to the stable limit cycle

FIG. 5. High structural heterogeneity: subcritical Hopf bifurca-
tion. (a) Bifurcation diagram of the MF model analogous to the one
reported in Fig. 4(a). The supercritical (subcritical) Hopf bifurcation
takes place at τ

(H )
2 = 27.96 ms (τ (H )

1 = 0.61 ms) and the saddle node
of limit cycles is at τ (S) = 0.43 ms. The capital letters in (a) denote
two stationary states corresponding to the same synaptic timescales
τd = 0.45 ms. This state is denoted in Fig. 2(b) by a yellow diamond.
The network dynamics corresponding to these states is reported in
(c) and (e) A and (d) and (f) B. Also shown are (c) and (d) the
raster plots and (e) and (f) the distribution of the {cvi} of the single
neurons. (b) Maximal values of the rate RM obtained by performing
adiabatic simulations by first increasing and then decreasing the
synaptic time τd (green diamonds) for N = 10 000 and (blue circles)
for N = 20 000; the arrows denote the jump from one state to the
other. The MF results are also displayed: red solid (black dashed)
lines refer to stable (unstable) foci, while green solid (blue dashed)
lines refer to stable (unstable) limit cycles. The parameters are the
same as in Fig. 4 except for J0 = 0.5; the parameters for the adiabatic
simulations are 	τd = 0.03 ms, τ

(0)
d = 0.21 ms, and τ

(1)
d = 0.81 ms.

occurs at τd < τ
(H )
1 and the system returns from the oscillatory

state to the asynchronous one at τd , which is definitely smaller
than τ (S). These are finite-size (and possibly also finite-time)
effects. Indeed, as shown in Fig. 5(b), by increasing N , the
transition points approach the MF ones.

B. Low structural heterogeneity

We consider now a relatively low value of the struc-
tural heterogeneity, i.e., 	0 = 0.3, which for instantaneous
synapses can sustain a dynamically balanced state [21]. Let us
first consider a relatively large coupling, namely, J0 = 17.0;
the corresponding bifurcation diagram for the MF model is
reported in Fig. 6(a). This is quite similar to the one previously
shown for high structural heterogeneity in Fig. 4(a). However,
peculiar differences are observable at the level of network
simulations. Indeed, in this case COs are present for all the
τd values considered, even if these correspond to stable foci
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FIG. 6. Low structural heterogeneity: supercritical Hopf bifurca-
tion. The panels displayed here are analogous to the ones in Fig. 4. In
this case the supercritical Hopf bifurcations occur for τ

(H )
1 = 3.33 ms

and τ
(H )
2 = 12.61 ms. The stationary states in (a) corresponding to

A, B, and C refer to τd = 0.15, 3.75, and 22.5 ms, respectively.
The parameters are the same as in Fig. 4 except for 	0 = 0.3. and
J0 = 17. States A, B, and C are denoted as in Figs. 2(a) and 3(c) by a
red circle, a blue square, and a green triangle, respectively.

in the mean field [states A and C in Fig. 6(a)] as evident from
the raster plots shown in Figs. 6(b) and 6(d). In particular,
we measured the following frequencies for the observed COs:
νosc � 57 Hz for state A, νosc � 30 Hz for B, and νosc �
16 Hz for C. Furthermore, the network dynamics is now
definitely more irregular than for high 	0 with distributions
P(cvi ) centered around cvi = 1 for the states A and C in
Fig. 6(a) corresponding to stable foci in the MF formulation
[see Figs. 6(e) and 6(g)] and with P(cvi ) extending towards
values around cvi � 1 for the oscillatory state B, as shown
in Fig. 6(i). This irregularity in the spike emissions is a clear
indication that now the dynamics is mostly fluctuation driven
due to the dynamically balanced dynamics observable in the
sparse network for sufficiently low structural heterogeneity.
Furthermore, as shown in [21] for instantaneous synapses,
these current fluctuations are able to turn the macroscopic
damped oscillations towards the stable foci, observable in the
MF model, in sustained COs in the network. The origin of
the COs observable for the state B is indeed different, since in
this case sustained oscillations emerge due to a supercritical
Hopf bifurcation both in the mean field and in the network
dynamics.

By decreasing the synaptic coupling J0 [Fig. 7(a)] we
observe in the MF phase diagram the emergence of regions
where the oscillations coexist with the stable focus in prox-
imity to a subcritical Hopf bifurcation, analogously to what
has been reported for high heterogeneity [see Fig. 5(a)].
At variance with that case, we have now in the network a

FIG. 7. Low structural heterogeneity: subcritical Hopf bifurca-
tion. Except for (b), the panels are analogous to those in Fig. 5. In
the present case the subcritical Hopf bifurcation occurs at τ

(H )
1 =

0.097 ms, while the supercritical Hopf bifurcation occurs at τ
(H )
2 =

531.83 ms and the saddle node of limit cycles at τ (S) = 0.028 ms; the
coexisting states A and B shown in (a) refer to τd = 0.06 ms. This
state is denoted in Figs. 2(a), 2(c), and 3(a) by a yellow diamond.
(b) Frequency of collective oscillations as measured via adiabatic
simulations for N = 2000 by considering Ts = 90 ms (blue circles)
and Ts = 1500 ms (green diamonds); the transient time Tt = 15 ms
is unchanged. The solid lines in (b) refer to the MF results, namely,
the black line to νD and the blue one to the limit cycle frequency
νO. The parameters are as in Fig. 6 except for J = 1.0 and the
adiabatic simulations are 	τd = 0.015 ms, τ

(0)
d = 0.015 ms, and

τ
(1)
d = 0.30 ms.

bistability between two COs whose origin is different: One
emerges via a Hopf bifurcation and it is displayed in Fig. 7(d),
while the other is sustained by the irregular spiking associated
with the balanced state and the corresponding raster plot is
shown in Fig. 7(c). In particular, the latter COs are associ-
ated with large cv values [Fig. 7(e)] typical of a balanced
regime, while the other COs are extremely regular as shown
in Fig. 7(f) resembling the dynamics of a highly synchronized
system.

In order to analyze the coexistence region, we report in
Fig. 7(b) the frequencies νosc of the collective oscillations as
measured via adiabatic simulations of the network (symbols).
Furthermore, the MF results for νD associated with the foci
and the frequencies νO of the limit cycles are also reported
in the figure as black and blue solid lines, respectively. The
frequencies of the COs in both states are reasonably well
captured by the MF approach. Furthermore, the two frequen-
cies can be quantitatively associated with fast and slow γ

oscillations. The comparison reveals that the COs induced
by microscopic irregular firing exist far beyond τ

(H )
1 , despite

that here the unique stable solution predicted by the mean
field should be the almost synchronized bursting state shown
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FIG. 8. Coexisting fast and slow γ oscillations. (a) Frequencies
νD associated with the damped oscillations towards the stable foci.
(b) Frequencies νO of the limit cycles. Red lines refer to the sub-
critical Hopf boundaries, while the blue lines refer to saddle-node
bifurcations of limit cycles. The other parameters are I0 = 0.25 and
	0 = 0.3.

in Fig. 7(d). On the other hand, the backward transition is
almost coincident with the MF prediction for τ (S) as displayed
in Fig. 7(b). As reported in Fig. 7(b), we observe that also
the forward transition value approaches τ

(H )
1 by increasing

the duration Ts of the adiabatic steps. Therefore, this result
suggests that the observed discrepancies are due to finite-
time (and possibly finite-size) effects affecting the network
simulations.

V. COEXISTENCE OF SLOW AND FAST γ OSCILLATIONS

In the preceding section we showed, for a specific choice of
the parameters, that fast and slow collective γ oscillations can
coexist. However, the phenomenon is observable in the whole
range of coexistence of the stable foci and the stable limit
cycles. In particular, in Fig. 8 we show in the (τd , J0) plane
the frequencies νD associated with the damped oscillations
towards the MF focus [Fig. 8(a)] and the frequencies νO of
the limit cycles [Fig. 8(b)]. It is evident that νD � 30–40 Hz,
while the frequencies of the limit cycle νO are of the order of
60 Hz; thus in the network we expect to observe coexisting
COs characterized by slow and fast rhythms in a wide range
of parameters.

For this parameter set νD seems to depend only slightly
on τd and J0. On the contrary, the frequency νO, character-
izing the more synchronized events, is influenced by these
parameters. In particular, νO decreases for increasing IPSP
time duration, similarly to what is observed experimentally
for cholinergic induced γ oscillations in the hippocampus
in vitro [50]. Moreover, barbiturate, a drug often used as
an anxiolytic, is known to increase IPSP time duration [73]
and slow down γ oscillations [74], in accordance with our
scenario. Furthermore, for τd > 1 ms the increase of J0 leads
to a decrease of νD, similarly to the effect of alcohol that
induces an increase of inhibition associated with a decrease
in γ oscillation frequencies measured in the human visual
cortex [75].

The coexistence of fast and slow γ COs is a quite general
phenomenon not limited to the specific network topology we
employed, i.e., that associated with the Lorentzian in-degree
distribution. Indeed, as shown in Appendix A, it can be
observed also for a sparse Erdős-Rényi network.

FIG. 9. Switching from fast (slow) to slow (fast) γ oscillations.
The results are from the switching experiments described in the text:
(a) spectrogram of the mean membrane potential V , (b) the firing rate
R(t ), (c) the raster plot, and (d) the stimulation protocol reporting the
average external DC. The parameters are the same as in Fig. 7 (in
particular τd = 0.06 ms) except for Tsh = 0.015 s, Tsl = 0.0015 s,
I1 = 0.25, I2 = 20.0, I3 = 0.012, and 	I3 = 0.01.

A. Switching γ rhythms

As an additional aspect we will consider the possibility to
develop a simple protocol to drive the system from slow γ

COs to fast ones (and vice versa) in the bistable regime. Let us
consider the case where the network is oscillating with slow γ

frequency as shown in Fig. 9 for I0 ≡ I1 = 0.25. The protocol
to drive the system in the fast γ band consists in delivering
a step current I2 to all the neurons for a very limited time
interval Tsh. In this way the system is transiently driven in a
regime where oscillatory dynamics is the only stable solution.
As a matter of fact, the neurons remain in a high-frequency
state even after the removal of the stimulation, when I0 returns
to the initial value I1 (see Fig. 9). In order to desynchronize the
neurons and to recover the slow γ COs, we delivered random
quenched DCs I0(i) (with i = 1, . . . , N) to the neurons for
a time period Tsl. The currents I0(i) are taken from a flat
distribution with a very low average value I3 and a width 	I3

corresponding to a parameter range where the MF foci are
the only stable solutions. As shown in Fig. 9, in this case,
to drive the system from fast to slow γ oscillations it was
sufficient to apply the perturbation for a much smaller period
Tsl 
 Tsh.

Let us now try to characterize in more detail the observed
switching transitions. This can be done by considering the MF
bifurcation diagram in terms of the external DC I0 reported in
Fig. 10(a) for the parameters examined. The diagram reveals a
subcritical Hopf bifurcation taking place at I (H ) � 0.43 and a
region of bistability extending from I (S) � 0.06 to I (H ). There-
fore, if we consider a DC in the bistable interval (namely,
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FIG. 10. Statistics of the switching transitions. (a) Bifurcation
diagram of the MF model reporting the extrema of the mean mem-
brane potential V as a function of I0 displaying stable (solid lines)
and unstable solutions (dashed lines) for foci (red and black) and
limit cycles (green and blue). The vertical dashed orange line refers
to I0 = 0.25. (b) Transition probability as a function of TP. The
orange dashed line denotes the 80% for I2 = 1.0. The inset shows
the data for the transition from fast to slow γ for I3 = 0.03; in
both cases An = 0.05. (c) Transition probability as a function of the
noise amplitude An for I2 = 1 and TP = 8.48τm. (d) Crossing times tc

versus the perturbation amplitude I2 for noise levels An = 0.02 (black
circles) and 0.07 (red circles). The vertical orange line indicates the
value I (H ). (b)–(d) Transition from slow to fast γ COs. The inset in
(b) shows the transition from fast to slow γ . The parameters are the
same as in Fig. 7.

I0 ≡ I1 = 0.25) and we prepare the system in the slow γ

regime, a transition to the fast γ COs will be observable when-
ever the DC is increased to a value I0 ≡ I2 > I (H ). However,
if we return to the bistable regime at I0 ≡ I1, after delivering
the perturbation I2 for a time interval TP, it is not evident in
which regime (fast or slow) the system will end up. Thus we
have measured the transition probability from slow to fast γ

for different TP and I2 by following the protocol reported in
Sec. II B. We analyzed these transitions in the presence of a
small additive noise on the membrane potentials of amplitude
An, somehow encompassing the many sources of noise present
in neural circuits.

The results shown in Fig. 10(b) for I2 = 1.0 and An = 0.05
reveal that even if I2 > I (H ) the perturbation should be applied
for a minimal time interval TP > tc � 0.12 s to induce the
transition to the fast γ COs in at least the 80% of cases. It is
interesting to note that the noise amplitude can play a critical
role on the switching transition. Indeed, the increase of An

can desynchronize the fast γ regime even for TP > tc [see
Fig. 10(c)]. Therefore, tc depends critically not only on I2 but
also on An: As expected, by increasing I2 the crossing time
drops rapidly towards zero, while the switching transition is
delayed to longer times for larger An [see Fig. 10(d)].

Concerning the transition from fast to slow γ , this oc-
curs in an irreversible manner only for an amplitude of the
perturbation I3 < I (S); an example is shown in the inset of
Fig. 10(b). Even though the switching transition can be ob-
served also for I3 > I (S), this will be much more complex due
to the competition of the two stable states in the interval I0 ∈
[I (S) : I (H )] and more specific protocols should be designed to
obtain the desynchronization of the system.

B. The θ-γ cross-frequency coupling

So far we have described a simple protocol where external
constant stimulations to the inhibitory network can drive the
neural population from one state to the other. However, γ

oscillations are usually modulated by θ oscillations in the
hippocampus and in the neocortex during movement and
REM sleep [34,44]. This has recently inspired a series of
optogenetic experiments in vitro intended to reproduce the
effect of the θ forcing and the activity observed in vivo
[39,48,49]. To draw a connection with these experiments, we
decided to consider a periodic stimulation of all neurons in the
network as

I0(t ) = Iθ [1 − cos(2πνθ t )], (13)

where the phase of the θ forcing is defined as θ (t ) = 2πνθ t .
The term appearing in (13) corresponds to the synaptic input
received by the neurons; in order to compare this forcing
term with the LFPs experimentally measured in [35,46] which
reveal θ oscillations, one should recall that the LFP corre-
sponds to the electrical potential measured in the extracellular
medium around neurons [76]. Therefore, for a meaningful
comparison with the synaptic input (13) the sign of the LFP
should be reversed. This is consistent with the observations
reported in [35,46] that the maximum of activity of the
excitatory (pyramidal) cells is observed corresponding to the
minimum of the LFP.

We considered the network dynamics in the presence of
the periodic forcing (13) and additive noise on the membrane
potentials (with zero mean and amplitude An). As shown in
Fig. 11, the response of the system to the forcing is controlled
by the value of the amplitude Iθ in (13): For small Iθ � 0.20
one observes only slow γ COs; for intermediate values of the
amplitude 0.20 < Iθ � 0.32 the slow and fast γ COs coexist;
for Iθ � 0.32 only fast oscillations are present.

For small Iθ , as one can appreciate from the raster plot in
Fig. 12(c), the firings of the neurons are quite irregular and the
bursts involve only a limited number of neurons, as confirmed
also by the low values of ρ during the firing activity [see
Fig. 12(c)]. Furthermore, the corresponding spectrogram in
Fig. 11(k) reveals that the power is concentrated at frequencies
below 50 Hz and that the amplitude of the spectrum has
a modulated structure as a function of the phase. This is
confirmed by the analysis of the power of the spectrum PS
(PL) restricted to the slow (fast) γ band [see Fig. 11(n)].
These are indications of θ -nested γ oscillations, as confirmed
by the instantaneous firing rate given in Fig. 11(l), which
reveals also an evident PA coupling between the γ phases and
the θ forcing. In this case we considered a quite small value
of the amplitude An of the extrinsic noise, in order to compare
our findings with in vitro experiments.
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FIG. 11. Fast and slow γ oscillations entrainment with the θ forcing. (a) Bifurcation diagram of the MF model analogous to the one shown
in Fig. 10(a). (b) The θ forcing (13) versus time. Panels (c)–(f) refer to forcing with Iθ = 0.35 and noise amplitude An = 1; (g)–(j) to Iθ = 0.30
and An = 1; (k)–(n) to Iθ = 0.1 and An = 1 × 10−3. In the left column are reported averaged spectrograms as a function of the θ phase, together
with νD (green solid line), νO (red solid lines) and the forcing in arbitrary units (white solid line). The vertical blue dashed lines indicate the
stability boundaries for the focus solution; the focus is unstable for θ phases within such lines. The middle column displays an instance over
four θ cycles of the corresponding spectrograms and of the instantaneous firing rates R(t ). The right column shows the ratio PF/PS of the
power contained in the fast (50 < νosc < 100 Hz) and slow (30 � νosc � 50 Hz) γ bands as a function of the θ phase. In this case the error
bars are displayed, but are almost invisible on the reported scale. The parameters are J0 = 1, τd = 0.15 ms, 	 = 0.3, and K = 1000. For the
simulations we considered N = 10 000 and νθ = 3 Hz. The data for the spectrograms (left column) have been obtained by averaging over 30
θ cycles and those for PF/PS (right column) over 400 cycles.

Indeed, these results resemble experimental observations
of θ -nested γ oscillations induced in vitro by sinusoidal
optical stimulation at θ frequency in the medial entorhinal
cortex (mEC) [49] and in the CA1 [39] and CA3 [48] of the
hippocampus. In all these experiments single neurons spiked
quite irregularly, while the collective dynamics was oscilla-
tory, analogously to our dynamics as shown in Figs. 11(l)
and 12(c). As previously discussed, these COs are induced
by intrinsic fluctuations and characterized at a MF level
by frequencies �νD (green solid line), which represents a
reasonable estimation of the position of the maxima of the
spectrogram as shown in Fig. 11(k).

The situation is quite different for sufficiently large forc-
ing amplitude, where the neuronal dynamics becomes quite
regular and highly synchronized, as evident from Figs. 11(d)
and 12(a) and by the value of ρ reported in Fig. 12(a). In this
case the power is concentrated in the fast γ band and it is
maximal, corresponding to the largest value of I0 occurring
at θ = π [see Figs. 11(c) and 11(f)]. Furthermore, the profile
of the maximal power in the spectrogram follows reasonably
well the MF values νO (red solid line) expected for fast γ COs,
as evident from Fig. 11(c). For these large currents we have

a sort of pathological synchronization usually observable in
connection with neuronal diseases. In particular, highly syn-
chronized fast γ oscillations have been observed in patients
with neocortical epilepsy [77].

The most interesting situation occurs for intermediate am-
plitudes; specifically, we considered Iθ = 0.30. As evident
from Figs. 11(h) and 12(b), in this case the network dynamics
can vary noticeably from one θ cycle to the next, due to the
switching from one γ regime to the other occurring erratically,
induced by the larger extrinsic noise here employed (namely,
An = 1) to mimic in vivo conditions. This is particularly evi-
dent in Fig. 12(b), where the network dynamics reveals a large
variability as testified by the level of synchronization from one
cycle to another. However, by averaging over a sufficiently
large number of cycles we can identify stationary features
of this dynamics. In particular, we observe that the values
of maximum power in the averaged spectrum correspond to
different θ phases for the slow and fast γ COs, namely, for
slow γ the maximal activity is observable at small angles,
while for fast γ this corresponds to the largest value of the
forcing current (13) [see Figs. 11(g) and 11(j)]. Furthermore,
on average we observe a steady increase of ρ within a θ cycle
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FIG. 12. Level of synchronization of fast and slow γ oscillations.
(a)–(c) Raster plots and Kuramoto order parameter ρ (red solid
curve) in the presence of θ forcing (13) for (a) Iθ = 0.35, (b) Iθ =
0.3, and (c) Iθ = 0.1 with amplitude of noise as in Fig. 11. The gray
curve in (b) represents the value of ρ for one θ period averaged over
50 θ cycles. (d) The θ forcing profile versus time. The parameters
are J0 = 1, τd = 0.15 ms, 	 = 0.3, K = 1000, N = 10 000, and
νθ = 3 Hz.

[see the gray line in Fig. 12(b)], confirming that slow irregular
γ COs are mostly observable at small angles, while fast, more
regular γ COs set in at θ � π .

These findings resemble the experimental results reported
in [46] for the region CA1 of the hippocampus in freely
moving rats, where it has been reported that slow γ power
was peaked around θ � 0.4π and fast γ power around θ �
π , corresponding also to the maximum activity of excita-
tory place cells. Similar results have been reported in [35]
for the slow γ rhythm; however, in those experiments fast
γ (referred to as intermediate γ ) occurs earlier in the θ

cycle. Recent experiments obtained on behaving rats sin-
gled out a wide cycle-to-cycle variability of the frequency
of CA1 θ -nested γ oscillations and an overlap of the fre-
quency bands associated with slow and fast γ oscillations
[78]. These results do not contradict previous findings which
were mainly based on spectral features obtained by averaging
over many cycles [35,46]. Our results confirm the absence
of this contradiction. Indeed, the instantaneous spectrograms
reported in Fig. 11(i) show a large cycle-to-cycle variabil-
ity, while the average spectrogram shown in Fig. 11(g) dis-
plays distinct peaks for slow and fast γ COs at specific θ

angles.
The network response to the external periodic forcing (13)

can be interpreted in terms of an adiabatic variation of the
external current whenever the timescale of the forcing term is
definitely slower with respect to the neuronal timescales, i.e.,
τm and τd . Since this is the case, we can try to understand

the observed dynamics at a first level of approximation by
employing the bifurcation diagram of the MF model obtained
for a constant DC I0, which is shown in Fig. 11(a) for the set
of parameters considered here. The diagram reveals that the
system bifurcates via a subcritical Hopf bifurcation from the
asynchronous state to regular oscillatory behavior at a current
I (H ) � 0.159 and that the region of coexistence of stable foci
and limit cycles is delimited by a saddle-node bifurcation
occurring at I (S) � 0.012 and by I (H ).

The forcing current (13) varies over a θ cycle from a value
I0 = 0 at θ = 0 up to a maximal value I0 = 2Iθ at θ = π

and returns to zero at θ = 2π . Since the forcing current will
start from a zero value, we expect that the network will start
oscillating with slow γ frequencies associated with the stable
focus, which is the only stable solution at small I0 < I (S).
Furthermore, if Iθ < I (H )/2 the system will remain always in
the slow γ regime during the whole forcing period, since the
focus is stable up to the current I (H ).

For amplitudes Iθ > I (H )/2 we expect a transition from
slow to fast COs for a θ phase θ (H ) = arccos [(Iθ − I (H ) )/Iθ ]
corresponding to the crossing of the subcritical Hopf bifurca-
tion. Since this transition is hysteretic the system will remain
in the fast regime until the forcing current does not become
extremely small, namely, I0 < I (S), corresponding to a θ phase
θ (S) = 2π − arccos[(Iθ − I (S) )/Iθ ].

The analysis performed is quasistatic and does not take into
account the time spent in each regime. If Iθ � I (H ) the time
spent by the system in the slow γ regime is extremely reduced,
because θ (H ) � 0 and θ (S) � 2π , and this explains why for
large Iθ we essentially observe only fast γ . On the other hand,
we find only slow γ COs for Iθ up to 0.20, a value definitely
larger than I (H )/2, and this due to the fact that a finite crossing
time is needed to jump from one state to the other, as discussed
in the preceding section.

Let us now focus on the case Iθ = 0.3, where we observe
the coexistence of fast and slow γ COs. As already mentioned,
we have stable foci in the range I0 ∈ [0 : I (H )]; this in terms
of θ angles obtained via the relationship (13) for Iθ = 0.3
corresponds to an interval θ/π ∈ [0 : 0.34], roughly matching
the region of the spectrogram reported in Fig. 11(g) where the
maximum power of slow γ oscillations is observable. Due to
the hysteretic nature of the subcritical Hopf transition, even if
the forcing current I0(θ ) decreases for θ → 2π , we would not
observe slow γ at large θ angles. This is indeed confirmed by
the average value of the order parameter ρ [gray solid line in
Fig. 12(b)], which reveals an almost monotonic increase with
θ over a cycle.

For currents I0 > I (H ) only the limit cycles (corresponding
to fast γ COs with frequencies νO) are stable. Indeed, the
maximum of the power spectrum for fast γ COs occurs for
θ � π where I0 � 0.6 > I (H ) is maximal.

As a last point, let us examine if the coexistence of fast
and slow γ COs is related to some form of PP locking
between θ forcing and γ oscillations [35,40]. As is evident
from Figs. 13(a) and 13(b), the θ forcing at νθ = 10 Hz locks
the collective network dynamics, characterized by the mean
membrane potential and by the γ phase defined in Sec. II C. In
particular, for this specific time window we observe for each
θ oscillation exactly six γ oscillations of variable duration,
slower at the extrema of the θ window and faster in the central
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FIG. 13. Phase-phase coupling n:m between θ forcing and γ oscillations (a) and (b) Locking of the γ oscillations to the external θ forcing:
(a) average membrane potential V versus time, with the black dashed line showing the forcing (13) in arbitrary units, and (b) γ (red solid line)
and θ (black dashed line) phases for the corresponding time interval. (c) Kuramoto order parameter ρnm for the phase difference 	nm(t ) for
time windows of duration TW = 0.1 s (black), 0.5 s (red), and 1 s (blue) averaged over 70 < M < 700 different realizations. (d) Normalized
entropy enm for a time window TW = 0.5 s averaged over M = 140 realizations (black). The surrogate data are also reported corresponding to
random permutation (red) and a time shift (blue) of the original data averaged over M = 100 independent realizations. The reported data refer
to the simulation of the spiking network subject to the external forcing (13) with additive noise on the membrane potentials. The parameters
are the same as in Fig. 11 except for Iθ = 0.3, νθ = 10 Hz, and An = 1.0 × 10−3. The histogram of 	nm(t ) employed for the estimation of enm

has been evaluated over M = 50 bins. The results refer only to phases associated with γ frequencies in the band 30–100 Hz. The error bars in
(c) and (d) are of the order of the size of the symbols. The cyan dashed lines show the significance levels (c) ρ (S) = 0.009 and (d) e(S) = 0.016.

part, in agreement with the expected coexistence of γ rhythms
of different frequencies.

Let us quantify these qualitative observations by consid-
ering statistical indicators measuring the level of n:m syn-
chronization for irregular/noisy data over a large number of
θ cycles. In particular, we will employ the Kuramoto order
parameter ρnm and the normalized entropy enm introduced in
Sec. II C measured over time windows of duration TW and
averaged over many different realizations.

As shown in Figs. 13(c) and 13(d), both these indicators
exhibit two maxima showing the existence of two different
lockings between θ and γ oscillations for n:m equal to �3–4
and �8, thus corresponding to slow and fast γ (νθ = 10 Hz).
Following [61], in order to test if the reported PP couplings
are significant, we have estimated ρnm over time windows of
increasing duration, namely, from 0.1 to 1 s. As shown in
Fig. 13(c), the measured values do not vary substantially even
by increasing TW by a factor 10. This is a clear indication of
the stationarity of the PP locking phenomenon analyzed here
[61]. Furthermore, we measured enm also for surrogate data

obtained by random permutation and by a time shift (for the
exact definitions see Sec. II C and [61]); the values obtained
for these surrogate data are almost indistinguishable from the
original ones [see Fig. 13(d)]. These results suggest that more
effective approaches able to distinguish a true locked state
from spurious locking should be developed.

Finally, the significance level of the reported measurements
has been evaluated by randomly shuffling the time stamps
of the γ phases, denoted by ρ (S) and e(S) [dashed lines
in Figs. 13(c) and 13(d)]. The values of ρ (S) and e(S) are
definitely smaller than those of the corresponding indicators
corresponding to the observed PP lockings, thus confirming
their significance.

VI. CONCLUSION

In this paper we have shown in terms of an effective mean
field that in a sparse balanced inhibitory network with finite
synaptic decay COs can emerge via supercritical or subcritical
Hopf bifurcations from a stable focus. Furthermore, in the
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network (for sufficiently low structural heterogeneity) the
macroscopic focus turns out to be unstable towards micro-
scopic fluctuations in the firing activity leading to the emer-
gence of COs characterized by a frequency corresponding to
that of the damped oscillations towards the MF focus. There-
fore, in proximity to the subcritical Hopf bifurcations, the
coexistence of two COs with different origins is observable:
slow (fast) γ oscillations being fluctuation (mean) driven.

From our analysis it emerges that two ingredients are
needed to observe coexisting slow and fast γ COs: the sparse-
ness in the connections and the dynamical balance of the
network activity. In particular, the sparseness has a twofold
effect at the macroscopic level and at the microscopic level.
In a mean-field framework the randomness in the in-degree
distribution can be reinterpreted as a quenched disorder in
the synaptic couplings, which gives rise to the coexistence
of stable foci and limit cycles. However, in a fully coupled
network with heterogeneous parameters we would not observe
strong irregular fluctuations at the level of single neurons,
analogous to Poissonian-like firings usually observed in the
cortex [56,57,79]. These can emerge only in sparsely con-
nected networks [19,20]. Moreover, the balance mechanism
guarantees that the irregular spiking dynamics will not disap-
pear in the thermodynamic limit [21,23–25]. These persistent
microscopic fluctuations are able to trigger slow γ COs in the
network, which coexist with fast γ COs corresponding to the
limit cycle solutions in the mean field. These two ingredients
usually characterize real brain networks, where our prediction
that slow (fast) γ oscillations are associated with more (less)
irregular neuronal dynamics can be experimentally tested,
e.g., by measuring the coefficient of variation associated with
these two states. Furthermore, previous theoretical analysis of
γ oscillations based on two interacting Wilson-Cowan rate
models with different synaptic times revealed only the possi-
ble coexistence of two stable limit cycles, both corresponding
to tonic collective firing, i.e., mean-driven COs [54].

A fundamental improvement of the effective mean field
introduced here should include in the formulation also the
current fluctuations due to the sparseness. A possible strategy
to incorporate these intrinsic noise sources in an exact mean-
field formulation, going beyond the Ott-Antonsen ansatz [8],
could rely on the circulant cumulant expansion recently ap-
plied to an ensemble of oscillators [80] and an ensemble of
QIF neurons [81] in the presence of extrinsic noise.

Furthermore, a standard approach to obtain a macroscopic
description of the neuronal network dynamics is based on
derivation of the Fokker-Planck equation for the distribution
of the membrane potentials. This formalism has been fully
developed for sparse networks of leaky integrate-and-fire neu-
rons in [19,20]. A preliminary analysis based on this approach
for the QIF network examined here and in [21] suggests that
fluctuation-driven COs emerge due to an instability of the
asynchronous state [82].

Our model is not meant to explicitly replicate the dynamics
of specific brain areas but rather to illustrate fundamental
mechanisms by which slow and fast γ oscillations may arise
and coexist due to local network inhibitory features. How-
ever, several phenomena we reported resemble experimen-
tal results obtained for different brain regions in vitro as
well as in vivo. Our findings though can stimulate further

experiments or lead to alternative interpretations of the exist-
ing data.

Of particular interest is the possibility, analyzed in
Sec. V A, to switch from a γ rhythm to another by performing
transient stimulations. This mechanism can allow a single
inhibitory population to pass from a coding task to another
following an external sensory stimulus. Indeed, it has been
shown that distinct γ rhythms are involved in different coding
processes, namely, fast γ in new memory encoding, while
slow γ has been hypothesized to promote memory retrieval
[83].

On the one hand, pathological synchronization is usually
associated with neuronal diseases [15,84,85]. Aberrant γ os-
cillations have been observed in several cognitive disorders,
including Alzheimer’s disease, fragile X syndrome, and neo-
cortical epilepsy [77,83]. Furthermore, deep brain stimulation
(DBS) techniques have been developed along the years to
treat some of these diseases, e.g., essential tremor and Parkin-
son’s disease [86–88]. We have presented a simple model
exhibiting the coexistence of highly synchronized states and
asynchronous or partially synchronized regimes. Therefore,
our model can represent a simple benchmark to test new
DBS protocols to obtain eventually less invasive technique
to desynchronize pathological states [89–91] or to restore
healthy γ rhythms, as suggested in [83].

Moreover, the richness of the dynamical scenario present
in this simple model indicates possible future directions where
intrinsic mechanisms present in real neural networks such as
spike frequency adaptation could permit a dynamical alterna-
tion between different states. In this direction, a slow variable
like adaptation could drive the system from “healthy” asyn-
chronous or oscillatory dynamics to periods of pathological
extremely synchronous regimes, somehow similar to epileptic
seizure dynamics [92].

In Sec. V B we analyzed the emergence of COs in our
network in the presence of an external θ forcing, in order to
draw a connection with recent experimental investigations de-
voted to analyzing the emergence of γ oscillations in several
brain areas in vitro under sinusoidally modulated θ -frequency
optogenetic stimulations [39,48,49]. For low forcing ampli-
tudes, our network model displays θ -nested γ COs at fre-
quencies �50 Hz joined with irregular spiking dynamics.
These results are analogous to the ones reported for the CA1
and CA3 of the hippocampus in [39,48]. Moreover, θ -nested
oscillations with similar features have been reported also for
the mEC [49], but for higher γ frequencies.

Furthermore, for intermediate forcing amplitudes we ob-
serve the coexistence of slow and fast γ oscillations, which
lock to different phases of the θ rhythm, analogously to what
has been reported for the rat hippocampus during exploration
and REM sleep [35,46]. The θ -phase preferences displayed in
our model by the different γ rhythms are due to the hysteretic
nature of the subcritical Hopf bifurcation crossed during the θ

stimulation. Finally, for sufficiently strong forcing, the model
is driven in the fast γ regime.

Our analysis suggests that a single inhibitory population
can generate locally different γ rhythms and lock to one or
the other in the presence of a θ forcing. In particular, we
have shown that fast γ oscillations are locked to a strong
excitatory input, while slow γ COs emerge when excitation
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and inhibition balance. These results can be useful in revealing
the mechanism behind slow and fast γ oscillations reported in
several brain areas, namely, the hippocampus [45], olfactory
bulb [93], ventral striatum [94], visual cortical areas [95], and
neocortex [44]. Particularly interesting is the clear evidence
reported in [44] that different γ rhythms, phase locked to
the hippocampal θ rhythm, can be locally generated in the
neocortex. Therefore, future studies could focus on this brain
region to test for the validity of the mechanisms here reported.

The CA1 of the hippocampus is where most of the ex-
perimental studies on θ -γ oscillations have been performed.
Despite the experimental evidence that different γ oscil-
lations emerging in the CA1 at different θ phases are a
reflection of synaptic inputs originating from the CA3 and
mEC [46,47], this does not exclude the possibility that a
single CA1 inhibitory population can give rise to different
γ rhythms depending on the network state [45]. This hy-
pothesis is supported by experimental evidence showing that
a large part of CA1 interneurons in vivo can lock to both
slow and fast γ [35,46,47] and that in vitro γ rhythms can
be locally generated in various regions of the hippocampus
due to optogenetic stimulations [39,48,49] or pharmalogical
manipulation [50–53]. However, much work remains to be
done to clarify if local mechanisms can give rise to coexisting
γ rhythms also in the CA1.

Another interesting aspect, revealed quite recently, con-
cerns the wide cycle-to-cycle variability in the θ -nested γ

oscillations observed during spatial exploration and memory-
guided behavior in CA1 [78] and in dentate gyrus [96]. In par-
ticular, in these papers the authors show not only that different
γ bands can be excited during different θ cycles but also that
the spectral range of these bands overlap. This is consistent
with our analysis for intermediate forcing amplitude reported
in Figs. 11 and 12, where we show that the dynamics from
one cycle to the next one is extremely variable and that the
frequency bands associated with slow and fast COs slightly
overlap around 40 Hz.

At variance with previous results for purely inhibitory
populations reporting noise sustained COs in the range
100–200 Hz [16], our model displays slow γ rhythms char-
acterized by irregular firing of the single neurons. Therefore,
in our case it is not necessary to add an excitatory population
to the inhibitory one to slow down the rhythm and to obtain
oscillations in the γ range as done in [30,97]. Evidence has
been recently reported pointing out that γ oscillations can
emerge locally in the CA1 induced by the application of
kainate due to purely inhibitory mechanisms [53]. However,
other studies point out that in the same area of the hippocam-
pus excitatory and inhibitory neurons should interact to give
rise to oscillations in the γ range [39,52]. Preliminary results
obtained for QIF networks with a sinusoidal θ forcing show
that θ -nested γ oscillations with similar features can emerge
for purely inhibitory networks as well as for mixed excitatory-
inhibitory networks [98].

As shown in Sec. III B, the same kind of bifurcation
diagram can be observed by considering the external excita-
tory drive as well as the self-disinhibition of the recurrently
coupled inhibitory population. This suggests that in our model
the same scenarios reported in Sec. V for an excitatory θ

forcing can be obtained by considering an external inhibitory

population which transmits rhythmically its activity to the
target population. This somehow mimics the pacemaker θ

activity of a part of the medial septum interneurons on the
interneurons of the hippocampus experimentally observed in
[99]. This subject should be addressed in future studies due
to its relevance in clarifying the origin of θ -γ oscillations in
the hippocampus; however, it goes beyond the scopes of the
present analysis.

In this paper we considered a model including the minimal
ingredients necessary to reproduce the phenomenon of coex-
isting γ oscillations corresponding to quite simple (namely,
periodic) collective regimes. However, the introduction of
synaptic delay in the model can lead to more complex coex-
isting states, like quasiperiodic and even chaotic solutions, as
recently shown for fully coupled networks in [63,100]. The
inclusion of delay in our model can enrich the dynamical
scenario, maybe allowing the mimicking of further aspects of
the complex patterns of activity observed in the brain, e.g.,
sharp-wave ripples observed in the hippocampus which are
fundamental for memory consolidation [101]. Due to the large
variety of interneurons present in the brain and in particular in
the hippocampus [102], a further step in rendering our model
more realistic would consist in considering multiple inhibitory
populations characterized by different neuronal parameters.
By manipulating the influence of a population on the others
it would be interesting to investigate the possible mechanisms
to switch COs from one γ rhythm to another, following the
richness of the bifurcation scenarios presented in Figs. 2
and 3.

The generality of the phenomena here reported is ad-
dressed in Appendixes A and B. In particular, in Appendix A
we show that the mechanisms leading to the coexistence
scenario of fast and slow γ oscillations are not peculiar of
Lorentzian in-degree distributions (which we employed to
allow a comparison of the network simulations with the MF
results) but that they are observable also in the more studied
Erdős-Rényi sparse networks. Appendix B is devoted to the
analysis of a suitable normal form which reproduces the dy-
namics of the mean field in proximity to the subcritical Hopf
bifurcation. In particular, the noisy dynamics of the normal
form reveals coexisting oscillations of different frequencies.
More specifically, the addition of noise leads from damped
oscillations towards the stable focus to sustained oscillations
characterized by the same frequency. The latter result links
our findings to the more general context of noise-induced os-
cillations for nonexcitable systems examined in various fields
of research, namely, single-cell oscillations [103], epidemics
[104], predator-prey interactions [105], and laser dynamics
[106]. At variance with all previous studies, we have analyzed
noise-induced oscillations coexisting and interacting with os-
cillations emerging from the Hopf bifurcation. Furthermore,
the mechanism leading to the irregular fluctuations in our
case is quite peculiar. Single-cell oscillations are believed to
be driven by molecular noise, induced by the small number
of molecules present in each cell, and therefore disappearing
in the thermodynamic limit [107]. Recently, another possible
mechanism leading to fluctuation amplification in a feedfor-
ward chain has been suggested as a pacemaking mechanism
for biological systems; in this context the amplitude of the
oscillations grows with the system size [108]. Instead, in
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our case, the dynamical balance provides intrinsic noise and
oscillations of constant amplitude, essentially independent
from the number of synaptic inputs (in-degree) and from the
number of neurons in the network.
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APPENDIX A: SLOW AND FAST γ OSCILLATIONS
IN ERDŐS-RÉNYI NETWORK

In order to compare the network simulations with the MF
results, we have considered in this article a Lorentzian dis-
tribution for the in-degrees. It is therefore important to show
that the same phenomenology is observable by considering
a more standard distribution, like the Erdős-Rényi (ER) one.
The results of adiabatic simulations, shown in Fig. 14, confirm
that also for ER networks a bistable regime, characterized
by COs with different γ - frequencies [see Fig. 14(b)], is
indeed observable. In particular, slow γ COs characterized
by an average firing rate R̄ � 25 Hz and irregular neuronal

FIG. 14. Erdős-Rényi network. The results of adiabatic simu-
lations for an ER network were obtained by varying the synaptic
time τd : (a) maximal firing rates RM and (b) frequencies νosc of the
COs. Two coexisting states A and B are considered at τd = 0.15 ms.
(c) and (d) Raster plots and (e) and (f) distributions of cvi are shown
for states A and B, respectively. The parameters for the simulations
are N = 10 000, K = 1000, I0 = 0.25, J0 = 1.0, 	τd = 0.015 ms,
τ

(0)
d = 0.015 ms, and τ

(1)
d = 0.45 ms.

firings [as shown in Figs. 14(c) and 14(e)] coexist with almost
synchronized fast γ COs with neurons tonically firing with
R̄ � 60 Hz [see Figs. 14(d) and 14(f)].

APPENDIX B: GENERAL MECHANISM FOR THE
EMERGENCE OF COEXISTING OSCILLATIONS

We investigate here the generality of the mechanism for the
coexistence of COs observed in the network of QIF neurons.
In particular, we show that this phenomenon occurs when in
the MF model we have a focus coexisting with a limit cycle,
while in the sparse network we have fluctuations sustained by
the dynamical balance. If this is the mechanism, we expect to
see a similar phenomenon whenever we consider a system in
proximity to a subcritical Hopf bifurcation and we add noise
of constant amplitude to the dynamics.

Therefore, to assess the generality of the phenomenon,
we consider the normal form of a Hopf bifurcation in two
dimensions leading to the birth of a limit cycle from an
equilibrium, namely [109,110],

τmẋ = βx − y + σxr2 − (x + γ y)r4 + I1, (B1)

τmẏ = x + βy + σyr2 + (γ x − y)r4 + I2, (B2)

where r2 = x2 + y2, τm = 4 ms is an arbitrary timescale, I1(t )
and I2(t ) are generic external time-dependent forcing, β is
the bifurcation parameter, the parameter σ sets the nature of
the bifurcation, and γ controls the frequency of the stable
and unstable limit cycles. Notice that we added a quintic
term, absent in the original normal form [109,110], in order
to keep the values of x and y bounded while keeping the
same bifurcation structure. For I1 = I2 = 0 we will have a
subcritical (supercritical) Hopf bifurcation for σ = +1 (σ =
−1). In this case it is convenient to rewrite (B2) in polar

FIG. 15. (a) Bifurcation diagram for the variable x as a function
of the parameter β. Green (blue) lines indicate a stable (unstable)
limit cycle and the red (black) line indicates a stable (unstable) focus.
(b) Time trace of x(t ) in the presence of a zero-mean Gaussian noise
of amplitude A1 = A2 = 0.14, shown for fixed β in the bistability
region. An external pulse of current is added to the evolution equation
for x in (B2) for a time window of 56 ms to induce a switching
between the oscillatory states (the black dashed line, shifted on the
x axis to be visible while the actual baseline value is zero). In the
inset we show the power spectrum of the two different oscillatory
regimes obtained over long time traces (hundreds of seconds) in
order to check that the oscillations persist in time. The parameters
are β = −0.16, σ = 1, and γ = 1.5.
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coordinates (x, y) = (r cos φ, r sin φ), as follows:

τmṙ = βr + σ r3 − r5, (B3)

τmφ̇ = 1 + γ r4. (B4)

The stationary solutions are r = 0 corresponding to a stable
focus characterized by relaxation oscillations with a frequency
νD � 39 Hz and stable and unstable limit cycles of amplitudes
r2 = (σ ±

√
σ 2 + 4β )/2.

In Fig. 15(a) we show the bifurcation diagram for σ =
+1 and I1 = I2 = 0. We observe that the subcritical Hopf
bifurcation occurs at β = βc = 0 and for β < 0 it exists in
a region where stable (green dots) and unstable (blue dashed
line) limit cycles coexist with a stable focus (red line), exactly
as it happens for the QIF MF model [see Fig. 7(a)]. The stable
and unstable limit cycles merge at a saddle-node bifurcation
located at β = −σ 2/4.

As previously stated, the MF model cannot capture the
endogenous fluctuations, naturally present in sparse balanced
networks. In order to emulate this effect we consider I1(t )

and I2(t ) to be two independent and identically distributed
Gaussian white-noise processes, i.e., Iq(t ) = Aqξq(t ) with q =
1, 2, where ξq(t ) are random Gaussian distributed variables of
zero average and unitary variance. In the presence of these
additive noise terms and in proximity to the Hopf bifurcation,
we observe the coexistence of two oscillatory regimes as
shown in Fig. 15(b). One oscillation, characterized by higher
amplitude (green line), corresponds to the limit cycle present
in the non-noisy dynamics [green line in the bifurcation dia-
gram shown in Fig. 15(b)]. The other oscillation is the result
of a constructive role of noise that excites the stable focus,
thus generating robust oscillations at the frequency νD (red
line). Analogously to what was shown for the network of QIF
neurons (see Fig. 8), it is possible to switch between the two
kind of oscillations via a pulse current of positive (negative)
amplitude with respect to the baseline [see the dashed line in
Fig. 15(b)]. Moreover, the frequencies of the two oscillations,
generated by two different mechanisms, correspond to slow
and fast γ oscillations as observable in the corresponding
power spectra S(ν) shown in the inset of Fig. 15(b).
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