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Transition to stochastic synchronization in spatially extended systems
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Spatially extended dynamical systems, namely coupled map lattices, driven by additive spatio-temporal
noise are shown to exhibit stochastic synchronization. In analogy with low-dimensional systems, synchroni-
zation can be achieved only if the maximum Lyapunov exponent becomes negative for sufficiently large noise
amplitude. Moreover, noise can suppress also the nonlinear mechanism of information propagation, which may
be present in the spatially extended system. An example of phase transition is observed when both the linear
and the nonlinear mechanisms of information production disappear at the same critical value of the noise
amplitude. The corresponding critical properties cannot be estimated numerically with great accuracy, but
some general argument suggests that they could be ascribed to the Kardar-Parisi-Zhang universality class.
Conversely, when the nonlinear mechanism prevails on the linear one, another type of phase transition to
stochastic synchronization occurs. This one is shown to belong to the universality class of directed percolation.
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[. INTRODUCTION of whether synchronization can be observed also when the
chaotic coupling is substituted with a stochastic signal. The
The synchronization of dynamically coupled chaotic sys-problem of “stochastic synchronization” has been investi-
tems is a new interesting phenomenon that has attracteghted by several authof2—6] considering two different ini-
many studies and much effort in recent years. The first modtial conditions of the same low-dimensional chaotic system
els and examples discussed in the literature concerned ttie.g., the logistic map or the Lorenz sysjeand making
case in which the dynamical coupling is performed by a dethem evolve by adding to both of them the same realization
terministic chaotic signafeither external or self-generajed of noise. For sufficiently large values of the noise amplitude,
acting on different trajectories of the same low-dimensionathe stationary probability measure associated with the cha-
chaotic systente.g., se¢1]). Under quite general conditions, otic dynamics may be modified by the addition of noise fa-
e.g., large enough coupling strength and sufficiently longvoring stabilization onto the same stochastic orbit. As argued
evolution time, the two trajectories approach each other andyy Pikovsky[2], this effect can be explained and quantita-
despite their chaotic nature, no longer diverge. Beyond thévely predicted by observing that, at some value of the noise
intrinsic conceptual interest of “chaotic synchronization,” amplitude, the Lyapunov exponent associated with the dy-
the main motivations of these studies came from the posshamics changes from positive to negative. A necessary con-
bility of identifying efficient mechanisms for controlling or dition for the occurrence of synchronization is that the dy-
suppressing chaos in deterministic signals, with promisinghamical system has expanding and contracting regions, so
perspectives of applications to the automatic control of dethat noise may amplify the role of the latter against the
vices and to cryptography. former. For instance, synchronization cannot emerge from
On the other hand, applying a control mechanism to auniformly hyperbolic maps, like the Bernoulli shift. In Sec. |,
deterministic system by a chaotic signal looks artificial withwe discuss “stochastic synchronization” in simple maps,
respect to the more realistic scenario, in which the couplingvhich we introduce as examples of different classes of mod-
could be produced by noise. It is worth stressing that deterels. The new question that we want to address in this paper is
ministic chaos cannot be assimilated to a random procesghe following: under which conditions may stochastic syn-
despite the fact that in some cases they may yield equivalemhronization occur in spatially extended dynamical systems
results.(For instance, the Monte Carlo procedure applied tocoupled by the same realization of spatio-temporal noise?
an ergodic system yields the same equilibrium propertieghe models that we shall study numerically are the diffu-
emerging from the Liouville measure associated with the dysively coupled map lattic€CML) [7] versions of those in-
namics) Accordingly, it is quite natural to raise the question troduced in Sec. I. A comparison with the analysis therein
worked out on stochastic synchronization in low-
dimensional systems shows that the spatial structure makes
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the maximum Lyapunov exponent [8] is negative. In fact, where the state variable is a real quantity depending on the
we find that for noise-coupled CML modeld, becomes discrete time indext, o is the amplitude of the time-
negative for values of the noise amplitudelarger than a dependent random variabbg¢, uniformly distributed in the
threshold valuer, . interval [ —1,1], and f(x) is a map fromSCR into the in-

(i) It is well known that in spatially extended systems, terval ZC R. Stochastic synchronization can be investigated
information may propagate with a finite velocity[9], due by considering two different initial conditiong® andy®, of
to spatio-temporal instabilities. For noise-coupled CML dynamics(1) with the same realization of additive noisg.
models, with smooth nonlinearities, the only relevant instaMore precisely, we assume that the corresponding trajecto-
bility mechanism is the linear one, so thavanishes withA.  ries,x' andy', generated by Eq$8) may synchronize if their
This identifies a synchronization phase transitieifl) at a  distance
threshold valuesy=0,, wWhose critical properties seem to
belong to the Kardar-Parisi-Zhar(PZ) universality class d(t)=[x"—v| 2

of the interface roughening transiti¢m0]. ,
(iii) We discuss also other models in which deterministic?®comes smaller than a given threshdldusually assumed

dynamics or spatio-temporal noise may induce strong nonr_nuch smaller than unit. This definition allows one to identify
linear effects. In these cases. we find tNavanishes at a WO natural quantities associated with the synchronization of
value of the noise amplitude,> o, . A different kind of trajectories: thdirst passage time;(A), i.e., the first instant

synchronization phase transitiéRT2) is observed atr, and ~ ©f time at whichd(t)<A, and thesynchronization time
its critical properties are found to belong to the universality™2(4), i-€., the interval of time during whicl(t) remains
class of directed percolatiofdP) [11,12. smaller thanA [15]. We want to point out that, in general,
(iv) In the latter case, we find also that the time needed t&0th 71(A) and 7,(A) depend on the initial conditions and
achieve a synchronized state grows exponentially with thé&" the realization of noise. Accordingly, their averages over
system sizeL for oy>o0>0,: this dynamical regime is both ensembles have to be considered as the quantities of
analogous to the “stable-chaotic” phase observed 1. interest for our analysis. For the sake of simplicity, we shall
Conversely, this time grows logarithmically with for ¢  indicate these averaged times with the same notatiefis)

> gy (see alsd14)). and7(4). _ _ , o

In Sec. II, we introduce the models and the suitable indi- N all the numerical simulations, for a sufficiently small
cators for describing the synchronization transitions induced@lue ofA (typically A<10"7), the results do not depend on
by spatio-temporal noise in CMLs. The dynamical featuregh€ choice ofA. Moreover, one can assume that the trajec-
of the different scenarios are analyzed in Sec. lIl. In Sec. [vVOres have event_ually reached the synchr_omz_ed state_lf, after
we study the critical properties associated with the transitiorf1(4), d(t) remains smaller thaa for arbitrarily large in-
to stochastic synchronization in spatially extended systemdegration times. This amounts to saying thafA) goes to
the numerical analysis indicates that this phenomenon is ifinity with the integration time. This heuristic def|n|t|on_of_
genuine nonequilibrium process, characterized by the scalingp€ Synchronized state can be replaced by a more quantitative
laws of KPZ and DP universality classes for PT1 and PT2cTiterion: according to Pikovsk{2], for a given value oir
respectively. We expect that a suitable coarse-graining o€ synchronized state occurs if the Lyapunov exponeot
renormalization approach could provide a rigorous foundadynamics(l) is negative. This indicator is defined as fol-
tion for these results if one could map the noise-coupledOWs:
CML dynamics onto the stochastic PDE’s that identify the t
above-mentioned universality classes. Unfortunately, we A= lim E |nH
have not been able to work out any consistent derivation. t =
Nonetheless, numerics allows one to draw some conclusions
about the problem at hand: they are summarized in Sec. Myhere the dynamical variablg obeys the “linearized” dy-
together with some perspectives for future work on this subnamics
ject.

: ()
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axt+l

& (4)

§t+l=
II. A SURVEY ON STOCHASTIC SYNCHRONIZATION X

IN LOW-DIMENSIONAL SYSTEMS o . .
and the derivative is computed along the trajectory given by

Before addressing the main topic of this paper, i.e., stoEqg. (1). We want to remark that is well defined for deter-
chastic synchronization in spatially extended systems, iministic dynamicsle.g., thec=0 case in Eq.(1)]. In the
is worthwhile to present concepts, tools, and propertieframework of the linear stability analysis, a positifrega-
characterizing the same kind of phenomenon in low-tive) A measures the average exponential expan&on-
dimensional dynamical systems. In this section, we considetraction) rate of nearby trajectories. For+0, we are faced
some simple models that exemplify the general features ofith stochastic trajectories and it is r@fpriori obvious if A

this phenomenon. is still a meaningful quantity16]. On the other hand, E¢4)
The basic model equation is the stochastic map, does not depend explicitly op! and it is formally equivalent
for both the noisy and the noise-free cases. However, the
X l=f(x")+ o7, (1)  presence of noise modifies the evolution of the system with
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' It is worth mentioning that some time ago Herzel and
1 Freund[5] conjectured that stochastic synchronization can be
achieved only if noise has a nonzero average. They were led
to such a conclusion by studying stochastic synchronization
. for the case of a map of the unit interval into itself, i.e.,
S§=7=[0,1]. In such a case, the application of the stochastic
evolution rule (1) demands the adoption of some further
i recipe for maintaining the state variabté inside the unit
interval wheno#0. For instance, one can choose the fol-
lowing reinjectionrule x'*1—x!"1+1 (xt*1ox!T1-1) if
x1<0 (x*1>1). As discussed ifi5], any recipe of this
kind yields an effective state-dependent noise that does not
preserve the original symmetry of the stochastic proogss
thus acquiring a nonzero average value. The above-described
example and the results obtained[81 disprove their con-

4 6 jecture.

Nonetheless, an interesting observation is contained in
[5]: the stochastic evolution rulgl) for maps defined on a
finite interval induces strong nonlinear effects due to the dis-
) ) continuities introduced into the dynamics by the state-
respect to the noise-free case and, accordingly, also the tagependent noise. This strong nonlinear character of the dy-
gent space dynamics. We have verified numerically & namjcs s irrelevant for stochastic synchronization in low-
a self-averaging asymptotic quantity also for dynami@®s gimensional systems; conversely, it reveals a crucial
with o#0. It can be interpreted as the average exponentighroperty for discriminating between different critical behav-
expansion(contraction rate of infinitesimal perturbations of sy in high-dimensional systems, as we shall discuss in Sec.
stochastic trajectories generated by the evolution (Lleln V.
particular, its value is found to depend enbut not on the It is also worth considering that even the presence of non-
realization of noise. o zero average noise does not necessarily guarantee stochastic

Let us remark that it is quite simple to argue WAy<0  gynchronization. For instance, a counterexample is provided

implies 7,—c: After some finite timer,(A), d(t) has de-  py considering dynamicdl) for the logistic map at the Ulam
creased below a small threshaldand the trajectories can be gjnt:

viewed as a perturbation of each other. Linear stability im-

plies that their distance will keep on decreasing exponen- f(x)=4x(1—Xx), (6)

tially with an average raté, so that, within numerical pre-

cision, they will converge rapidly onto the same trajectory. whose noise-free dynamics is mixing. The state-dependent
As a first example, we consider the continuous mamoise modifies the probability measurexbin such a way as

shown in Fig. 1, to increase the weight of the contracting regions of the map.

On the other hand) remains positive and, remains finite
—ctanib(1+x)] if x<—1, for any value ofoe[0,1], despite the fact that they can be

made so small and so large, respectively, to produce an ap-

parent synchronization effect. As discussef(ijb], mislead-

ctanffb(1-x)] if x>1, ing results can be obtained in this case due to the finite com-

putational precision of numerical simulations.

whereS=R andZ=[—1,1]. We choose the parameter val-  As a final example, we consider the map
uesa=4 andc=0.5, so that Eq(5) can be viewed as a sort )

of antisymmetrized version of the logistic map at the Ulam F(x) = bx if 0<x<1b

point, taking values over the whole real axis. It can be easily at+c(x—1b) if 1/b<x<1.
shown that foro=0 and independently af, A=In2, i.e.,

map(5) is chaotic. Notice that the noise term of amplitugle Its dynamics converges to a stable periodic attractorbfor
extendsZ to the intervall —1— 0,1+ o]. We have verified =2.7, a=0.07, andc=0.1, this is a period-3 orbit with
numerically that, for any value df and for o larger than a  negative Lyapunov exponent,=In(cb?)~—0.316. Numeri-
threshold values,, A becomes negative and after somecal analysis shows that the Lyapunov exponent of the sto-
finite time 7, a synchronized state is eventually achieved. Inchastic evolution rulél) remains negative for any value of
particular, we find thatr, is strongly dependent ob: for ¢ and, according to Pikovsky’s criterion, a synchronized
instance, we have obtained,=1.2 for b=2 and o,  state is always achieved, as we have numerically checked.
=0.019 for b=1000. As recently found also by Lai and In summary, we have presented in this section three dif-
Zhou [6] for a similar mapping, this result indicates that ferent examples of low-dimensional dynamical systems
symmetric, i.e., zero-average, noise can yield stochastic sympitomizing possible scenarios concerning the phenomenon
chronization. of stochastic synchronization: In the last example it occurs

0.5

f(x) oL

-1 r

-6 —4

FIG. 1. The map5) for a=4, b=2, andc=0.5.

f(x)=1 ax(1—[x]) if [x]<1, (5

)
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for any value of the noise amplitudg in the second one, it synchronization in dynamic&) is the maximum Lyapunov
occurs for no value ofr; and it occurs only above some exponentA. In particular, the phenomenon is expected to

threshold valueg, , in the first example. occur only for values of the noise amplitudesuch thatA is
negative. For what concerns the interpretation of this indica-
IIl. STOCHASTIC SYNCHRONIZATION IN CML tor for the stochastic CML dynamia®), the same kind of
MODELS remarks and conclusions discussed in Sec. | for the low-

dimensional case still hold. All the numerical estimates\of

The generalization of the stochastic mép to a CML  haye been performed by applying the standard algorithm out-
model[7] with additive spatio-temporal noise can be definedjineq in [g].

by the following two-step evolution rule: Another relevant indicator, strictly related to the spatial
. structure of CML dynamics, is the average propagation ve-
X=(1—-g)x!+ §(X%—1+Xit+1): (8) locity of finite amplitude perturbation®],
t+1_ ¢ St t V=Ilim lim M (10

t—ow L—ox

The real-state variablg| depends now also on the discrete
space index=1,2, ... L: assuming unit lattice spacingy,
corresponds to the lattice size. The strength of the spatial L 1 if x—yl>0

coupling between nearest-neighbor maps in the lattice is N(t)=>, h' with hit:[ b (11)
fixed by the parameter, which can take values in the inter- i=1 0 otherwise

val [0,1]. Note that this kind of coupling amounts to a dis-

crete version of a diffusive term. The application of the mapis the number of nonsynchronized or “infected” sites at time
f mimicks the reaction term of reaction-diffusion PDEs, sot. Here{x{} and{yi} represent the trajectories generated by
that CMLs are commonly assumed to represent a sort oflynamics(8) starting from two initial conditions that differ
discretized version of continuous PDEs. At variance withby finite amountss;~O(1) only inside a space region of
standard CML models, dynami¢8) contains also a stochas- sizeS

tic term given by a set of identical, independent, equally 0 . _

distributed(IIED) random variable$z;}, whose amplitude is o | Xita if |L2—i[<S/2

determined by the parametet In what follows these IIED YT otherwise. (12
random variables are assumed to be uniformly distributed in

the intervall —1,1]. The averagé ) in Eq. (10) is performed over different initial

In full analogy with the low-dimensional case discussedconditions and noise realizations. The indicatbmeasures
in the preceding section, stochastic synchronization can bge rate of information propagation: we want to point out that
investigated by considering two different initial conditions v can take finite values even for nonchaotic evolution, i.e.,
{x} and{y/} for dynamics(8), coupled by the same realiza- for A<0. For instance, this scenario has been observed for
tion of additive spatio-temporal noise. More precisely, weCMLs made of discontinuous maps3]. In this case, infini-
assume that the corresponding trajectorigs} and {yl},  tesimal perturbations are unable to be amplified, while finite
generated by Eq€$8) may synchronize if their distance amplitude perturbations, induced by the discontinuity, can

propagate thanks to the spatial coupling. Therefore, in spa-
12 ¢t tially extended systems, the information flow is absent only
d=y ;1 Xi= il ®  whenV vanishes.
As a first example, let us consider the stochastic CML

becomes smaller than a given threshaldusually assumed dynamics(8), equipped with may5) for b=2.0(see Fig. 1
much smaller than unit. Upon this definition one canln this case, numerical simulations indicate that the stochas-
straightforwardly extend to the CML case indicators such agic synchronization of trajectories occurs for any value of the
the first passage timer;(A) and thesynchronization time diffusive couplings and for sufficiently large values af,
7,(A). Also, in this case we assume that the trajectoriebove whichA becomes negative. For instance, with: 3
synchronize if after the time;(A), 7,(A) is found to di- we find that synchronization is obtained for>o,
verge with the integration time. In all the numerical simula- =2.4768. This exemplifies the validity of Pikovsky’s crite-
tions, we have used the same value dfas in the low- rion also for spatially extended systems.
dimensional case. In fact, we have verified that also for the Let us provide more details of the dynamics below and
high-dimensional case, the results of numerical simulationgbove the threshold value, . For o<o,, we find that
are not affected by the choice f, provided it is small 7,(A) diverges exponentially with the system’s sizgei.e.,
enough, typicallyA<10"’. Again, both7,(A) and 7,(A) T ~expl/€). The length scale factaf is found to be inde-
are quantities averaged over initial conditions and over realpendent ol and proportional to the inverse decay rate of the
izations of noise. space correlation function of . Accordingly,L/¢ is an es-

In analogy with low-dimensional systems, we expect thatimate of the number of effective independent degrees of
the suitable dynamical indicator for identifying stochasticfreedom. In this dynamical regime the probabil®f¢,A)

where

X
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100000 | P P 7 coupled mapg5) for a=4, b=2,
e s00 | e and c=0.5, with e=%: (a) expo-
g e 0123 abc ABC 8pt. .~ nential scaling observed for 2.49
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e e for ¢=2.6(filled circles. The val-
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that two trajectories get closer than a distadcés propor-
tional to the combined probability that each one of thig
degrees of freedom gets closer thani.e., P(¢,A)xAY¢,
One can reasonably assumfelocP(g,A); this rough argu-
ment explains whyr;~expl/¢). Note that even ifd(t) is a global indicator, i.e., the exponential expansion rate be-
eventually becomes smaller than synchronization is rap- tween nearby orbits averaged in time and over the whole
idly lost because of the linear instability mechanism due tophase space. Accordingly, a negative valueAofis fully
positive A and 7, is always finite. compatible with the above-mentioned local, instantaneous
Conversely, a logarithmic dependencefA) onL is  event. This point, which turns out to be important for the
found for >0, [see Fig. Pb)]. Numerical simulations understanding of the dynamical mechanisms underlying the
show that in this case the number of regions made of a fewynchronization transition, will be analyzed more carefully
synchronized sites increases as time flows. Moreover, onceia the following section.
synchronized region is formed, it grows linearly in time, un-  Different scenarios are obtained by considering dynamics
til all regions merge and synchronization sets in over thg8) with f given by the logistic mag6). For e =3 and large
whole lattice. One can introduce an argument accounting foenough values df, one recovers features very similar to the
the logarithmic dependence;=In(L). An effective rate case of a single logistic map, where the synchronization tran-

cal simulations, although in principle one could not exclude
that the occurrence of a temporarily positive exponential ex-
pansion rate at some lattice site might produce a local am-
plification of d(t). In this respect, we want to remark th&t

equation for the number of synchronized site§;), can be
constructed by assigning a probabilgyfor the formation of
new synchronized sites and a ratéor the linear increase of
synchronized regions:

p (13

y+p(L—n),
with 0=<n(t)<L. This equation can be solved with the initial

conditionn(0)=0, so that an estimate of, is obtained by
imposing the conditiom(r;)=L:

L
LN}

. (14
Y

7'1=—|n
p

Note that a logarithmic dependence bris consistent with
the conditionpL/y>1, which can be satisfied for suffi-
ciently large values of. By estimating the parametepsand
v directly from numerics, we have verified that they fit rea-
sonably well the simple phenomenological Et4).

The indicatorV does not provide any additional informa-
tion about this kind of synchronization transition. ActuaNy,
is found to be positive for<o,, while it vanishes atr
=0, . This implies that in this model the linear mechanism
of information production associated with a posititeules
also the propagation of finite amplitude perturbatifitig. In
summary, foro>o, , A is negative and/=0, so that after
the trajectories have reacheg it seems that no information

sition is absent. In fact, for any value of A andV are
positive, while r; and 7, remain finite. Moreover,r; is
found to diverge exponentially withh with a parameter-
dependent rate.

A different situation occurs fog=2, whereA vanishes at
o, =0.27, whileV remains positive up te-,~0.4 (see Fig.
3). According to Pikovsky’s criterion, one expects that syn-

0.8 T T T T
*
~_ a A
0.6 r ‘\\ T
s *V
>
0.4 A \\\ T
\\ \¥
\\ A
02 F >, . .
~ =.:
\‘\\‘ *\
0.0 A ——%0 0o
&\*i
-0.2 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5
O

FIG. 3. Behavior of the propagation veloci(circles and of
the maximum Lyapunov exponent(triangles versus noise ampli-
tude o for coupled logistic maps with:% Both quantities have
been computed fok =1024, averaging over £Qnitial conditions

production mechanism can be responsible of the resurgeneach followed forO(10%) time steps. The dashed lines are a guide

of d(t) above the threshold. This is confirmed by numeri-

for the eyes.
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Let us stress that the above-described scenarios are not
specific to the particular choice of the parameter values
e=% ande=2. We have checked that their main features are
robust with respect to small but finite variations of al-
though a systematic investigation of the parameter space
would demand overly long computational times. Upon these
examples, one can conclude that in a CML of very large but

0 20 40 60
L

FIG. 4. Exponential scaling of, versusL (reported in a lin-log
scale for coupled logistic maps witbz% at different values of the
noise amplitudeo=0.3 (filled circles, 0.32 (empty circle$, 0.35
(filled diamond$, and 0.38empty diamonds The inset shows the
logarithmic scaling ofr; versusL (in a log-lin scalg for 6=0.45.
The values ofr; have been computed with=10"'° and averaged

over 1@ initial conditions.

chronization occurs above, . This is indeed the case, al-
though, foro,<o<ay, 71(A) is still found to increase
exponentially withL, while for >0, 71(A) grows loga-

80

100

120

finite-size L, stochastic synchronization of two trajectories
within an accessible time span occurs whémanishes.
Moreover, a very similar situation is obtained when con-
sidering dynamicg8) for the model of period-3 stable maps
(7) introduced in[13]. In this CML model,A is found to be
negative, independent of the value of the diffusive coupling
parameters and, accordingly, the dynamics eventually ap-
proaches a periodic attractor. On the other hand, the model
exhibits a transition from a frozen disordered phase Wwith
=0 to a chaotic phase witii>0 at ¢.~0.6. The peculiar

feature of this transition is that these two phases are sepa-
rated by a smalfuzzyregion centered arours., where both

positive and null values d¥ can be observed up to available
numerical resolutioh18].

The addition of noise to this CML dynamics according to
Eqg. (8) has interesting consequenceésis kept negative in-
dependent of the noise amplitudewhile a small-amplitude
noise destabilizes the frozen disordered phasdecomes

positive even fore<e_, so that thefuzzytransition disap-
pears. This notwithstanding, by increasimgip to a critical

value oy (e), V is found to drop again to zero not only be-
low, but also above .. For instance, one has,~0.16 for
£=0.58 ando~0.18 fore=0.62. In both cases, we recover

rithmically with L (see Fig. 4 Despite the strong analogy the same kind of mechanisms characterizing the synchroni-
between this transition ai,, and the one occurring in the zation transition discussed for coupled logistic maps with
first example atr, , we want to remark that there is a crucial g=2.

difference between them: below threshotg diverges in the

former case, while it is finite in the latter.

zation transition atry essentially ruled by. Let us point out
that, at variance with the first example, for <o <o, the

We want to point out that a finite value ® whenA is

negative, is usually reported as a typical signature of a strong
This indicates the existence of a new kind of synchroni-nonlinear effecf17]. For instance, it has been shoyh3]

that the discontinuity of maf¥) yields such an effect already
for the noise-free CML dynamics. Even if the discontinuity

nonlinear mechanism of information propagation is enougtof map (7) is removed by interpolating the expanding and

to maintain the exponential dependencerpfon L. On the

other hand, after;, two trajectories get very close to each fect is maintained19].

other and the negativ& stabilizes them onto the same sto-

chastic trajectory.

10’

a
@ .
-
10° | /I/i
.
//t
:-://I
;
T] 100 b Ed
//:t/
#/;é
10° -
103 1 1
40 60 80 100 120 140
L

160

contracting regions with a sufficiently steep segment, the ef-

The reinjection mechanism introduced by additive noise

in maps of the intervdl0,1] into itself produces similar dis-

500 .
() FIG. 5. (a) Exponential scaling
E of 7, versusL (reported in a lin-
400 ] log scalg for coupled map$5) for
,/E a=4, b=1000, andc=0.5 with
e e=1 and 0=2.1 (filled circles.
300 1 ¥ (b) Logarithmic scaling ofr, ver-
Z// susL (shown in a log-lin scale
7/ for 0=2.5 (filled circles. In this
200 7 case, 0,=1.99 and o,=2.15.
E The values ofr; have been com-
puted withA =108 and averaged
100 ; . . over 1@ initial conditions.
10 10 |_ 10 10
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0.15 T T 0.30

(a) (b)

-t E’l—l
5 FIG. 6. (a) The inverse of the

0.10 - 1 020 | | scaling factor 14 as a function of
o =0, (0,=25015) is re-
ported for coupled map&) with
b=20 and &=% and
0.05 | 1 o10 ] 2.49<0=<2.43; (b) 1/¢ as a func-
tion of o '—oy! (0y=0.4018)
for coupled logistic maps with=
1 and 0.36:0<0.38.

0.00 : :
0.000 0.005 0.010 0.015 OA(JOO(J

/o - 1/o,

0j2 014 0.6 018 1.0
1/o-1/0,

continuities in the dynamics. As we have shown, this nonlinawhich we indicate with PT2\ passes from positive to nega-
ear effect is sufficient for giving rise to dynamical phasestive values whileV remains positive up to-= o, where we

with A<0 andV>0 in the noisy dynamic$3). have observed a transition between different synchronous
All these observations suggest investigating whether alynamical phases, characterized by an exponential and by a
similar scenario can be obtained for m@&pin dynamics(8),  logarithmic dependence on the system size of the first pas-

by introducing a near-discontinuity in the map, since in thissage timer;. )
case thaeinjectionmechanism is not present. This is easily ~In both cases, we have found that the correlation leggth
obtained by taking a sufficiently large value of the parameteflefined in Sec. I, diverges at the transition point: this is an
b, e.g.,b~O(10%). Numerical simulations show that, still for indication in favor of a continuous phase transition. None-
e=1, there exists a range of values for whichv>0 and  theless, ¥ is found to vanish less than linearly when
A<O0. In Fig. 5, we show the dependencemfonL intwo ~ —¢a N PT1, while it vanishes linearly in PT2 whemn
regions of the parameter space wharés negative whiley ~ —¢v [See Figs. @) and @b)]. . .
is either positive or null. />0, an exponential increase of _ MOreover, close to the critical point, the time averages
7, with L is again observed, while a logarithmic dependencef Ehe  mean distance between trajectories,=(1/
characterizes the dynamical phase witk 0. )Ei:1|XiL_ yit|! and of tthe t0I00|09_'Ca|t distancep(t)
Accordingly, this second kind of transition is not just an =(1/L)Z{_;hj (hi=1if [z]|>A, otherwiseh} =0) exhibit a
artifact due to discontinuities introduced by the rejectioncontinuous dependence en(for the sake of space, in Fig. 7
rule, but a mere consequence of sufficiently strong nonlineae show these quantities only for the case of coupled logistic
effects that may be produced also in the absence of any rédaps.
jection mechanism and also if the noise distribution main- We want to remark that our definition of the synchronized

tains its symmetry. state implies that there exists a stable stochastic orbit that
prevents the trajectories of the dynamical system to flow
IV. CRITICAL PROPERTIES OF THE :}parthfrlcc)g ea(iﬂ ;)thf;b:elogvtrs]ome very smgll Ibltlt f||n|te
SYNCHRONIZATION TRANSITION IN CMLs resholda, so thatr,=cc. In both cases, numerical simuia-

tions show that this is what happens above the critical point,
In the preceding section, we have described two differentvhere A <0 andV=0. If at some lattice sité a fluctuation
kinds of phase transitions for stochastic synchronizatiomakes the local Lyapunov multiplier positiyee., Inf’(x})|
where the noise amplitude plays the role of the control >0, wheref’ indicates the first derivative of the map with
parameter. When both andV vanish atc=o0,, the tran-  respect to its argumefigiving rise locally to the exponential
sition is from a nonsynchronous dynamical phase to a syndivergence of nearby orbits, the process is rapidly reabsorbed
chronous one: we have denoted it by PT1. In the other caselue to the lack of any mechanism of information propaga-

02 10e-eoe

33--.—.1"‘

. (a) \\ FIG. 7. The spatio-temporal
‘\\ o8 (b) \ﬁ 1 averages of the indicatorg (a)
.. \ and p (b) are reported as a func-
06 . 1 tion of the noise amplitude for
| coupled logistic maps Wittsz%.
04 | ] The data have been obtained by
T\ averaging over a timé=10* and
. 02 ’ | 20 different initial conditions, for
.
X

<C> 0.1 <p>

L =4096 and considering a thresh-
old A=10"12

0.0 - 900000 0.0 . —0—0-0-90-00-¢
0.3 03 0.4 0.5 0.3 0.3 0.4 0.5
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tion. In this sense, the synchronized state should be equiva

lent to the absorbing state, typical of directed percolation —— 0=04010
(DP) processe$11,12. ] — 6=0.4015
Below the critical points, the role of fluctuations deter- 10° | | - 6 =0.402
mines the difference between PT1 and PT2. The inspectior --—-- 6=0.405 -
of the space-time evolution of dynami®), using the sym- e 5=0.4018

bolic representation of the state variablgs is quite helpful
for visualizing such a difference. For what concerns PTl,Tl
when o— o, one observes that nonsynchronized clusters 10
propagate as time flowgsince V is positive and, even if
some of them may eventually die, in the meantime new ones
have started to propagate, emerging also from previously
synchronized regions. Since aldc>0, any local fluctuation . ’
of d(t) produced by a positive multiplier has a finite prob- 10 v.
ability to be amplified and eventually propagated through the 5
lattice. 10 10
On the contrary, sufficiently close to PT2, for—oy , L
nonsynchronized clusters never emerge from already syn- i, 8. The first passage timg is reported in a log-log scale as
chronized regions and any connected nonsynchronous clustgkunction of system sizk for coupled logistic maps wita=2 and
eventually dies atr;(L,o) in a lattice of finite-sizeL (@  for various o. The data have been obtained by averaging over
situation very similar to what is observed in the active phas&000-25 000 different initial conditions and considering a threshold
of DP as a finite size effectEven if, in principle, the non- A=10"12
linear mechanism of information propagation is active, this
suggests that, inside an already synchronized region, no locgiree different system sizes, namely: 500, 1500, and 2000.
fluctuation of the Lyapunov multiplier towards positive val- As expected, the scaling region increases witand for L
ues ever persists long enough to activate the nonlinear pre=2000 an optimal fitting in the interval 320g;(t)<4.8
cess of information propagation. provides the estimate for the critical exponeft0.159
Upon these numerical observations and exploiting thex0.002. This confirms that PT2 belongs to the universality
analogies with other critical phenomena, we are led to conglass of DP.
jecture not only the existence of an absorbing, ie., synchro- For what concerns PT1, we have considered coupled
nized, state, but also that PT2, at variance with PT1, shoulghaps of the typ&5) for b=2.0 ands=1. The best scaling for
belong to the universality class of DP. This can be confirmedhe 7, as a function oL [according to Eq(15)] is observed
only by direct measurements of the critical exponents assGopr a noise amplituder,=2.5015. Fore=0,, we have
ciated with the synchronization transitions. It is worth stresspptained the following estimates for the critical exponents:

ing that numerical estimates have been performed by ap,~1.01-1.04 and §~0.35. Such values certainly do
proaching the critical points from below, i.e., for—0".

Here we report the analysis of PT2 in the case of coupled g g
logistic maps withe=3. As usual, a reliable measurement of
any critical exponent demands a very accurate estimate o
the critical point, i.e.,o in this case. For this reason, we
have performed careful simulations for evaluating the depen—g.1 |
dence on the system siteof 7;, which corresponds to the
absorption time in the DP language. At the critical paint
= oy, this time should diverge as

S -

4

10

-0.2 1
m(L,oy)~L?% (15)
where z=v /v, is the dynamical exponeritl1,12. The . L = 500 \ N
quantity 7,(L, o) is reported in Fig. 8 as a function bfina  -0.3 | - \ N
log-log scale for different values af. The best scaling be- | | 7~~~ L = 1500 \\
havior is obtained folr,=0.4018, where one has=1.55 — L =2000 \
+0.05. This result agrees quite well with the most accurate \

. . . 0.4 L 1 L Ly
numerlqal estimates of the DP valne 1.5807[20]_..Rely|ng 0 58 32 36 40 44 48
upon this result, we have also measured the critical exponen log.(t)

10

associated with the temporal decay of the dengift) of
active sites, i.e., those sites whéxg—yj|>A. The DP tran- FIG. 9. Logarithm in base 10 of the density of active sites as a
sition exhibits at the critical point the following scaling law function of log(t) for coupled logistic maps withe=2 and

for the topological distancep(t)~t % with 8=p/v|  ¢=0.4018. The data have been obtained by averaging over 10 000
=0.1595[20]. The densityp=p(t) is shown in Fig. 9 for different initial conditions and considering a threshales 10~ .
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10" . . . that corresponds to a KPZ model with a nonlinear term that
prevents the surface from growing indefinitel@4]. The
critical scaling laws for this kind of model have been re-
ported in[22]: the dynamical exponeiatis found to coincide
with the KPZ one, while the other exponents are found to be

10 different from the standard KPZ ones. Unfortunately a full
numerical comparison of PT2 with the model discussed in
N(t) [22] is prevented by two major technical problems: the ex-
treme difficulty in estimating with sufficient precision the
critical valueo, , and the strong finite-size effects.
10°

V. CONCLUDING REMARKS

We have studied the problem of stochastic synchroniza-
tion induced by additive spatio-temporal noise in CML mod-
els. In analogy with the low-dimensional case, synchroniza-

t tion of trajectories is observed if the maximum Lyapunov

FIG. 10. The number of “infected” sitedl(t) is reported in a  €Xponent becomes negative at a critical value of the noise
log-log scale as a function of timefor coupled mapg5) with a ~ amplitude. We have also identified two different critical be-
=4, b=2, andc=0.5 ande=2 and for variouso. The numerical haviors associated with the synchronization transition. One
data (filled circles have been obtained for a chain length  Of them belongs to the universality class of directed percola-
=20000 by averaging over 1000 different initial conditions andtion. The other one is not clearly identified, but indications
considering a threshold =105, The dashed line indicates a scal- suggest that it could belong to the universality class of the
ing of the Edwards-Wilkinson typéwith exponent 1Z=0.5) while ~ KPZ model with a nonlinear growth-limiting term.
the dot-dashed line has a slope=5 analogous to that of the KPZ In particular, the DP-like phase transition describes the
scaling. crossover between an “active” and an “absorbing” phase.

The former is characterized by an exponential dependence on
not correspond either to DP or to any known universalitythe system sizé of the time needed for achieving the syn-
class for percolation or growth processes. This seems analghronized state, while the latter exhibits a logarithmic depen-
gous to what has been pointed out by Grassbdrg@rfor  dence. This scenario is reminiscent of the phenomenology
systems exhibitingncomplete deathswvhen the asymptotic associated with stable chaos in CM[53], where the dy-
state is not a truly absorbing one, the critical properties ohamics approaches a periodic attractor rather than a “syn-
DP cannot be recovered. chronized” stochastic trajectory. The two kinds of synchro-

Since in this situation an absorbing state seems not taization transition reported here are quite general for
exist, the dynamical exponemtcan be better estimated by extended dynamical systems, since analogous behaviors have
measuring the number of “infected” sites of the chaiiit) been observed recently for two coupled CMLs without any
defined in Eq(11). At the critical pointc= o, , the follow-  external nois¢25].

4

10° 10

ing scaling law is expected to hold: Moreover, as far as the control of chaos is concerned,
when the erratic behaviors present in the extended system are
N(t)~t'2, (16 due solely to nonlinear mechanisitas it happens when the

maximal Lyapunov is negative b is still positive), the
The data from numerical analysis are reported in Fig. 10. Fogontrol schemes based on linear analy28 should fail and
short times {<500), we obtain the inverse of the dynamical hew “nonlinear” methods have to be introduced. We believe
exponent 1Z~0.47+0.05, a value consistent with the one that the appropriate indicator to employ in this context is the
expected for the Edwards-Wilkinson universality clagg, finite-size Lyapunov exponef27], because it is able to cap-
=2.0[21]. For longer times, we observe a crossover to ature infinitesimal as well as finite amplitude perturbation
lower-z value that is consistent with the one expected for thegrowth. We also expect that the observed phenomenology is
1D KPZ universality clas$namelyz.p,=3). We think that ~ Nnot specific to CMLs and the present study can apply to a
these results could be interpreted in terms of the conjectur@ider class of spatially extended dynamical systems, such as
reported in23]. In that paper, it has been suggested that, focoupled oscillator or PDE'’s.
a generic synchronization transition of coupled spatio-
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appropriate universality class should be the one of the KPZ
model with a nonlinear growth-limiting terrfil2,22. This We want to thank all the components of the DOCS re-

idea originates from the observation that, close to the synsearch group of Firenze for stimulating discussions and in-
chronization transition, it is possible to describe the dynamieractions, and in particular F. Bagnoli and A. Politi. We
ics of small perturbations in terms of a reaction diffusionexpress our gratitude also to V. Ahlers, M.A. Mam
model with multiplicative nois¢12]. Finally, this model can  A. Pikovsky, and P. Grassberger for helpful discussi@msl

be mapped via a Hopf-Cole transformation into an equatiorto P. Grassberger also for providing us with the efficient

036226-9



LUCIA BARONI, ROBERTO LIVI, AND ALESSANDRO TORCINI PHYSICAL REVIEW E63 036226
random number generator that we have employed in numerBcientific Interchange in Torino, during the workshop on
cal simulations A.T. acknowledges the contribution of T. “Complexity and Chaos,” June 1998 and October 1999. We
Caterina, H. Katharina, H. Daniel, and T. Sara for providingacknowledge CINECA in Bologna and INFM for providing

him with a realistic realization of a chaotic and noisy envi- us with access to the parallel computer CRAY T3E under the
ronment. Part of this work was performed at the Institute ofgrant “Iniziativa Calcolo Parallelo.”

[1] L.M. Pecora and T.L. Carroll, Phys. Rev. L&A, 821(1990.

[2] A.S. Pikovsky, Phys. Lett. A65 33(1992.

[3] S. Fahy and D.R. Hamann, Phys. Rev. L8€,.761(1992; A.
Maritan and J.R. Banavaibid. 72, 1451 (1994); 73, 2932

the Euclidean, do not modify the scenario described herein.
Note that both quantities are well defined also in the noise-free
case, since there is a finite probability that two different initial
conditions may stay closer than a finite distadce

(1994. [16] In a recent book by L. ArnolfiRandom Dynamical Systenis
[4] A.S. Pikovsky, Phys. Rev. Let?.3 2931(1994. Springer Monographs in Mathemati¢8erlin, New York,
[5] H. Herzel and J. Freund, Phys. Rev5E, 3238(1995. 19987, it has been shown that the maximum Lyapunov expo-
[6] CH. Lai and Changsong Zhou, Europhys. LetB, 376 nent is a meaningful quantity when the deterministic dynamics
(1998. is coupled with the time-independent stochastic signal.

(7] K. Kaneko, Prog. Theor. Phyg2, 980(1984; I. Waller and [17] A. Torcini, P. Grassberger, and A. Politi, J. Phys28, 4533
R. Kapral, Phys. Rev. 80, 2047 (1984).

. ) (1995.

8] I. Shimada and T. Nagashima, Prog. Theor. Pl§fs.1605 . . -

[ ](1979_ G. Benettin E Galgani 2 Giorgilli, and J.M [18] F. Cecconi, R. Livi, and A. Politi, Phys. Rev. &7, 2703
A " T ' o (1998.

Strelcyn, Meccanic®, 21 (1980.
[9] P. Grassberger, Phys. Sc#0, 1033 (1985; K. Kaneko,
Physica D23, 436(1986.

[19] A. Politi and A. Torcini, Europhys. Let28, 545 (1994).
[20] I. Jensen, J. Phys. 29, 7013(1996; 32, 6055(1999.
[10] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. L&8, [21] A.-L. Barabasi and H.E. Stanldyractal Concepts in Surface
889 (1986. Growth (Cambridge University Press, Cambridge, England,
[11] E. Domany and W. Kinzel, Phys. Rev. Le3, 311(1984. 1995. B
[12] For a recent review on directed percolation, see P. Grasd22] G. Grinstein, M.A. Muiwz, and Y. Tu, Phys. Rev. Let?6,
berger, inProceedings of the 1995 Shimla Conference on  4376(1998; Y. Tu, G. Grinstein, and M.A. Muez, ibid. 78,
Complex Systemedited by S. Purét al. (Narosa Publishing, 274 (1997).
New Dehli, 1997. [23] P. Grassberger, Phys. Rev58, R2520(1999.
[13] A. Politi, R. Livi, R. Oppo, and R. Kapral, Europhys. Le22, [24] A.S. Pikovsky and J. Kurths, Phys. Rev.48, 898(1994).
571(1993; R. Kapral, R. Livi, R. Oppo, and A. Politi, Phys. [25] V. Ahlers and A.S. Pikovskyprivate communication
Rev. E49, 2009(1994). [26] E. Ott, C. Grebogi, and J.A. Yorke, Phys. Rev. Léd, 1196
[14] L. Baroni, R. Livi, and A. Torcini, inDynamical Systems: (1990.
From Crystal to Chagsedited by J.-M. Gambaudo, P. Hubert, [27] E. Aurell, G. Boffetta, A. Crisanti, G. Paladin, and A. Vul-
P. Tisseur, and S. VaienfiWorld Scientific, Singapore, 2000 piani, Phys. Rev. Lett77, 1262 (1996; M. Cencini and A.
p. 23. Torcini, Phys. Rev. E (to be publishegd e-print
[15] We have checked that different norms, e.g., the maximum or nlin.CD/0011044.

036226-10



