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Transition to stochastic synchronization in spatially extended systems
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Spatially extended dynamical systems, namely coupled map lattices, driven by additive spatio-temporal
noise are shown to exhibit stochastic synchronization. In analogy with low-dimensional systems, synchroni-
zation can be achieved only if the maximum Lyapunov exponent becomes negative for sufficiently large noise
amplitude. Moreover, noise can suppress also the nonlinear mechanism of information propagation, which may
be present in the spatially extended system. An example of phase transition is observed when both the linear
and the nonlinear mechanisms of information production disappear at the same critical value of the noise
amplitude. The corresponding critical properties cannot be estimated numerically with great accuracy, but
some general argument suggests that they could be ascribed to the Kardar-Parisi-Zhang universality class.
Conversely, when the nonlinear mechanism prevails on the linear one, another type of phase transition to
stochastic synchronization occurs. This one is shown to belong to the universality class of directed percolation.
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I. INTRODUCTION

The synchronization of dynamically coupled chaotic s
tems is a new interesting phenomenon that has attra
many studies and much effort in recent years. The first m
els and examples discussed in the literature concerned
case in which the dynamical coupling is performed by a
terministic chaotic signal~either external or self-generated!
acting on different trajectories of the same low-dimensio
chaotic system~e.g., see@1#!. Under quite general conditions
e.g., large enough coupling strength and sufficiently lo
evolution time, the two trajectories approach each other a
despite their chaotic nature, no longer diverge. Beyond
intrinsic conceptual interest of ‘‘chaotic synchronization
the main motivations of these studies came from the po
bility of identifying efficient mechanisms for controlling o
suppressing chaos in deterministic signals, with promis
perspectives of applications to the automatic control of
vices and to cryptography.

On the other hand, applying a control mechanism to
deterministic system by a chaotic signal looks artificial w
respect to the more realistic scenario, in which the coup
could be produced by noise. It is worth stressing that de
ministic chaos cannot be assimilated to a random proc
despite the fact that in some cases they may yield equiva
results.~For instance, the Monte Carlo procedure applied
an ergodic system yields the same equilibrium proper
emerging from the Liouville measure associated with the
namics.! Accordingly, it is quite natural to raise the questio
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of whether synchronization can be observed also when
chaotic coupling is substituted with a stochastic signal. T
problem of ‘‘stochastic synchronization’’ has been inves
gated by several authors@2–6# considering two different ini-
tial conditions of the same low-dimensional chaotic syst
~e.g., the logistic map or the Lorenz system! and making
them evolve by adding to both of them the same realizat
of noise. For sufficiently large values of the noise amplitu
the stationary probability measure associated with the c
otic dynamics may be modified by the addition of noise
voring stabilization onto the same stochastic orbit. As argu
by Pikovsky @2#, this effect can be explained and quantit
tively predicted by observing that, at some value of the no
amplitude, the Lyapunov exponent associated with the
namics changes from positive to negative. A necessary c
dition for the occurrence of synchronization is that the d
namical system has expanding and contracting regions
that noise may amplify the role of the latter against t
former. For instance, synchronization cannot emerge fr
uniformly hyperbolic maps, like the Bernoulli shift. In Sec.
we discuss ‘‘stochastic synchronization’’ in simple map
which we introduce as examples of different classes of m
els. The new question that we want to address in this pap
the following: under which conditions may stochastic sy
chronization occur in spatially extended dynamical syste
coupled by the same realization of spatio-temporal noi
The models that we shall study numerically are the dif
sively coupled map lattice~CML! @7# versions of those in-
troduced in Sec. I. A comparison with the analysis ther
worked out on stochastic synchronization in low
dimensional systems shows that the spatial structure m
this phenomenon even richer. Specifically, let us list here
main results contained in this paper.

~i! Pikovsky’s criterion@2# can be generalized to spatiall
extended systems: Stochastic synchronization occurs on
©2001 The American Physical Society26-1
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LUCIA BARONI, ROBERTO LIVI, AND ALESSANDRO TORCINI PHYSICAL REVIEW E63 036226
the maximum Lyapunov exponentL @8# is negative. In fact,
we find that for noise-coupled CML models,L becomes
negative for values of the noise amplitudes larger than a
threshold valuesL .

~ii ! It is well known that in spatially extended system
information may propagate with a finite velocityV @9#, due
to spatio-temporal instabilities. For noise-coupled CM
models, with smooth nonlinearities, the only relevant ins
bility mechanism is the linear one, so thatV vanishes withL.
This identifies a synchronization phase transition~PT1! at a
threshold valuesV[sL , whose critical properties seem t
belong to the Kardar-Parisi-Zhang~KPZ! universality class
of the interface roughening transition@10#.

~iii ! We discuss also other models in which determinis
dynamics or spatio-temporal noise may induce strong n
linear effects. In these cases, we find thatV vanishes at a
value of the noise amplitudesV.sL . A different kind of
synchronization phase transition~PT2! is observed atsV and
its critical properties are found to belong to the universa
class of directed percolation~DP! @11,12#.

~iv! In the latter case, we find also that the time needed
achieve a synchronized state grows exponentially with
system sizeL for sV.s.sL : this dynamical regime is
analogous to the ‘‘stable-chaotic’’ phase observed in@13#.
Conversely, this time grows logarithmically withL for s
.sV ~see also@14#!.

In Sec. II, we introduce the models and the suitable in
cators for describing the synchronization transitions indu
by spatio-temporal noise in CMLs. The dynamical featu
of the different scenarios are analyzed in Sec. III. In Sec.
we study the critical properties associated with the transi
to stochastic synchronization in spatially extended syste
the numerical analysis indicates that this phenomenon
genuine nonequilibrium process, characterized by the sca
laws of KPZ and DP universality classes for PT1 and P
respectively. We expect that a suitable coarse-graining
renormalization approach could provide a rigorous foun
tion for these results if one could map the noise-coup
CML dynamics onto the stochastic PDE’s that identify t
above-mentioned universality classes. Unfortunately,
have not been able to work out any consistent derivat
Nonetheless, numerics allows one to draw some conclus
about the problem at hand: they are summarized in Sec
together with some perspectives for future work on this s
ject.

II. A SURVEY ON STOCHASTIC SYNCHRONIZATION
IN LOW-DIMENSIONAL SYSTEMS

Before addressing the main topic of this paper, i.e., s
chastic synchronization in spatially extended systems
is worthwhile to present concepts, tools, and proper
characterizing the same kind of phenomenon in lo
dimensional dynamical systems. In this section, we cons
some simple models that exemplify the general feature
this phenomenon.

The basic model equation is the stochastic map,

xt115 f ~xt!1sh t, ~1!
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where the state variablext is a real quantity depending on th
discrete time indext, s is the amplitude of the time-
dependent random variableh t, uniformly distributed in the
interval @21,1#, and f (x) is a map fromS#R into the in-
terval I#R. Stochastic synchronization can be investiga
by considering two different initial conditions,x0 andy0, of
dynamics~1! with the same realization of additive noiseh t.
More precisely, we assume that the corresponding traje
ries,xt andyt, generated by Eqs.~8! may synchronize if their
distance

d~ t !5uxt2ytu ~2!

becomes smaller than a given thresholdD, usually assumed
much smaller than unit. This definition allows one to ident
two natural quantities associated with the synchronization
trajectories: thefirst passage timet1(D), i.e., the first instant
of time at which d(t)<D, and thesynchronization time
t2(D), i.e., the interval of time during whichd(t) remains
smaller thanD @15#. We want to point out that, in genera
both t1(D) and t2(D) depend on the initial conditions an
on the realization of noise. Accordingly, their averages o
both ensembles have to be considered as the quantitie
interest for our analysis. For the sake of simplicity, we sh
indicate these averaged times with the same notationst1(D)
andt2(D).

In all the numerical simulations, for a sufficiently sma
value ofD ~typically D,1027), the results do not depend o
the choice ofD. Moreover, one can assume that the traje
tories have eventually reached the synchronized state if, a
t1(D), d(t) remains smaller thanD for arbitrarily large in-
tegration times. This amounts to saying thatt2(D) goes to
infinity with the integration time. This heuristic definition o
the synchronized state can be replaced by a more quantit
criterion: according to Pikovsky@2#, for a given value ofs
the synchronized state occurs if the Lyapunov exponentL of
dynamics~1! is negative. This indicator is defined as fo
lows:

L5 lim
t→`

1

t
ln)

j 51

t U j j

j j 21U, ~3!

where the dynamical variablej t obeys the ‘‘linearized’’ dy-
namics

j t115
]xt11

]xt j t ~4!

and the derivative is computed along the trajectory given
Eq. ~1!. We want to remark thatL is well defined for deter-
ministic dynamics@e.g., thes50 case in Eq.~1!#. In the
framework of the linear stability analysis, a positive~nega-
tive! L measures the average exponential expansion~con-
traction! rate of nearby trajectories. Fors5” 0, we are faced
with stochastic trajectories and it is nota priori obvious ifL
is still a meaningful quantity@16#. On the other hand, Eq.~4!
does not depend explicitly onh t and it is formally equivalent
for both the noisy and the noise-free cases. However,
presence of noise modifies the evolution of the system w
6-2
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TRANSITION TO STOCHASTIC SYNCHRONIZATION IN . . . PHYSICAL REVIEW E63 036226
respect to the noise-free case and, accordingly, also the
gent space dynamics. We have verified numerically thatL is
a self-averaging asymptotic quantity also for dynamics~1!
with sÞ0. It can be interpreted as the average exponen
expansion~contraction! rate of infinitesimal perturbations o
stochastic trajectories generated by the evolution rule~1!. In
particular, its value is found to depend ons, but not on the
realization of noise.

Let us remark that it is quite simple to argue whyL,0
implies t2→`: After some finite timet1(D), d(t) has de-
creased below a small thresholdD and the trajectories can b
viewed as a perturbation of each other. Linear stability i
plies that their distance will keep on decreasing expon
tially with an average rateL, so that, within numerical pre
cision, they will converge rapidly onto the same trajector

As a first example, we consider the continuous m
shown in Fig. 1,

f ~x!5H 2c tanh@b~11x!# if x,21,

ax~12uxu! if uxu,1,

c tanh@b~12x!# if x.1,

~5!

whereS[R andI5@21,1#. We choose the parameter va
uesa54 andc50.5, so that Eq.~5! can be viewed as a so
of antisymmetrized version of the logistic map at the Ula
point, taking values over the whole real axis. It can be ea
shown that fors50 and independently ofb, L5 ln 2, i.e.,
map~5! is chaotic. Notice that the noise term of amplitudes
extendsI to the interval@212s,11s#. We have verified
numerically that, for any value ofb and fors larger than a
threshold valuesL , L becomes negative and after som
finite time t1 a synchronized state is eventually achieved.
particular, we find thatsL is strongly dependent onb: for
instance, we have obtainedsL51.2 for b52 and sL

50.019 for b51000. As recently found also by Lai an
Zhou @6# for a similar mapping, this result indicates th
symmetric, i.e., zero-average, noise can yield stochastic
chronization.

FIG. 1. The map~5! for a54, b52, andc50.5.
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It is worth mentioning that some time ago Herzel a
Freund@5# conjectured that stochastic synchronization can
achieved only if noise has a nonzero average. They were
to such a conclusion by studying stochastic synchroniza
for the case of a mapf of the unit interval into itself, i.e.,
S[I5@0,1#. In such a case, the application of the stochas
evolution rule ~1! demands the adoption of some furth
recipe for maintaining the state variablext inside the unit
interval whens5” 0. For instance, one can choose the f
lowing reinjection rule xt11→xt1111 (xt11→xt1121) if
xt11,0 (xt11.1). As discussed in@5#, any recipe of this
kind yields an effective state-dependent noise that does
preserve the original symmetry of the stochastic processh t,
thus acquiring a nonzero average value. The above-descr
example and the results obtained in@6# disprove their con-
jecture.

Nonetheless, an interesting observation is contained
@5#: the stochastic evolution rule~1! for maps defined on a
finite interval induces strong nonlinear effects due to the d
continuities introduced into the dynamics by the sta
dependent noise. This strong nonlinear character of the
namics is irrelevant for stochastic synchronization in lo
dimensional systems; conversely, it reveals a cruc
property for discriminating between different critical beha
iors in high-dimensional systems, as we shall discuss in S
IV.

It is also worth considering that even the presence of n
zero average noise does not necessarily guarantee stoch
synchronization. For instance, a counterexample is provi
by considering dynamics~1! for the logistic map at the Ulam
point:

f ~x!54x~12x!, ~6!

whose noise-free dynamics is mixing. The state-depend
noise modifies the probability measure ofxt in such a way as
to increase the weight of the contracting regions of the m
On the other hand,L remains positive andt2 remains finite
for any value ofsP@0,1#, despite the fact that they can b
made so small and so large, respectively, to produce an
parent synchronization effect. As discussed in@4,5#, mislead-
ing results can be obtained in this case due to the finite c
putational precision of numerical simulations.

As a final example, we consider the map

f ~x!5H bx if 0 ,x,1/b

a1c~x21/b! if 1/b,x,1.
~7!

Its dynamics converges to a stable periodic attractor: fob
52.7, a50.07, andc50.1, this is a period-3 orbit with
negative Lyapunov exponent,L5 ln(cb2)'20.316. Numeri-
cal analysis shows that the Lyapunov exponent of the
chastic evolution rule~1! remains negative for any value o
s and, according to Pikovsky’s criterion, a synchroniz
state is always achieved, as we have numerically checke

In summary, we have presented in this section three
ferent examples of low-dimensional dynamical syste
epitomizing possible scenarios concerning the phenome
of stochastic synchronization: In the last example it occ
6-3
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LUCIA BARONI, ROBERTO LIVI, AND ALESSANDRO TORCINI PHYSICAL REVIEW E63 036226
for any value of the noise amplitudes; in the second one, i
occurs for no value ofs; and it occurs only above som
threshold value,sL , in the first example.

III. STOCHASTIC SYNCHRONIZATION IN CML
MODELS

The generalization of the stochastic map~1! to a CML
model@7# with additive spatio-temporal noise can be defin
by the following two-step evolution rule:

x̃i
t5~12«!xi

t1
«

2
~xi 21

t 1xi 11
t !, ~8!

xi
t115 f ~ x̃i

t!1sh i
t .

The real-state variablexi
t depends now also on the discre

space indexi 51,2, . . . ,L: assuming unit lattice spacing,L
corresponds to the lattice size. The strength of the spa
coupling between nearest-neighbor maps in the lattice
fixed by the parameter«, which can take values in the inte
val @0,1#. Note that this kind of coupling amounts to a di
crete version of a diffusive term. The application of the m
f mimicks the reaction term of reaction-diffusion PDEs,
that CMLs are commonly assumed to represent a sor
discretized version of continuous PDEs. At variance w
standard CML models, dynamics~8! contains also a stochas
tic term given by a set of identical, independent, equa
distributed~IIED! random variables$h i%, whose amplitude is
determined by the parameters. In what follows these IIED
random variables are assumed to be uniformly distribute
the interval@21,1#.

In full analogy with the low-dimensional case discuss
in the preceding section, stochastic synchronization can
investigated by considering two different initial condition
$xi

0% and$yi
0% for dynamics~8!, coupled by the same realiza

tion of additive spatio-temporal noise. More precisely,
assume that the corresponding trajectories,$xi

t% and $yi
t%,

generated by Eqs.~8! may synchronize if their distance

d~ t !5
1

N (
i 51

N

uxi
t2yi

tu ~9!

becomes smaller than a given thresholdD, usually assumed
much smaller than unit. Upon this definition one c
straightforwardly extend to the CML case indicators such
the first passage timet1(D) and thesynchronization time
t2(D). Also, in this case we assume that the trajector
synchronize if after the timet1(D), t2(D) is found to di-
verge with the integration time. In all the numerical simu
tions, we have used the same value ofD as in the low-
dimensional case. In fact, we have verified that also for
high-dimensional case, the results of numerical simulati
are not affected by the choice ofD, provided it is small
enough, typicallyD,1027. Again, botht1(D) and t2(D)
are quantities averaged over initial conditions and over r
izations of noise.

In analogy with low-dimensional systems, we expect t
the suitable dynamical indicator for identifying stochas
03622
ial
is

p

of

y

in

be

s

s

-

e
s

l-

t

synchronization in dynamics~8! is the maximum Lyapunov
exponent,L. In particular, the phenomenon is expected
occur only for values of the noise amplitudes such thatL is
negative. For what concerns the interpretation of this indi
tor for the stochastic CML dynamics~8!, the same kind of
remarks and conclusions discussed in Sec. I for the lo
dimensional case still hold. All the numerical estimates ofL
have been performed by applying the standard algorithm
lined in @8#.

Another relevant indicator, strictly related to the spat
structure of CML dynamics, is the average propagation
locity of finite amplitude perturbations@9#,

V5 lim
t→`

lim
L→`

^N~ t !&
2t

, ~10!

where

N~ t !5(
i 51

L

hi
t with hi

t5H 1 if uxi
t2yi

tu.0

0 otherwise
~11!

is the number of nonsynchronized or ‘‘infected’’ sites at tim
t. Here$xi

t% and $yi
t% represent the trajectories generated

dynamics~8! starting from two initial conditions that differ
by finite amountsd i;O(1) only inside a space region o
sizeS:

yi
05H xi

01d i if uL/22 i u<S/2

xi
0 otherwise.

~12!

The averagê & in Eq. ~10! is performed over different initial
conditions and noise realizations. The indicatorV measures
the rate of information propagation: we want to point out th
V can take finite values even for nonchaotic evolution, i
for L,0. For instance, this scenario has been observed
CMLs made of discontinuous maps@13#. In this case, infini-
tesimal perturbations are unable to be amplified, while fin
amplitude perturbations, induced by the discontinuity, c
propagate thanks to the spatial coupling. Therefore, in s
tially extended systems, the information flow is absent o
whenV vanishes.

As a first example, let us consider the stochastic CM
dynamics~8!, equipped with map~5! for b52.0 ~see Fig. 1!.
In this case, numerical simulations indicate that the stoch
tic synchronization of trajectories occurs for any value of t
diffusive coupling« and for sufficiently large values ofs,
above whichL becomes negative. For instance, with«5 1

3

we find that synchronization is obtained fors.sL

52.4768. This exemplifies the validity of Pikovsky’s crite
rion also for spatially extended systems.

Let us provide more details of the dynamics below a
above the threshold valuesL . For s,sL , we find that
t1(D) diverges exponentially with the system’s sizeL, i.e.,
t1;exp(L/j). The length scale factorj is found to be inde-
pendent ofL and proportional to the inverse decay rate of t
space correlation function ofxi

t . Accordingly,L/j is an es-
timate of the number of effective independent degrees
freedom. In this dynamical regime the probabilityP(j,D)
6-4
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FIG. 2. t1 versus L for
coupled maps~5! for a54, b52,
and c50.5, with «5

1
3: ~a! expo-

nential scaling observed for 2.4
<s<2.43; ~b! logarithmic scaling
for s52.6 ~filled circles!. The val-
ues of t1 have been computed
with D51028– 10212 and aver-
aged over 1000–5000 initial con
ditions.
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that two trajectories get closer than a distanceD is propor-
tional to the combined probability that each one of theL/j
degrees of freedom gets closer thanD, i.e., P(j,D)}DL/j.
One can reasonably assumet1

21}P(j,D); this rough argu-
ment explains whyt1;exp(L/j). Note that even ifd(t)
eventually becomes smaller thanD, synchronization is rap-
idly lost because of the linear instability mechanism due
positiveL andt2 is always finite.

Conversely, a logarithmic dependence oft1(D) on L is
found for s.sL @see Fig. 2~b!#. Numerical simulations
show that in this case the number of regions made of a
synchronized sites increases as time flows. Moreover, on
synchronized region is formed, it grows linearly in time, u
til all regions merge and synchronization sets in over
whole lattice. One can introduce an argument accounting
the logarithmic dependencet1} ln(L). An effective rate
equation for the number of synchronized sites,n(t), can be
constructed by assigning a probabilityp for the formation of
new synchronized sites and a rateg for the linear increase o
synchronized regions:

]n

]t
5g1p~L2n!, ~13!

with 0<n(t)<L. This equation can be solved with the initi
conditionn(0)50, so that an estimate oft1 is obtained by
imposing the conditionn(t1)5L:

t15
1

p
lnFpL

g
11G . ~14!

Note that a logarithmic dependence onL is consistent with
the condition pL/g@1, which can be satisfied for suffi
ciently large values ofL. By estimating the parametersp and
g directly from numerics, we have verified that they fit re
sonably well the simple phenomenological Eq.~14!.

The indicatorV does not provide any additional informa
tion about this kind of synchronization transition. Actually,V
is found to be positive fors,sL , while it vanishes ats
5sL . This implies that in this model the linear mechanis
of information production associated with a positiveL rules
also the propagation of finite amplitude perturbations@17#. In
summary, fors.sL , L is negative andV50, so that after
the trajectories have reachedt1, it seems that no information
production mechanism can be responsible of the resurg
of d(t) above the thresholdD. This is confirmed by numeri-
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cal simulations, although in principle one could not exclu
that the occurrence of a temporarily positive exponential
pansion rate at some lattice site might produce a local
plification of d(t). In this respect, we want to remark thatL
is a global indicator, i.e., the exponential expansion rate
tween nearby orbits averaged in time and over the wh
phase space. Accordingly, a negative value ofL is fully
compatible with the above-mentioned local, instantane
event. This point, which turns out to be important for t
understanding of the dynamical mechanisms underlying
synchronization transition, will be analyzed more carefu
in the following section.

Different scenarios are obtained by considering dynam
~8! with f given by the logistic map~6!. For «5 1

3 and large
enough values ofL, one recovers features very similar to th
case of a single logistic map, where the synchronization tr
sition is absent. In fact, for any value ofs, L and V are
positive, while t1 and t2 remain finite. Moreover,t1 is
found to diverge exponentially withL with a parameter-
dependent rate.

A different situation occurs for«5 2
3, whereL vanishes at

sL50.27, whileV remains positive up tosV'0.4 ~see Fig.
3!. According to Pikovsky’s criterion, one expects that sy

FIG. 3. Behavior of the propagation velocityV ~circles! and of
the maximum Lyapunov exponentL ~triangles! versus noise ampli-
tude s for coupled logistic maps with«5

2
3. Both quantities have

been computed forL51024, averaging over 103 initial conditions
each followed forO(105) time steps. The dashed lines are a gui
for the eyes.
6-5
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LUCIA BARONI, ROBERTO LIVI, AND ALESSANDRO TORCINI PHYSICAL REVIEW E63 036226
chronization occurs abovesL . This is indeed the case, a
though, for sL,s,sV , t1(D) is still found to increase
exponentially withL, while for s.sV , t1(D) grows loga-
rithmically with L ~see Fig. 4!. Despite the strong analog
between this transition atsV and the one occurring in th
first example atsL , we want to remark that there is a cruci
difference between them: below threshold,t2 diverges in the
former case, while it is finite in the latter.

This indicates the existence of a new kind of synchro
zation transition atsV essentially ruled byV. Let us point out
that, at variance with the first example, forsL,s,sV the
nonlinear mechanism of information propagation is enou
to maintain the exponential dependence oft1 on L. On the
other hand, aftert1, two trajectories get very close to eac
other and the negativeL stabilizes them onto the same st
chastic trajectory.

FIG. 4. Exponential scaling oft1 versusL ~reported in a lin-log
scale! for coupled logistic maps with«5

2
3 at different values of the

noise amplitude:s50.3 ~filled circles!, 0.32 ~empty circles!, 0.35
~filled diamonds!, and 0.38~empty diamonds!. The inset shows the
logarithmic scaling oft1 versusL ~in a log-lin scale! for s50.45.
The values oft1 have been computed withD510210 and averaged
over 103 initial conditions.
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Let us stress that the above-described scenarios are
specific to the particular choice of the parameter valu
«51

3 and«52
3. We have checked that their main features a

robust with respect to small but finite variations of«, al-
though a systematic investigation of the parameter sp
would demand overly long computational times. Upon the
examples, one can conclude that in a CML of very large
finite-size L, stochastic synchronization of two trajectorie
within an accessible time span occurs whenV vanishes.

Moreover, a very similar situation is obtained when co
sidering dynamics~8! for the model of period-3 stable map
~7! introduced in@13#. In this CML model,L is found to be
negative, independent of the value of the diffusive coupl
parameter« and, accordingly, the dynamics eventually a
proaches a periodic attractor. On the other hand, the m
exhibits a transition from a frozen disordered phase withV
50 to a chaotic phase withV.0 at «c'0.6. The peculiar
feature of this transition is that these two phases are s
rated by a smallfuzzyregion centered around«c , where both
positive and null values ofV can be observed up to availab
numerical resolution@18#.

The addition of noise to this CML dynamics according
Eq. ~8! has interesting consequences:L is kept negative in-
dependent of the noise amplitudes, while a small-amplitude
noise destabilizes the frozen disordered phase.V becomes
positive even for«,«c , so that thefuzzytransition disap-
pears. This notwithstanding, by increasings up to a critical
valuesV(«), V is found to drop again to zero not only be
low, but also above«c . For instance, one hassV'0.16 for
«50.58 andsV'0.18 for«50.62. In both cases, we recove
the same kind of mechanisms characterizing the synchr
zation transition discussed for coupled logistic maps w
«52

3.
We want to point out that a finite value ofV, whenL is

negative, is usually reported as a typical signature of a str
nonlinear effect@17#. For instance, it has been shown@13#
that the discontinuity of map~7! yields such an effect alread
for the noise-free CML dynamics. Even if the discontinui
of map ~7! is removed by interpolating the expanding a
contracting regions with a sufficiently steep segment, the
fect is maintained@19#.

The reinjection mechanism introduced by additive nois
in maps of the interval@0,1# into itself produces similar dis-
FIG. 5. ~a! Exponential scaling
of t1 versusL ~reported in a lin-
log scale! for coupled maps~5! for
a54, b51000, andc50.5 with
«5

1
3 and s52.1 ~filled circles!.

~b! Logarithmic scaling oft1 ver-
sus L ~shown in a log-lin scale!
for s52.5 ~filled circles!. In this
case, sL51.99 and sV52.15.
The values oft1 have been com-
puted withD51028 and averaged
over 103 initial conditions.
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FIG. 6. ~a! The inverse of the
scaling factor 1/j as a function of
s212sL

21 (sL52.5015) is re-
ported for coupled maps~5! with
b52.0 and «5

1
3 and

2.49<s<2.43; ~b! 1/j as a func-
tion of s212sV

21 (sV50.4018)
for coupled logistic maps with«5
1
3 and 0.30<s<0.38.
lin
e

r

hi
ily
te
r

f
c

n
on
e
r

in

en
io
l

y
as

-

ous
by a
as-

h
an
e-

es

7
stic

ed
that
ow
ite
-
int,

h
l
bed
a-
continuities in the dynamics. As we have shown, this non
ear effect is sufficient for giving rise to dynamical phas
with L,0 andV.0 in the noisy dynamics~8!.

All these observations suggest investigating whethe
similar scenario can be obtained for map~5! in dynamics~8!,
by introducing a near-discontinuity in the map, since in t
case thereinjectionmechanism is not present. This is eas
obtained by taking a sufficiently large value of the parame
b, e.g.,b;O(103). Numerical simulations show that, still fo
«5 1

3 , there exists a range ofs values for whichV.0 and
L,0. In Fig. 5, we show the dependence oft1 on L in two
regions of the parameter space whereL is negative whileV
is either positive or null. IfV.0, an exponential increase o
t1 with L is again observed, while a logarithmic dependen
characterizes the dynamical phase withV50.

Accordingly, this second kind of transition is not just a
artifact due to discontinuities introduced by the rejecti
rule, but a mere consequence of sufficiently strong nonlin
effects that may be produced also in the absence of any
jection mechanism and also if the noise distribution ma
tains its symmetry.

IV. CRITICAL PROPERTIES OF THE
SYNCHRONIZATION TRANSITION IN CMLs

In the preceding section, we have described two differ
kinds of phase transitions for stochastic synchronizat
where the noise amplitudes plays the role of the contro
parameter. When bothL andV vanish ats5sL , the tran-
sition is from a nonsynchronous dynamical phase to a s
chronous one: we have denoted it by PT1. In the other c
03622
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which we indicate with PT2,L passes from positive to nega
tive values whileV remains positive up tos5sV , where we
have observed a transition between different synchron
dynamical phases, characterized by an exponential and
logarithmic dependence on the system size of the first p
sage timet1.

In both cases, we have found that the correlation lengtj,
defined in Sec. II, diverges at the transition point: this is
indication in favor of a continuous phase transition. Non
theless, 1/j is found to vanish less than linearly whens
→sL

2 in PT1, while it vanishes linearly in PT2 whens
→sV

2 @see Figs. 6~a! and 6~b!#.
Moreover, close to the critical point, the time averag

of the mean distance between trajectories,zt5(1/
L)( i 51

L uxi
t2yi

tu, and of the topological distance,r(t)
[(1/L)( i 51

L hi
t (hi

t51 if uzi
tu.D, otherwiseh1

t 50) exhibit a
continuous dependence ons ~for the sake of space, in Fig.
we show these quantities only for the case of coupled logi
maps!.

We want to remark that our definition of the synchroniz
state implies that there exists a stable stochastic orbit
prevents the trajectories of the dynamical system to fl
apart from each other below some very small but fin
thresholdD, so thatt25`. In both cases, numerical simula
tions show that this is what happens above the critical po
whereL,0 andV50. If at some lattice sitei a fluctuation
makes the local Lyapunov multiplier positive@i.e., lnuf8(x̃ i

t)u
.0, wheref 8 indicates the first derivative of the map wit
respect to its argument#, giving rise locally to the exponentia
divergence of nearby orbits, the process is rapidly reabsor
due to the lack of any mechanism of information propag
l

-

y

-

FIG. 7. The spatio-tempora
averages of the indicatorsz ~a!
and r ~b! are reported as a func
tion of the noise amplitudes for
coupled logistic maps with«5

2
3.

The data have been obtained b
averaging over a timet5104 and
20 different initial conditions, for
L54096 and considering a thresh
old D510212.
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tion. In this sense, the synchronized state should be equ
lent to the absorbing state, typical of directed percolat
~DP! processes@11,12#.

Below the critical points, the role of fluctuations dete
mines the difference between PT1 and PT2. The inspec
of the space-time evolution of dynamics~8!, using the sym-
bolic representation of the state variableshi

t , is quite helpful
for visualizing such a difference. For what concerns P
when s→sL

2 one observes that nonsynchronized clust
propagate as time flows~since V is positive! and, even if
some of them may eventually die, in the meantime new o
have started to propagate, emerging also from previou
synchronized regions. Since alsoL.0, any local fluctuation
of d(t) produced by a positive multiplier has a finite pro
ability to be amplified and eventually propagated through
lattice.

On the contrary, sufficiently close to PT2, fors→sV
2 ,

nonsynchronized clusters never emerge from already
chronized regions and any connected nonsynchronous cl
eventually dies att1(L,s) in a lattice of finite-sizeL ~a
situation very similar to what is observed in the active ph
of DP as a finite size effect!. Even if, in principle, the non-
linear mechanism of information propagation is active, t
suggests that, inside an already synchronized region, no
fluctuation of the Lyapunov multiplier towards positive va
ues ever persists long enough to activate the nonlinear
cess of information propagation.

Upon these numerical observations and exploiting
analogies with other critical phenomena, we are led to c
jecture not only the existence of an absorbing, i.e., synch
nized, state, but also that PT2, at variance with PT1, sho
belong to the universality class of DP. This can be confirm
only by direct measurements of the critical exponents as
ciated with the synchronization transitions. It is worth stre
ing that numerical estimates have been performed by
proaching the critical points from below, i.e., forV→01.

Here we report the analysis of PT2 in the case of coup
logistic maps with«5 2

3. As usual, a reliable measurement
any critical exponent demands a very accurate estimat
the critical point, i.e.,sV in this case. For this reason, w
have performed careful simulations for evaluating the dep
dence on the system sizeL of t1, which corresponds to the
absorption time in the DP language. At the critical points
5sV , this time should diverge as

t1~L,sV!;Lz, ~15!

where z5n i /n' is the dynamical exponent@11,12#. The
quantityt1(L,s) is reported in Fig. 8 as a function ofL in a
log-log scale for different values ofs. The best scaling be
havior is obtained forsV50.4018, where one hasz51.55
60.05. This result agrees quite well with the most accur
numerical estimates of the DP valuez51.5807@20#. Relying
upon this result, we have also measured the critical expo
associated with the temporal decay of the densityr(t) of
active sites, i.e., those sites whereuxi

t2yi
tu.D. The DP tran-

sition exhibits at the critical point the following scaling la
for the topological distance:r(t);t2d, with d5b/n i
50.1595@20#. The densityr5r(t) is shown in Fig. 9 for
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three different system sizes, namelyL5500, 1500, and 2000
As expected, the scaling region increases withL and for L
52000 an optimal fitting in the interval 3.2< log10(t)<4.8
provides the estimate for the critical exponentd50.159
60.002. This confirms that PT2 belongs to the universa
class of DP.

For what concerns PT1, we have considered coup
maps of the type~5! for b52.0 and«51

3. The best scaling for
the t1 as a function ofL @according to Eq.~15!# is observed
for a noise amplitudesL52.5015. Fors5sL , we have
obtained the following estimates for the critical exponen
z'1.0121.04 and d'0.35. Such values certainly d

FIG. 8. The first passage timet1 is reported in a log-log scale a
a function of system sizeL for coupled logistic maps with«5

2
3 and

for various s. The data have been obtained by averaging o
3000–25 000 different initial conditions and considering a thresh
D510212.

FIG. 9. Logarithm in base 10 of the density of active sites a
function of log10(t) for coupled logistic maps with«5

2
3 and

s50.4018. The data have been obtained by averaging over 10
different initial conditions and considering a thresholdD510215.
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not correspond either to DP or to any known universa
class for percolation or growth processes. This seems an
gous to what has been pointed out by Grassberger@12# for
systems exhibitingincomplete deaths: when the asymptotic
state is not a truly absorbing one, the critical properties
DP cannot be recovered.

Since in this situation an absorbing state seems no
exist, the dynamical exponentz can be better estimated b
measuring the number of ‘‘infected’’ sites of the chainN(t)
defined in Eq.~11!. At the critical points5sL , the follow-
ing scaling law is expected to hold:

N~ t !;t1/z. ~16!

The data from numerical analysis are reported in Fig. 10.
short times (t,500), we obtain the inverse of the dynamic
exponent 1/z;0.4760.05, a value consistent with the on
expected for the Edwards-Wilkinson universality classzEW
52.0 @21#. For longer times, we observe a crossover to
lower-z value that is consistent with the one expected for
1D KPZ universality class~namelyzKPZ5 3

2 ). We think that
these results could be interpreted in terms of the conjec
reported in@23#. In that paper, it has been suggested that,
a generic synchronization transition of coupled spa
temporal chaotic systems with continuous-state variables
appropriate universality class should be the one of the K
model with a nonlinear growth-limiting term@12,22#. This
idea originates from the observation that, close to the s
chronization transition, it is possible to describe the dyna
ics of small perturbations in terms of a reaction diffusi
model with multiplicative noise@12#. Finally, this model can
be mapped via a Hopf-Cole transformation into an equa

FIG. 10. The number of ‘‘infected’’ sitesN(t) is reported in a
log-log scale as a function of timet for coupled maps~5! with a
54, b52, andc50.5 and«5

1
3 and for variouss. The numerical

data ~filled circles! have been obtained for a chain lengthL
520 000 by averaging over 1000 different initial conditions a
considering a thresholdD510215. The dashed line indicates a sca
ing of the Edwards-Wilkinson type~with exponent 1/z50.5) while
the dot-dashed line has a slope 1/z5

2
3 analogous to that of the KPZ

scaling.
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that corresponds to a KPZ model with a nonlinear term t
prevents the surface from growing indefinitely@24#. The
critical scaling laws for this kind of model have been r
ported in@22#: the dynamical exponentz is found to coincide
with the KPZ one, while the other exponents are found to
different from the standard KPZ ones. Unfortunately a f
numerical comparison of PT2 with the model discussed
@22# is prevented by two major technical problems: the e
treme difficulty in estimating with sufficient precision th
critical valuesL , and the strong finite-size effects.

V. CONCLUDING REMARKS

We have studied the problem of stochastic synchron
tion induced by additive spatio-temporal noise in CML mo
els. In analogy with the low-dimensional case, synchroni
tion of trajectories is observed if the maximum Lyapun
exponent becomes negative at a critical value of the no
amplitude. We have also identified two different critical b
haviors associated with the synchronization transition. O
of them belongs to the universality class of directed perco
tion. The other one is not clearly identified, but indicatio
suggest that it could belong to the universality class of
KPZ model with a nonlinear growth-limiting term.

In particular, the DP-like phase transition describes
crossover between an ‘‘active’’ and an ‘‘absorbing’’ phas
The former is characterized by an exponential dependenc
the system sizeL of the time needed for achieving the sy
chronized state, while the latter exhibits a logarithmic dep
dence. This scenario is reminiscent of the phenomenol
associated with stable chaos in CMLs@13#, where the dy-
namics approaches a periodic attractor rather than a ‘‘s
chronized’’ stochastic trajectory. The two kinds of synchr
nization transition reported here are quite general
extended dynamical systems, since analogous behaviors
been observed recently for two coupled CMLs without a
external noise@25#.

Moreover, as far as the control of chaos is concern
when the erratic behaviors present in the extended system
due solely to nonlinear mechanisms~as it happens when th
maximal Lyapunov is negative butV is still positive!, the
control schemes based on linear analysis@26# should fail and
new ‘‘nonlinear’’ methods have to be introduced. We belie
that the appropriate indicator to employ in this context is
finite-size Lyapunov exponent@27#, because it is able to cap
ture infinitesimal as well as finite amplitude perturbati
growth. We also expect that the observed phenomenolog
not specific to CMLs and the present study can apply t
wider class of spatially extended dynamical systems, suc
coupled oscillator or PDE’s.
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