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Anomalous diffusion as a signature of a collapsing phase
in two-dimensional self-gravitating systems
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A two-dimensional self-gravitating Hamiltonian model madeNbyully coupled classical particles exhibits
a transition from a collapsing pha¢€P) at low energy to a homogeneous phéd®) at high energy. From a
dynamical point of view, the two phases are characterized by two distinct single-particle motions: namely,
superdiffusive in the CP and ballistic in the HP. Anomalous diffusion is observed up to a tina increases
linearly with N. Therefore, the finite particle number acts like a white noise source for the system, inhibiting
anomalous transport at longer timgS1063-651X98)51405-5

PACS numbg(s): 05.40:+j, 05.45+b, 05.70.Fh, 64.60.Cn

In past years the thermodynamical properties of gravitabeen revealed in dissipative and Hamiltonian modl@]sas
tional models have been studied in detail from a theoreticalvell as in experimental measuremefi$ However, most of
[1] and computationg2—4] point of view. In particular, it  the literature focuses on systems with few degrees of free-
has been shown that at low energy the gravitational forcedom (namely, one or twp and only a few studies have been
give rise to a collapsing phas€P), identified by the pres- devoted to extended models wiNe1 [6].
ence of a single cluster of particles floating in a diluted ho- In this Rapid Communication, the thermodynamical and
mogeneous background. At high energy a homogeneousynamical properties of a two-dimensiorfaD) Hamiltonian
phase(HP) is recovered; the cluster disappears and the parsystem, consisting dfl particles interacting via a long-range
ticles move almost freely. In the transition region the systemattractive potential, are analyzed. In particular, we observe a
is characterizedin the microcanonical ensembley a nega-  transition from CP to HP associated with a dynamical tran-
tive specific heat: the corresponding instabilitermed  sition from anomalous to ballistic transport. Finkeeffects
“gravo-thermal catastrophe’is of extreme relevance for as- induce a crossover from anomalous to normal diffusion at
trophysics(see Ref[5] for more details This apparent ther- |ong times. In the limitN— o, the transport mechanism re-
modynamical inconsistency has been solved by Hertel anghains anomalous at any time and reduces to that of a single
Thirring in Ref.[1], where they demonstrated the nonequiva-particle in an “egg-crate” potentigl10].
lence of canonical and microcanonical ensemble in the vicin- \We consider a system df identical fully coupled par-

ity of the transition region. These theoretical results haveicles with unitary mass evolving in a two-dimensional peri-

been successfully confirmed by numerical investigations obdic cell described by the Hamiltonidfor the 1D case, see
self-gravitating nonsingular systems with short-range interRef. [11]):

action[2,3].

More recently, in one-dimension@lD) lattices of fully
and nearest-neighbor coupled symplectic maps with an at-
tractive interaction, it has been observed that clustering phe-
nomena are associated with anomalous diffugiorparticu-
lar, with subdiffusive motiojy at least for short time§6].
Anomalous diffusion can be defined through the time depen- —coqy;—Y;) —cogX;—X;)cogy; —Y;)], (2
dence of the single-particle mean-square displacement
(MSQD) (r(t)), which typically reads as

N 2 2 N
Hp21
H=K+V=>, Pxi ™ Py + o= [3—cogx—X))
“ 2 2NE

where §;,py;) and ;,py,;) are the two pairs of conjugate
(r3(t))=t« (1)  variables with & ,y;) e[ — 7, 7] X[ — 7, 7], whereK andV
are the kinetic and potential energy, respectively. The poten-
where the averagé ) is performed over different time ori- tial part corresponds to the first three terms of the Fourier
gins and over all the particles of the system. The transport iexpansion of a 2D attractive potential of the typ#r)
anomalous whene#1, superdiffusive for X¥a<2, and «log|r|. Such a type of interaction arises in self-gravitating
subdiffusive for 0<a<1 [7,8]. Anomalous transport has 2D gase$1-3] as well as in the point vortices model for 2D
turbulencd 12]. Due to the long-range interaction among all
the particles, this model can be described in terms of mean-
* Electronic address: antoni@sebigbos.mpipks-dresden.mpg.de field variables. In particular, the potential energy can be re-
"Affiliated with INFM, Firenze, Italy. written asV=33N ,V;, with
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FIG. 1. Time averages d&fl andP as a function ofJ. The solid U
curves refer to the theoretical estimati@re., to canonical results FIG. 2. Temperaturd@ as a function of the energy. The solid
and the symbols refer to the MD findingse., to microcanonical line corresponds to the analytical estimati@anonical ensemble
result3. The exponentsy, defined in Eq.(1), are also reported and the triangles correspond to the simulations reqafisroca-
(triangles. The MD data have been obtained with=4000(apart  nonical ensembje In the inset, an enlargment of the transition re-
from few points withN=10 000) and averaged over a total inte- gion is reported; the solittespectively dashedurves refer to the

gration time ranging from=1,2x10° to t=4,2<x10°. Thea val-  principal (respectively relativeminimum of F(T). The parameters
ues have been estimated in the time intervalt&€ 10 000 for any  for the MD simulations are the same as in Fig. 1.
reportedU.
cluster. For increasing enerdy, the kinetic contribution be-
V;=3—M,cosx;— ¢,) — M,cody; - ¢,) comes more relevant and the average number of particles
trapped in the potential well drops. As a consequence, the
— 3 [My,COL X +Yi— byy) + My, COLX —Yi— )], value of (M), decreases together with/{—Vy,). For U

=U_, the system is no longer clustered and the particles can
3 move almost freely. Moreover, due to finite effects(M ),

, _ is not exactly zero, bu®(1/\/N).
where M,=({cos@)n (sin@)n)=Mexdi¢,] represents In Fig. 2 the temperaturd=(K);/N is reported as a

four two-dimensional mean-field vectors with=X,y, XXy,  fynction ofU. AboveU., T increases linearly withJ, indi-
and( ) denotes the average ovhic However, the single-  ¢4ting that the system behaves like a free particle gas. In the
particle potentialsv; are nonautonomous, since the mean-cp, the tendency of the system to collapse is balanced by the
field quantitiesM, and ¢, are defined through the instanta- jncrease of the kinetic enerd2]. This competition leads
neous values of the particlesoordinates. The motion of initially (for 0<U<1.8) to a steady increase f followed
each particle is therefore determined self-consistently by affor 1.8<U<U,) by a rapid decay of. This yields a nega-
attractive and nonautonomous force field that is uniquely deg, o specific heat as illustrated in the inset of Fig. 2. These
termined throughout the motion of all the particles. The self-oqits are in full agreement with theoretical predictions
gravitating nature of the model is due to this effective forcepased on the analysis of a simple classical cell mptleand
acting among the particles. Sinde s invariant under the \ith numerical findingg2,3], for short-ranged attractive po-
transformationsc— —x, y« —y, andx<y, itturns out that  tentjals, The phenomenon of negative specific heat can be
in the “mean-field limit” (i.e., forN—c with U=H/N con-  eypjained within a microcanonical approach with a heuristic
stan}, M,=M,=M and M, =M, =P. Moreover, in this  argumenf1]. Approaching the transition, a small increase of
limit and assuming that,=0, the single-particle potential U leads to a significant reduction in the number of collapsed
V; turns out to be an egg-crate potential similar to that StUdparticIes(as confirmed from the drop exhibited by and P
ied in Ref.[10]. This periodic potential is characterized in for U>1.8); as a consequence the valu&/ajrows and, due
each elementary cell by a minimunk/{=3-2M—P), four  to energy conservation, the system becomes cooler.
maxima {/yy=3+2M—P), and four saddle pointsV=3 Our data also confirm another important prediction of
+P). Hertel and Thirrind 1]: the nonequivalence of canonical and
For specific energyJ smaller than a critical valu&J;  microcanonical ensemble near the transition region. In the
=2, we observe that the particles are mainly in a clustere¢hset of Fig. 2 the microcanonical findings are reported, ob-
state. AboveU; a HP is recovered. Following Refi6,11],  tained via standard molecular-dynami@dD) simulations;
the degree of clustering of the particles can be characterizefie theoretical canonical results were derived in the mean-
through the time averagésl,), [13,14. When at each time field limit [15,16. These two sets of data coincide every-
the particles have almost the same positidv,); is O(1),  where, except in the energy interval £.8<2.0. The dis-
while, for a HP, their values vanish asyN [11]. Figure 1  crepancy is due to the impossibility of the canonical
shows that, fold —0, the average quantitidd,P tend to  ensemble to exhibit a negative specific heat, a limitation that
one. This indicates that the particles are almost all trapped idoes not hold for the microcanonical ensemble. Our theoret-
a potential well of depth=(Vs—V,,), forming a compact ical estimation of the Helmholtz free enerdy=F(T) re-
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10° : : model (2) for N—oo, anomalous transport is due only to the
fraction of particles that can move along the channels.

For finite N, the potentialV, seen by the particlé will
fluctuate in time. Hence, particles having an energy close to
Vs have the possibility of being trapped in the potential well
as well as of escaping from it. As a consequence, for suffi-
ciently long time scales each particle can experience free and
localized motions. The fluctuations of the potenti4l are
reflected in the structure of the phase space, introducing a
white noise that destroys the self-similar structure of the is-
land chains and of the cantori below a certain cutoff size.
Since the self-similarity is no more complete, one can expect
that on long-time scales normal diffusion will be recovered
[18].

As is pointed out in Refd.19,20, if white noise is added
to a dynamical system exhibiting superdiffusive behavibr,
(measured in the limit— ) is inversely proportional to the
noise amplitude. Therefore, we expect that in our model the

FIG. 3. Log-log plot of the mean-square displacem@r(t)) value ofD will increase withN. That is indeed the case, and
versus time. The crossover timds indicated by a dashed line. The we observe a power-law dependence of the tpeN”. For
data refer toU=1.1, N=4000, and to a total integration timte =~ example, considering systems with ¥OR=<10 000 we
=4.2x10°. In the inset, the logarithm of is reported as a function have found, forU=1.48 andU=2.00, ay value equal to
of In(N) for U=1.48. Ther values(circles have been estimated 0.7+0.1 and 1.6-0.1, respectively. Thé\ dependence of
considering a threshold=1.1[17]. The solid line represents a best the diffusion coefficient can be explained by noticing that
linear fit to the data, and its slope is 0:98.08. Do 7%~ 1 [21]. This result coincides with that found theoreti-

cally in Ref.[19] and confirmed numerically by considering
veals that usuallf has a unique minimum. FAr<0.5, the  two very simple noisy maps as dynamical models. For sub-
minimum F¢ corresponds to nonzero values if and P diffusive motion,D is inversely proportional ta- (as found
(i.e., to the CPR, while for T>0.55, the minimumFy is  in [18]), while for superdiffusive motion ¢>1), a direct
associated wittM =P =0 (i.e., with the HP. In the region  proportionality is expectefil9]. As already reportedr=N;
0.5<T<0.55, both minimaF: and Fy coexist as local therefore, we will see thay=a—1. Assuming fora the
minima of the free energy. However, far<T.=0.54, the corresponding asymptotic valu¢g2], we can estimate as
CP is observed becausg<F,, while for T>T; the HP  theoretical valuesy=0.64 and=0.9 for U=1.48 and 2.00,
prevails, sinceFy<Fc. At T=T. the two minima are respectively. In view of all the present limitations, these val-
equivalent and a jump in energy frod(T.)~1.6 to ues can be considered consistent with the numerical findings.
U(T.)~2.0is observed. This picture suggests that this tran- As a final point, we examine the dependence of the
sition can be considered as a first-order transifi2jn asymptotica values from the energy) of the system. A

Let us now investigate whether the observed thermodytransition from anomalous diffusion to ballistic motion
namical transition has any effect on the dynamical behaviofa=2) atU=U, is evident from Fig. 1 where the values,
of the system. In order to characterize the single-particle dyebtained forN=4000, are reported. In particular, for 0.4
namics, we consider the MSQ?(t)). As shown in Fig. 3, <U=<2.0, we observe an increase af from 1.3+0.1 to
in the CP the diffusion is anomalous for times shorter than d.9+0.1. This phenomenon is a consequence of the flatten-
crossover timer, while for longer times the Einstein law is ing of the single-particle potentidl.e., of the reduction of
recovered(r?(t))«4Dt (where D is the diffusion coeffi- Vy—Vy) observed for growindJ. The decrease in the av-
cient. A similar behavior for the MSQD has already been erage number of particles trapped in the cluster, and the con-
observed for a system of coupled simplectic maps in Ref. sequent increase of those moving freely, naturally drives the
[6], but with «<1. However, in the present casdncreases diffusion mechanism toward a ballistic behavior. Moreover,
linearly with N [14], indicating that in the mean-field limit for U>U,, the potentiaV; fluctuates with typical amplitude
the asymptotic dynamical regime will be superdiffusité&]. O(1/yN) around a constant value and a ballistic motion is

The observed dynamical behavior can be explained bgxpected for all the particles. For small energies<(0.3)
noticing that in the mean-field limit each partidlewill see  the MSQD seems to saturate to a constant value, indicating
essentially the same constant 2D egg-crate potedial that all the particles are always clustered.

Moreover, it has been shown in R¢L0] that a single par- In conclusion, we have shown a thermodynamical transi-
ticle moving in an egg-crate potential with an energy be-tion associated with a dynamical transition from anomalous
tweenV, andV,, exhibits superdiffusion. This is due to the to ballistic transport. Moreover, the transport in dlitbody
fact that the particle moves for long times almost freelysystem can be interpreted in terms of a noisy single-particle
along the channels of the potential and episodically ismotion in a 2D Hamiltonian egg-crate potential. The
trapped for a while in the potential well. In phase space, thesymptotic dynamics of the model is strongly influenced by
superdiffusive phenomenon can be explained by a trappinthe order in which the two limithl—«~ andt—o are taken.
mechanism in a hierarchy of cantori around a cylindricallndeed, if the limitN—o is performed before the limit
Kol'mogorov-Arnol’d-Moser surfacd7]. Therefore, in our —o, the diffusion will be always anomalous. Otherwise,




RAPID COMMUNICATIONS

R6236 MICKAE L ANTONI AND ALESSANDRO TORCINI 57
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