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Anomalous diffusion as a signature of a collapsing phase
in two-dimensional self-gravitating systems
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A two-dimensional self-gravitating Hamiltonian model made byN fully coupled classical particles exhibits
a transition from a collapsing phase~CP! at low energy to a homogeneous phase~HP! at high energy. From a
dynamical point of view, the two phases are characterized by two distinct single-particle motions: namely,
superdiffusive in the CP and ballistic in the HP. Anomalous diffusion is observed up to a timet that increases
linearly with N. Therefore, the finite particle number acts like a white noise source for the system, inhibiting
anomalous transport at longer times.@S1063-651X~98!51405-5#

PACS number~s!: 05.40.1j, 05.45.1b, 05.70.Fh, 64.60.Cn
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In past years the thermodynamical properties of grav
tional models have been studied in detail from a theoret
@1# and computational@2–4# point of view. In particular, it
has been shown that at low energy the gravitational for
give rise to a collapsing phase~CP!, identified by the pres-
ence of a single cluster of particles floating in a diluted h
mogeneous background. At high energy a homogene
phase~HP! is recovered; the cluster disappears and the p
ticles move almost freely. In the transition region the syst
is characterized~in the microcanonical ensemble! by a nega-
tive specific heat: the corresponding instability~termed
‘‘gravo-thermal catastrophe’’! is of extreme relevance for as
trophysics~see Ref.@5# for more details!. This apparent ther-
modynamical inconsistency has been solved by Hertel
Thirring in Ref.@1#, where they demonstrated the nonequiv
lence of canonical and microcanonical ensemble in the vi
ity of the transition region. These theoretical results ha
been successfully confirmed by numerical investigations
self-gravitating nonsingular systems with short-range in
action @2,3#.

More recently, in one-dimensional~1D! lattices of fully
and nearest-neighbor coupled symplectic maps with an
tractive interaction, it has been observed that clustering p
nomena are associated with anomalous diffusion~in particu-
lar, with subdiffusive motion!, at least for short times@6#.
Anomalous diffusion can be defined through the time dep
dence of the single-particle mean-square displacem
~MSQD! ^r 2(t)&, which typically reads as

^r 2~ t !&}ta ~1!

where the averagê & is performed over different time ori
gins and over all the particles of the system. The transpo
anomalous whenaÞ1, superdiffusive for 1,a,2, and
subdiffusive for 0,a,1 @7,8#. Anomalous transport ha
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been revealed in dissipative and Hamiltonian models@7# as
well as in experimental measurements@9#. However, most of
the literature focuses on systems with few degrees of fr
dom ~namely, one or two!, and only a few studies have bee
devoted to extended models withN@1 @6#.

In this Rapid Communication, the thermodynamical a
dynamical properties of a two-dimensional~2D! Hamiltonian
system, consisting ofN particles interacting via a long-rang
attractive potential, are analyzed. In particular, we observ
transition from CP to HP associated with a dynamical tra
sition from anomalous to ballistic transport. FiniteN effects
induce a crossover from anomalous to normal diffusion
long times. In the limitN→`, the transport mechanism re
mains anomalous at any time and reduces to that of a si
particle in an ‘‘egg-crate’’ potential@10#.

We consider a system ofN identical fully coupled par-
ticles with unitary mass evolving in a two-dimensional pe
odic cell described by the Hamiltonian~for the 1D case, see
Ref. @11#!:

H5K1V5(
i 51

N px,i
2 1py,i

2

2
1

1

2N(
i , j

N

@32cos~xi2xj !

2cos~yi2yj !2cos~xi2xj !cos~yi2yj !#, ~2!

where (xi ,px,i) and (yi ,py,i) are the two pairs of conjugat
variables with (xi ,yi)P@2p,p#3@2p,p#, whereK andV
are the kinetic and potential energy, respectively. The po
tial part corresponds to the first three terms of the Fou
expansion of a 2D attractive potential of the typeV(r )
} loguru. Such a type of interaction arises in self-gravitati
2D gases@1–3# as well as in the point vortices model for 2
turbulence@12#. Due to the long-range interaction among a
the particles, this model can be described in terms of me
field variables. In particular, the potential energy can be
written asV5 1

2 ( i 51
N Vi , with
R6233 © 1998 The American Physical Society
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Vi532Mxcos~xi2fx!2M ycos~yi2fy!

2 1
2 @Mxy

1 cos~xi1yi2fxy
1 !1Mxy

2 cos~xi2yi2fxy
2 !#,

~3!

where M z5(^cos(z)&N ,^sin(z)&N)5Mzexp@ ifz# represents
four two-dimensional mean-field vectors withz5x,y,x6y,
and ^ &N denotes the average overN. However, the single-
particle potentialsVi are nonautonomous, since the mea
field quantitiesMz andfz are defined through the instant
neous values of the particles# coordinates. The motion o
each particle is therefore determined self-consistently by
attractive and nonautonomous force field that is uniquely
termined throughout the motion of all the particles. The se
gravitating nature of the model is due to this effective for
acting among the particles. SinceV is invariant under the
transformationsx↔2x, y↔2y, andx↔y, it turns out that
in the ‘‘mean-field limit’’ ~i.e., forN→` with U5H/N con-
stant!, Mx5M y5M and Mxy

1 5Mxy
2 5P. Moreover, in this

limit and assuming thatfz50, the single-particle potentia
Vi turns out to be an egg-crate potential similar to that st
ied in Ref. @10#. This periodic potential is characterized
each elementary cell by a minimum (Vm5322M2P), four
maxima (VM5312M2P), and four saddle points (Vs53
1P).

For specific energyU smaller than a critical valueUc
.2, we observe that the particles are mainly in a cluste
state. AboveUc a HP is recovered. Following Refs.@6,11#,
the degree of clustering of the particles can be character
through the time averages^Mz& t @13,14#. When at each time
the particles have almost the same position,^Mz& t is O(1),
while, for a HP, their values vanish as 1/AN @11#. Figure 1
shows that, forU→0, the average quantitiesM ,P tend to
one. This indicates that the particles are almost all trappe
a potential well of depth.(Vs2Vm), forming a compact

FIG. 1. Time averages ofM andP as a function ofU. The solid
curves refer to the theoretical estimation~i.e., to canonical results!
and the symbols refer to the MD findings~i.e., to microcanonical
results!. The exponentsa, defined in Eq.~1!, are also reported
~triangles!. The MD data have been obtained withN54000 ~apart
from few points withN510 000) and averaged over a total int
gration time ranging fromt51,23106 to t54,23106. The a val-
ues have been estimated in the time interval 150,t,10 000 for any
reportedU.
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cluster. For increasing energyU, the kinetic contribution be-
comes more relevant and the average number of parti
trapped in the potential well drops. As a consequence,
value of ^Mz& t decreases together with (Vs2Vm). For U
>Uc , the system is no longer clustered and the particles
move almost freely. Moreover, due to finiteN effects^Mz& t

is not exactly zero, butO(1/AN).
In Fig. 2 the temperatureT5^K& t /N is reported as a

function ofU. AboveUc , T increases linearly withU, indi-
cating that the system behaves like a free particle gas. In
CP, the tendency of the system to collapse is balanced by
increase of the kinetic energy@2#. This competition leads
initially ~for 0,U,1.8) to a steady increase ofT, followed
~for 1.8,U,Uc) by a rapid decay ofT. This yields a nega-
tive specific heat as illustrated in the inset of Fig. 2. The
results are in full agreement with theoretical predictio
based on the analysis of a simple classical cell model@1#, and
with numerical findings@2,3#, for short-ranged attractive po
tentials. The phenomenon of negative specific heat can
explained within a microcanonical approach with a heuris
argument@1#. Approaching the transition, a small increase
U leads to a significant reduction in the number of collaps
particles~as confirmed from the drop exhibited byM andP
for U.1.8); as a consequence the value ofV grows and, due
to energy conservation, the system becomes cooler.

Our data also confirm another important prediction
Hertel and Thirring@1#: the nonequivalence of canonical an
microcanonical ensemble near the transition region. In
inset of Fig. 2 the microcanonical findings are reported,
tained via standard molecular-dynamics~MD! simulations;
the theoretical canonical results were derived in the me
field limit @15,16#. These two sets of data coincide ever
where, except in the energy interval 1.6,U,2.0. The dis-
crepancy is due to the impossibility of the canonic
ensemble to exhibit a negative specific heat, a limitation t
does not hold for the microcanonical ensemble. Our theo
ical estimation of the Helmholtz free energyF5F(T) re-

FIG. 2. TemperatureT as a function of the energyU. The solid
line corresponds to the analytical estimation~canonical ensemble!,
and the triangles correspond to the simulations results~microca-
nonical ensemble!. In the inset, an enlargment of the transition r
gion is reported; the solid~respectively dashed! curves refer to the
principal ~respectively relative! minimum of F(T). The parameters
for the MD simulations are the same as in Fig. 1.
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veals that usuallyF has a unique minimum. ForT,0.5, the
minimum FC corresponds to nonzero values ofM and P
~i.e., to the CP!, while for T.0.55, the minimumFH is
associated withM5P50 ~i.e., with the HP!. In the region
0.5,T,0.55, both minimaFC and FH coexist as local
minima of the free energy. However, forT,Tc50.54, the
CP is observed becauseFC,FH , while for T.Tc the HP
prevails, sinceFH,FC . At T5Tc the two minima are
equivalent and a jump in energy fromU(Tc

2)'1.6 to
U(Tc

1)'2.0 is observed. This picture suggests that this tr
sition can be considered as a first-order transition@2#.

Let us now investigate whether the observed thermo
namical transition has any effect on the dynamical beha
of the system. In order to characterize the single-particle
namics, we consider the MSQD̂r 2(t)&. As shown in Fig. 3,
in the CP the diffusion is anomalous for times shorter tha
crossover timet, while for longer times the Einstein law i
recovered^r 2(t)&}4Dt ~where D is the diffusion coeffi-
cient!. A similar behavior for the MSQD has already be
observed for a system ofN coupled simplectic maps in Re
@6#, but with a,1. However, in the present caset increases
linearly with N @14#, indicating that in the mean-field limi
the asymptotic dynamical regime will be superdiffusive@17#.

The observed dynamical behavior can be explained
noticing that in the mean-field limit each particlei will see
essentially the same constant 2D egg-crate potentialVi .
Moreover, it has been shown in Ref.@10# that a single par-
ticle moving in an egg-crate potential with an energy b
tweenVs andVM exhibits superdiffusion. This is due to th
fact that the particle moves for long times almost free
along the channels of the potential and episodically
trapped for a while in the potential well. In phase space,
superdiffusive phenomenon can be explained by a trapp
mechanism in a hierarchy of cantori around a cylindri
Kol’mogorov-Arnol’d-Moser surface@7#. Therefore, in our

FIG. 3. Log-log plot of the mean-square displacement^r 2(t)&
versus time. The crossover timet is indicated by a dashed line. Th
data refer toU51.1, N54000, and to a total integration timet
54.23106. In the inset, the logarithm oft is reported as a function
of ln(N) for U51.48. Thet values~circles! have been estimate
considering a thresholdb51.1 @17#. The solid line represents a be
linear fit to the data, and its slope is 0.9560.08.
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model~2! for N→`, anomalous transport is due only to th
fraction of particles that can move along the channels.

For finite N, the potentialVi seen by the particlei will
fluctuate in time. Hence, particles having an energy close
VS have the possibility of being trapped in the potential w
as well as of escaping from it. As a consequence, for su
ciently long time scales each particle can experience free
localized motions. The fluctuations of the potentialVi are
reflected in the structure of the phase space, introducin
white noise that destroys the self-similar structure of the
land chains and of the cantori below a certain cutoff si
Since the self-similarity is no more complete, one can exp
that on long-time scales normal diffusion will be recover
@18#.

As is pointed out in Refs.@19,20#, if white noise is added
to a dynamical system exhibiting superdiffusive behavior,D
~measured in the limitt→`) is inversely proportional to the
noise amplitude. Therefore, we expect that in our model
value ofD will increase withN. That is indeed the case, an
we observe a power-law dependence of the typeD}Ng. For
example, considering systems with 100<N<10 000 we
have found, forU51.48 andU52.00, ag value equal to
0.760.1 and 1.060.1, respectively. TheN dependence of
the diffusion coefficient can be explained by noticing th
D}ta21 @21#. This result coincides with that found theoret
cally in Ref. @19# and confirmed numerically by considerin
two very simple noisy maps as dynamical models. For s
diffusive motion,D is inversely proportional tot ~as found
in @18#!, while for superdiffusive motion (a.1), a direct
proportionality is expected@19#. As already reported,t}N;
therefore, we will see thatg5a21. Assuming fora the
corresponding asymptotic values@22#, we can estimate as
theoretical valuesg.0.64 and.0.9 for U51.48 and 2.00,
respectively. In view of all the present limitations, these v
ues can be considered consistent with the numerical findi

As a final point, we examine the dependence of
asymptotica values from the energyU of the system. A
transition from anomalous diffusion to ballistic motio
(a52) atU.Uc is evident from Fig. 1 where thea values,
obtained forN54000, are reported. In particular, for 0.
<U<2.0, we observe an increase ofa from 1.360.1 to
1.960.1. This phenomenon is a consequence of the flat
ing of the single-particle potential~i.e., of the reduction of
VM2Vm) observed for growingU. The decrease in the av
erage number of particles trapped in the cluster, and the c
sequent increase of those moving freely, naturally drives
diffusion mechanism toward a ballistic behavior. Moreov
for U.Uc , the potentialVi fluctuates with typical amplitude
O(1/AN) around a constant value and a ballistic motion
expected for all the particles. For small energies (U<0.3)
the MSQD seems to saturate to a constant value, indica
that all the particles are always clustered.

In conclusion, we have shown a thermodynamical tran
tion associated with a dynamical transition from anomalo
to ballistic transport. Moreover, the transport in ourN body
system can be interpreted in terms of a noisy single-part
motion in a 2D Hamiltonian egg-crate potential. Th
asymptotic dynamics of the model is strongly influenced
the order in which the two limitsN→` andt→` are taken.
Indeed, if the limitN→` is performed before the limitt
→`, the diffusion will be always anomalous. Otherwis
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normal dif fusion is recovered for suf ficiently long times.
As a final remark, we expect that anomalous diffusi

should be observable for atomic clusters@23#, turbulent vor-
tices @12# ~for which it has already been observed@9#!, and
gravitational systems@5#, all systems exhibit a clustere
phase.
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