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a b s t r a c t

We study the dynamical stability of pulse coupled networks of leaky integrate-and-fire
neurons against infinitesimal and finite perturbations. In particular, we compare mean ver-
sus fluctuations driven networks, the former (latter) is realized by considering purely excit-
atory (inhibitory) sparse neural circuits. In the excitatory case the instabilities of the
system can be completely captured by an usual linear stability (Lyapunov) analysis,
whereas the inhibitory networks can display the coexistence of linear and nonlinear insta-
bilities. The nonlinear effects are associated to finite amplitude instabilities, which have
been characterized in terms of suitable indicators. For inhibitory coupling one observes a
transition from chaotic to non chaotic dynamics by decreasing the pulse-width. For suffi-
ciently fast synapses the system, despite showing an erratic evolution, is linearly stable,
thus representing a prototypical example of stable chaos.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

It is known that cortical neurons in vivo present a high
discharge variability, even if stimulated by current injec-
tion, in comparison with neurons in vitro [1,2]. In particu-
lar, these differences are peculiar of pyramidal neurons,
while inter-neurons reveal a high neuronal firing variabil-
ity in both settings [3]. This variability is usually measured
in terms of the coefficient of variation CV of the single neu-
ron inter-spike interval (ISI), defined as the normalized
standard deviation of the ISI, i.e, CV ¼ STDðISIÞ=hISIi [4].
For cortical pyramidal neurons CV ’ 1:0 in vivo [1] and
CV < 0:3 in vitro [2], while for cortical inter-neurons
CV ’ 1:0� 1:2 [3] in both settings. The variability of the
spike emissions in vivo resembles a stochastic (Poissonian)
process (where CV ¼ 1), however the neural dynamics fea-
tures cannot be accounted by simple stochastic models [1].
These phenomena can be instead modelized by consider-
ing a deterministically balanced network, where inhibitory
and excitatory activity on average compensate one another
[5–8]. Despite the many papers devoted in the last two
decades to this subject, it is still unclear which is the
dynamical phenomenon responsible for the observed
irregular dynamics [9–12].

A few authors pointed out the possibility that stable
chaos [13] could be intimately related to the dynamical
behavior of balanced states [14–19]. Stable chaos is a
dynamical regime characterized by linear stability (i.e.
the maximal Lyapunov exponent is negative), yet display-
ing an erratic behavior over time scales diverging exponen-
tially with the system size. Stable chaos has been
discovered in arrays of diffusively coupled discontinuous
maps [20] and later observed also in inhibitory neural net-
works [14]. This phenomenon is due to the prevalence of
nonlinear instabilities over the linear (stable) evolution of
the system. This leads in diffusively coupled systems to
propagation of information (driven by nonlinear effects)
and in diluted inhibitory networks to abrupt changes in
the firing order of the neurons [13].

Clear evidences of stable chaos have been reported in
inhibitory d-coupled networks by considering conductance
based models [14] as well as current based models with
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time delay [15–18]. In particular, these analyses focused on
the characterization of the time needed for the transient
irregular dynamics to relax to the final stable state, the
authors convincingly show that these transients diverge
exponentially with the system size, a key feature of stable
chaos. Furthermore, in [16,17] it has been shown that, con-
sidering time extended post-synaptic pulses, a transition
from stable to regular chaos is present, where fluctuation
driven dynamics is apparently maintained [17].

In this paper, we would like to compare the dynamics of a
balanced network, whose dynamics is driven by fluctuations
in the synaptic inputs, with neural networks composed of
tonically firing neurons. Similar comparisons have been per-
formed in some previous studies [21,22], however here we
would like to focus on the role of nonlinear instabilities and
in particular on indicators capable of measuring finite ampli-
tude instabilities in such networks. The effect of finite pertur-
bations is relevant from the view point of neuroscience,
where the analysis is usually performed at the level of spike
trains, and a minimal perturbation corresponds to the
removal or addition of a spike. This kind of perturbations
can produce a detectable modification of the firing rate
in vivo in the rat barrel cortex [23]. This has been reported
as the first experimental demonstration of the sensitivity of
an intact network to perturbations in vivo, or equivalently
of an erratic behavior in neural circuits. However, it is unclear
whether this sensitivity should be associated to linear or non-
linear effects. In particular the authors in [23] considered a
network composed of excitatory and inhibitory neurons,
where an extra spike in the excitatory network is soon com-
pensated by an extra spike in the inhibitory network, indicat-
ing a sort of balance in the activity of the studied neural
circuit. The ability of a perturbed balanced network to restore
rapidly the steady firing rate has been also discussed in [19]
for a minimal model. Furthermore, Zillmer et al. [16] have
shown that a finite perturbation in a stable regime can cause
a divergence of the trajectories.

These latter numerical studies, together with the fact
that the addition of an extra spike is clearly a finite pertur-
bation from the point of view of dynamical systems,
strongly demand for further experimental investigations
to clarify whether the erratic behavior reported in [23] is
due to infinitesimal or finite amplitude instabilities.

Even though all these findings are congruent with the
nature of stable chaos [13], it must be noted that a careful
characterization of this regime in neural networks in terms
of finite amplitude indicators is still lacking. The only pre-
vious study examining this aspect in some detail concerns
a purely inhibitory recurrent Leaky Integrate-and-Fire (LIF)
neural network with an external excitatory drive, which
can sustain balanced activity [19]. Starting from this anal-
ysis, which was limited to d-pulses, we have considered an
extension of the model to finite width pulses. Furthermore,
we have characterized the linearized evolution via usual
Lyapunov exponents and the nonlinear effects in terms of
the response of the system to finite perturbations. This
analysis has been performed by employing previously
introduced indicators such as Finite Size Lyapunov Expo-
nents (FSLEs) [24] or the probability that a finite perturba-
tion can be (exponentially) expanded [19], and new
indicators capable of capturing nonlinear instabilities.
The paper is organized as follows: Section 2 is devoted
to the introduction of the neural network model used
through this paper, together with the indicators character-
izing linear and nonlinear instabilities. Section 3 presents a
comparative study of the linear and nonlinear stability
analysis with emphasis on the influence of the pulse-width
and the size of the network on the dynamical behavior.
Finally, in Section 4 we discuss our results with respect
to the existing literature and we report possible future
developments of our research.

2. Model and methods

We will consider a network of N Leaky Integrate-and-
Fire (LIF) neurons, where the membrane potential v i of
the ith neuron evolves as

_v iðtÞ ¼ a� v iðtÞ þ IiðtÞ i ¼ 1; . . . ;N; ð1Þ

where a > 1 is the supra-threshold neuronal excitability,
and Ii represents the synaptic current due to the pre-
synaptic neurons projecting on the neuron i. Whenever a
cell reaches the threshold value v th ¼ 1 a pulse is emitted
instantaneously towards all the post-synaptic neurons,
and its potential is reset to v r ¼ 0. The synaptic current
IiðtÞ ¼ gEi is the superposition of the pre-synaptic pulses
sðtÞ received by the neuron i with synaptic strength g,
therefore the expression of the field Ei reads as

EiðtÞ ¼
1

Kc

X
j–i

X
njtn<t

CijHðt � tnÞsðt � tnÞ: ð2Þ

Here the sum extends to all the spikes emitted in the
past in the network, Hðt � tnÞ is the Heaviside function
and the parameter c controls the scaling of the normaliza-
tion factor with the number K of pre-synaptic neurons.
Proper normalization ensures homeostatic synaptic inputs
[25,26]. The elements of the N � N connectivity matrix Cij

are one (zero) in presence (absence) of a connection from
the pre-synaptic jth neuron to the post-synaptic ith one.
In this paper we limit our analysis to random sparse net-
works, where each neuron receives exactly K pre-synaptic
connections and this number remains fixed for any system
size N. The model appearing in Eqs. (1) and (2) is adimen-
sional, the transformation to physical units is discussed in
Appendix A.

Following [5], we assume that the pulses are a-func-
tions, sðtÞ ¼ a2t expð�atÞ, in this case the dynamical evolu-
tion of the fields EiðtÞ is ruled by the following second order
differential equation (ODE):

€EiðtÞ þ 2a _EiðtÞ þ a2EiðtÞ ¼
a2

Kc

X
j–i

X
njtn<t

Cijdðt � tnÞ; ð3Þ

which can be conveniently rewritten as two first order
ODEs, as

_Ei ¼ Pi � aEi; _Pi ¼ �aPi þ
a2

Kc

X
j–i

X
njtn<t

Cijdðt � tnÞ; ð4Þ

by introducing the auxiliary field Pi ¼ _Ei � aEi.
Eqs. (1) and (4) can be exactly integrated from the time

t ¼ tn, just after the deliver of the nth pulse, to time t ¼ tnþ1
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corresponding to the emission of the ðnþ 1Þth spike, thus
obtaining an event driven map [27,28] which reads as

Eiðnþ 1Þ ¼ EiðnÞe�asðnÞ þ PiðnÞsðnÞe�asðnÞ; ð5aÞ

Piðnþ 1Þ ¼ PiðnÞe�asðnÞ þ Cim
a2

Kc ; ð5bÞ

v iðnþ 1Þ ¼ v iðnÞe�sðnÞ þ að1� e�sðnÞÞ þ gHiðnÞ; ð5cÞ

where sðnÞ ¼ tnþ1 � tn is the inter-spike interval associated
with two successive neuronal firing in the network, which
can be determined by solving the transcendental equation

sðnÞ ¼ ln
a� vmðnÞ

aþ gHmðnÞ � 1

� �
; ð6Þ

here m identifies the neuron which will fire at time tnþ1 by
reaching the threshold value vmðnþ 1Þ ¼ 1.

The explicit expression for HiðnÞ appearing in Eqs. (5c)
and (6) is

HiðnÞ ¼
e�sðnÞ � e�asðnÞ

a� 1
EiðnÞ þ

PiðnÞ
a� 1

� �

� sðnÞe�asðnÞ

a� 1
PiðnÞ: ð7Þ

The model is now rewritten as a discrete-time map with
3N � 1 degrees of freedom, since one degree of freedom
vmðnþ 1Þ ¼ 1, is lost due to the event driven procedure,
which corresponds to perform a Poincaré section at any
time a neuron fires.

Our analysis will be devoted to the study of sparse net-
works, this is, we will consider a constant number K of
afferent synapses for each neuron, namely K ¼ 20. There-
fore, the normalization factor Kc appearing in the defini-
tion of the pulse amplitude is somehow irrelevant, since
here we limit the study to a specific value of the in-degree
connectivity, without varying K. However, to compare with
previous studies, we set c ¼ 1 for purely excitatory neu-
rons, where g > 0, similarly to what done in [29,30], and
c ¼ 1=2 for purely inhibitory networks, where g < 0, fol-
lowing the normalization employed in [15,17,31,19]. The
reasons for these different scalings rely on the fact that
in the excitatory case, the dynamics of the system are mean
driven (i.e. all neurons are tonically firing even in the
absence of coupling, being supra-threshold), therefore the
synaptic input should be normalized with the number of
afferent neurons to maintain an average homeostatic syn-
aptic input [25,26]. The situation is different in presence of
inhibitory coupling, here the supra-threshold excitability
of the single neuron can be balanced by the inhibitory syn-
aptic currents, which maintains the neurons in the proxim-
ity of the firing threshold. In this case, the network
dynamics are fluctuation driven, because the fluctuations
in the synaptic inputs are responsible of the neuronal fir-
ing. In order to keep the amplitude of the fluctuations of
the synaptic current constant, the normalization is now
assumed proportional to the square root of the number
of the synaptic inputs [11]. In the present analysis we have
tuned the model parameters in order to be in a fluctuation
driven regime whenever the inhibitory coupling is consid-
ered. In particular, we will study not only the dependence
of the dynamics on the pulse shape, but also on the system
size, while maintaining a constant number of incoming
connections K. However, we will not assume that the excit-
atory external drive (in our case represented by the neuro-
nal excitability a) will diverge proportionally to

ffiffiffiffi
K
p

, as
done in [32,19], since we are not interested in the emer-
gence of a self-tuned balanced state in the limit K !1,
for 1� K � N [32,19].

2.1. Linear stability analysis

To perform the linear stability analysis of the system,
we follow the evolution of an infinitesimal perturbation
in the tangent space, through the following set of equa-
tions obtained from the linearization of the event driven
map (5a)–(5c)

dEiðnþ 1Þ ¼ e�asðnÞ dEiðnÞ þ sðnÞdPiðnÞ½ �
� e�asðnÞ aEiðnÞ þ ðasðnÞ � 1ÞPiðnÞ½ �dsðnÞ; ð8aÞ

dPiðnþ 1Þ ¼ e�asðnÞ dPiðnÞ � aPiðnÞdsðnÞ½ �; ð8bÞ

dv iðnþ 1Þ ¼ e�sðnÞ dv iðnÞ þ ða� v iðnÞÞdsðnÞ½ � þ gdHiðnÞ
i ¼ 1; . . . ;N; dvmðnþ 1Þ � 0: ð8cÞ

The boundary condition dvmðnþ 1Þ � 0 is a conse-
quence of the event driven evolution. The expression of
dsðnÞ can be computed by differentiating (6) and (7)

dsðnÞ ¼ svdvmðnÞ þ sEdEmðnÞ þ sPdPmðnÞ; ð9Þ

where

sv :¼ @s
@vm

; sE :¼ @s
@Em

; sP :¼ @s
@Pm

: ð10Þ

In this paper, we will limit to measure the maximal
Lyapunov exponent k to characterize the linear stability
of the studied models. This is defined as the average
growth rate of the infinitesimal perturbation

d ¼ ðdv1 . . . dvN ; dE1 . . . dEN; dP1 . . . dPNÞ;

through the equation

k ¼ lim
t!1

1
t

log
jdðtÞj
jd0j

; ð11Þ

where d0 is the initial perturbation at time zero. The evolu-
tion of the perturbation dðtÞ has been followed by perform-
ing at regular time intervals the rescaling of its amplitude
to avoid numerical artifacts, as detailed in [33]. Further-
more, since our system is time continuous one would
expect to have always a zero Lyapunov exponent, which
in fact is the maximal Lyapunov if the system is not cha-
otic. However, this does not apply to the event driven
map because the evolution is based on a discrete time
dynamics, where the motion along the orbit between two
successive spikes is no more present due to the performed
Poincaré section.

2.2. Finite size stability analysis

Besides the characterization of the stability of infinites-
imal perturbations, we are also interested in analyzing
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how a perturbation grows according to its amplitude. To
perform this task several indicators have been introduced
in the last years, ranging from Finite Size Lyapunov Expo-
nents (FSLE) [24,34–36] to the propagation velocity of finite
perturbations [37]. FSLEs have been mainly employed to
characterize stable chaos in spatially extended systems
[13] and collective chaos in globally coupled systems
[38–40].

We have performed several tests using the usual FSLE
definition [36]. In particular FSLE can be defined consider-
ing an unperturbed trajectory x ¼ ðv1 . . . vN; E1 . . . EN;

P1 . . . PNÞ and a perturbed trajectory x0 ¼ ðv 01 . . . v 0N; E01 . . .

E0N; P01 . . . P0NÞ, obtained by randomly perturbing all the
coordinates (both the fields E and P as well as the mem-
brane potentials) of the generic configuration x. In order
to ensure that the dynamics of the trajectory x0 will also
occur on the attractor associated to the studied dynamics,
we have considered extremely small initial perturbations
D0 ¼ Dð0Þ ’ 10�8 � 10�10 of the reference orbit. Further-
more, we have discarded an initial transient to allow x0

to relax on the attractor. Then we follow the evolution of
the two trajectories in time and measure their distance
DðtÞ ¼ kxðtÞ � x0ðtÞk, by employing the absolute value
norm, at fixed sampling time intervals dt ¼ 0:2. Whenever
DðtkÞ crosses (for the first time) a series of exponentially
spaced thresholds hk, where hk ¼ rhk�1, the crossing times
tk are registered. After averaging the time separation
between consecutive crossings over different pairs of
trajectories, one obtains the FSLE [36,24]

kFðDðtkÞÞ ¼
r

htk � tk�1i
; where DðtkÞ ¼ hk: ð12Þ

For small enough thresholds, one recovers the usual
maximal Lyapunov exponent, while for large amplitudes,
FSLE saturates to zero, since a perturbation cannot be lar-
ger than the size of the accessible phase-space. In the inter-
mediate range, kF tells us how the growth of a perturbation
is affected by nonlinearities. However, as a general remark,
we have noticed that it is extremely difficult to get reliable
results from the FSLE analysis. The reason is most likely
due to the fact that the definition of kF relies on averaging
different passage times through a threshold hk. Each pas-
sage time estimation is, in turn, based on single trajectory
realization, where the distance DðtÞ presents huge fluctua-
tions. These fluctuations can induce, within a single sam-
pling time interval dt, the crossing of several thresholds.
In order to overcome this problem, each single realization
of the distance DðtÞ has been smoothed before estimating
the corresponding passage time from one threshold to
the next. Unfortunately, we realized that the results
strongly depend on the smoothing procedure (mainly, on
the chosen time window) and that the effect is particularly
evident in the fluctuation driven case.

In light of the aforementioned issues, we decided to
adopt different indicators rather than the FSLE, in order
to investigate the growth rate of finite amplitude perturba-
tions. In particular, an estimation of finite size stability can
be measured defining the following indicator

DðDðtÞÞ ¼ d log DðtÞh i
dt

; ð13Þ
where, analogously to the FSLE, the average �h i is per-
formed over many different pairs of trajectories with initial
distances D0 ¼ Dð0Þ ’ 10�8 � 10�10. In the limit DðtÞ ! 0
we expect to recover the maximal Lyapunov exponent k.
As we will show, after a transient needed for the perturbed
trajectory x0 to relax to the attractor, DðDÞ measures effec-
tively the maximal Lyapunov exponent. However, if
nonlinear mechanisms are present DðDÞ can become larger
than k for finite amplitude perturbations. Analogously to
the FSLE, for perturbations of the size of the attractor the
indicator DðDÞ decays towards zero due to the trajectory
folding. In contrast to the FSLE, the indicator (13) has
shown to be less affected by fluctuations, most likely
because its definition is based on the averaged profile of
the disturbance.

The studied models present discontinuities of Oð1Þ in
the membrane potentials v i, due to the reset mechanisms,
and of Oða2=KcÞ in the fields Pi, due to the pulse arrival. In
order to reveal, without any ambiguity, the presence of
nonlinear instabilities at finite amplitudes, for the estima-
tion of the FSLE and of the indicator D we mainly limit our
analysis to the continuous fields fEig. In particular, to char-
acterize the finite amplitude instabilities, we consider the
following distance between the perturbed and unper-
turbed orbits

DðEÞðtÞ ¼ 1
N

XN

i¼1

jEiðtÞ � E0iðtÞj: ð14Þ

In some cases we have also analyzed the distance Dðv ;E;PÞ

between all the variables associated to the unperturbed
and perturbed state with a clear meaning of the adopted
symbol.

Unfortunately, we cannot employ the previously given
procedure to measure the indicator DðDÞ as well as the
FSLE in the case of stable chaos, because when k is nega-
tive, small perturbations are quickly damped. In this case,
one is forced to employ larger perturbation to observe non-
linear instabilities, and to perform measurement over
(short) finite times, to avoid folding effects. Therefore,
there is no guarantee that the evolution of the perturbed
orbit will sample the phase space accordingly to the natu-
ral invariant measure. In particular, we will use indicators
that are quite similar to the ones introduced in [34,41] to
study stable chaos coupled map lattices. Specifically, we
proceed as follow: we consider two orbits at an initial dis-
tance D0 and we follow them for a time interval T, then we
measure the amplitude of the perturbation at the final
time, namely DðTÞ. We rescale one of the two orbits to a
distance D0 from the other one, keeping the direction of
the perturbation unchanged, and we repeat the procedure
several times and for several values of D0. Then, we esti-
mate the finite amplitude growth rate, as

RTðD0Þ ¼
1
T

log
jDðTÞj
jD0j

� �
; ð15Þ

where the angular brackets denote the average over a
sufficiently large number of repetitions. To allow the
perturbed orbit to relax on the attractor, we initially per-
form ’103 rescalings, which are not included in the final
average. However, also this procedure does not guarantee
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that the attractor is always reached, in particular for very
large perturbations. Furthermore, the perturbed dynamics
is no more constrained to evolve along the tangent space
associated to the event driven map. As a matter of fact,
whenever k < 0 the indicator RTðD0Þ converges to zero
and not to the Lyapunov exponent associated to the dis-
crete time map evolution.

Finally, following the analysis reported in [19], we con-
sider the probability PSðD0Þ that a perturbation of ampli-
tude D0 induces an exponential separation between the
reference and perturbed trajectory. In particular, we per-
turb the reference orbit with an initial perturbation D0

and we follow the evolution of the trajectories for a time
span T. Whenever DðTÞ is larger than a certain threshold
hL this trial contributes to the number of expanding initial
perturbations NSðD0Þ, otherwise is not counted. We repeat
this procedure NT times for each perturbation of amplitude
D0, then PSðD0Þ ¼ NSðD0Þ=NT . For the two latter indicators,
namely RT and PS, we have always employed the total dis-
tance Dðv ;E;PÞ, this in order to compare our findings with the
results reported in [19].
3. Results

As already mentioned, we will compare a mean driven
excitatory network and a fluctuation driven inhibitory net-
work. In particular, the excitatory network is studied in a
regime where it presents a collective non trivial partial syn-
chronization [42,30]. This state is characterized by quasi-
synchronous firing events, as revealed by the raster plot
reported in the upper panel of Fig. 1(a), and almost periodic

oscillations of the effective current Ieff
i ðtÞ � aþ gEiðtÞ (see

Fig. 1(b), upper panel). In this particular case Ieff
i > 1 there-

fore the neurons are always supra-threshold. In this situa-
tion the measure of the CV gives quite low values, namely
for the studied case (with a ¼ 1:3; g ¼ 0:2 and a ¼ 9)
CV ’ 0:17, similar to pyramidal neurons in vitro. Despite
this low level of variability in the neuronal dynamics, the
sparseness in the matrix connectivity induces chaotic
dynamics in the network, which persists even in the ther-
modynamic limit [30]. At variance with diluted networks,
where the average connectivity scales proportionally to
the system size (K / Nz, with 1 P z > 0). In this latter case,
20

40
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Fig. 1. Comparison between mean driven (upper panels) and fluctuation drive
Membrane potential traces v iðtÞ (black solid line) and the corresponding effecti
indicates the firing threshold. For the mean driven case, a ¼ 1:3; g ¼ 0:2;a ¼ 9 an
driven network the parameters are the same, apart g ¼ �0:8;a ¼ 5 and c ¼ 1=2. F
reported for the same rescaled time intervals t= < ISI >¼ 10, after discarding a tra
figure caption, the reader is referred to the web version of this article.)
in the limit N !1 the system will recover a regular evolu-
tion, similarly to fully coupled networks [28,29].

For the inhibitory network, we observe radically differ-
ent dynamics, this because now Ieff ðtÞ oscillates around
one, therefore the neurons fire in a quite irregular manner,
driven by the fluctuations of the fields EiðtÞ, as shown in
the lower panels of Fig. 1(a) and (b). In this case we have
examined the dynamics of the model for a ¼ 1:3; g ¼
�0:8 and different pulse-widths 1=a. For a 2 ½1 : 5� the
neuronal dynamics are always quite erratic, being charac-
terized by CV ’ 0:7� 1 (see Fig. 2(a)). Narrower pulses
(larger a values) are associated to somehow more regular
dynamics and smaller ISI, moreover we have verified that
the ISI and CV saturates to some finite value in the thermo-
dynamic limit (as shown in Fig. 3(a) and (b)). This suggests
that fluctuations will not vanish for N !1 and that the
system will remain fluctuation driven even in such a limit.
Furthermore, the two a-values examined in Fig. 3(a) and
(b) correspond to two different dynamical regimes, further
discussed in Section 3.1, namely, a chaotic (a ¼ 3) and a
non-chaotic (a ¼ 5) state.

3.1. Lyapunov analysis

As previously shown, the fluctuation driven regime is
observable for the inhibitory network for all the considered
pulse widths. In this Subsection we would like to investi-
gate whether such variability is related to a linear instabil-
ity of infinitesimal perturbations (measured by the
maximal Lyapunov exponent k) or to other (nonlinear)
instabilities present in the system. Let us start examining
the Lyapunov exponent for such systems, as a first result
we observe a strong dependence of k on the pulse-width
(see Fig. 4(a)): the system is chaotic for wide pulses and
becomes stable for sufficiently narrow ones. These results
are in agreement with previously reported results in
[16,17] for an inhibitory network of LIF neurons with
delayed synapses. In these papers the authors show that
chaos can arise only for sufficiently broad pulses, con-
versely for d-pulses the system is always stable. It is worth
to notice that the critical a-value at which occurs the tran-
sition to chaos becomes larger as the system size increases,
pointing to the question whether the stable regime still
exists for finite pulses in the thermodynamic limit or if it
0 2 4 6 8 10
time/<ISI>

0
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1

v i, I
i

0
0.5
1

1.5 b)

n (lower panels) activity. (a) Raster plots for a pool of 60 neurons. (b)
ve current Ieff

i (red dashed line) for a typical neuron. The blue dotted line
d c ¼ 1, corresponding to the situation studied in [30]; for the fluctuation
or both networks, K ¼ 20 and N ¼ 400 and the results for both systems are
nsient of 104 spikes. (For interpretation of the references to colour in this
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data refer to N ¼ 400 (black circles) and N ¼ 1600 (red squares). The data have been averaged over 108 spikes, once a transient of 107 spikes has been
discarder. The other parameters are as in the caption of Fig. 1. (For interpretation of the references to colour in this figure caption, the reader is referred to
the web version of this article.)
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Fig. 3. Dependence of the coefficient of variation CV (a) and of the inter-spike time interval ISI (b) on the size of the network for fluctuation driven networks
in two representative situations corresponding to the chaotic (a ¼ 3, black circles) and the stable chaos (a ¼ 5, red squares) regimes. The reported data have
been averaged over 108 spikes, once a transient of 107 spikes has been discarded. The other parameters are as in the caption of Fig. 1. (For interpretation of
the references to colour in this figure caption, the reader is referred to the web version of this article.)
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Fig. 4. Linear stability analysis of the fluctuation driven state. (a) Maximal Lyapunov exponent k as a function of pulse-width a, for two representative
system sizes: N ¼ 400 (black circles) and N ¼ 1600 (red squares); thin dashed lines are drawn for eye guide only. (b) k1 � kðNÞ as a function of the system
size N in a double logarithmic scale for two representative pulse widths: a ¼ 3 (black circles) and a ¼ 5 (red squares). Thick dashed lines correspond to the
nonlinear fitting (16), which predicts the asymptotic values k1 (see text). The fitting parameters entering in Eq. (16) are c ¼ 1:07 (c ¼ 0:75) and g ’ 0:24
(g ’ 0:21) for a ¼ 3 (a ¼ 5). The inset illustrates that the law persists for even narrower pulses: for a ¼ 9; k1 ¼ �0:3456ð3Þ and g ¼ 0:28. In both figures, k is
calculated by integrating the evolution in the tangent space together with the unperturbed orbit dynamics during a time interval equivalent to 108 spikes,
after discarding a transient of 107 spikes. Remaining parameters as in Fig. 1. (For interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this article.)
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is merely a finite size property [17]. Extensive simulations
for sizes of the network up to N ¼ 15; 000 have shown that
the stable regime is present even for such a large size (see
Fig. 4(b)). Furthermore, we have found an empirical scaling
law describing the increase of k with N, i.e.

kðNÞ ¼ k1 � cN�g; ð16Þ

where k1 denotes the asymptotic value in the thermody-
namic limit and g is the scaling exponent. For the two
representative cases here studied, the exponents were quite
similar, namely g ’ 0:24 (g ’ 0:21) for a ¼ 3 (a ¼ 5), how-
ever g depends definitely on the chosen parameters,
indeed for a ¼ 9 the scaling exponent was g ’ 0:28 (see
inset). Furthermore, these exponents are different from
the one measured for the mean driven case, in such situa-
tion for sparse connectivity k converged to its asymptotic
value as 1=N [30]. An exponent g ¼ 1 has been previously
measured for diffusively coupled map lattices exhibiting
spatio-temporal chaos and theoretically justified in the
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framework of the Kardar–Parisi–Zhang equation [43]. The
scalings we are reporting in this paper are associated to
random networks, therefore they demand for a new
theoretical analysis. Furthermore, the asymptotic values
k1 ¼ 0:335ð1Þ (k1 ¼ �0:034ð1Þ) indicate that a critical
threshold separating stable from chaotic dynamics persists
in the thermodynamic limit.
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Fig. 5. FSLE indicator kF for the fluctuation driven (black circles) and

mean driven (red squares) chaotic set-ups. An initial perturbation of 10�9

(10�7) is applied to the excitatory (inhibitory) network. The distance

between the perturbed and unperturbed trajectory DðEÞ is sampled during
300 time units, at fixed time intervals dt ¼ 0:2. The sampled curve is
smoothed over a sliding window of 20 time units and the resulting curve
is used to obtain the times tk at which the system crosses the
corresponding thresholds hk , with r ¼ 1 (see the definition (12)). This
procedure is averaged in the mean (fluctuation) driven case over 5000
(15,000) realizations. Thick dashed lines indicate the value of k for each
one of the two cases. The mean and fluctuation driven cases have been
examined for the same parameter values reported in Fig. 1, apart that for
the inhibitory case the inverse of the pulse width is set to a ¼ 3. (For
interpretation of the references to colour in this figure caption, the reader
is referred to the web version of this article.)
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Fig. 6. Lower panel: Evolution of the average distance < log DðEÞ > as a
function of time, for the mean (red square) and the fluctuation (black
circle) driven cases. The curves are obtained by averaging the distances
between the perturbed and unperturbed trajectories over 5000 (15,000)

realizations, after applying an initial perturbation of Oð10�8Þ. Upper

panel: Indicator DðEÞ as a function of time for the same cases, calculated as

the time derivative of < log DðEÞ >. For small perturbations, DðEÞ is close to
k (thick dashed lines), while observing a finite size effect in the fluctuation
driven case. The mean and fluctuation driven cases have been examined
for the same parameter values reported in Fig. 5. (For interpretation of the
references to colour in this figure caption, the reader is referred to the
web version of this article.)
3.2. Finite size perturbation analysis

Stable chaos in spatially extended systems is due to the
propagation of finite amplitude perturbations, while infin-
itesimal ones are damped. In inhibitory neural networks,
the origin of stable chaos has been ascribed to abrupt
changes in the firing order of neurons induced by a discon-
tinuity in the dynamical law, while infinitesimal perturba-
tions leave the order unchanged [14,13,17]. In particular,
by examining a conductance based model, in [13] it has
been shown that a spike was able to induce a finite
perturbation in the evolution of two (not-symmetrically)
connected neurons, given that the inhibitory effect of a
spike was related to the actual value of the membrane
potential of the receiving neuron. Therefore two ingredi-
ents are needed to observe stable chaos in neural models,
a non symmetric coupling among neurons, together with
the fact that the amplitude of the transmitted pulses
should depend on the neuron state. These requirements
are fulfilled also in the present model, since the effect of
a spike received by neuron i (e.g. on delaying its next firing
time) depends on its actual state ðv i; Ei; PiÞ as shown in
Eqs. (5) and (6). However, the problem is to quantify this
effect in terms of some indicator, similarly to what done
for spatially extended systems, where stable chaos has
been characterized in terms of the FSLE and of the velocity
of propagation of information [37,41].

As a first indicator we consider the FSLE, associated
with the norm DðEÞ, the corresponding results are reported
in Fig. 5 for the mean and fluctuation driven cases. In the
former case the FSLE is never larger than the usual Lyapu-
nov exponent k, with which it coincides over a wide range
of perturbation amplitudes. In particular, kFðDðEÞÞ < k for
small amplitudes, due to the fact that initially the pertur-
bation needs a finite time to align along the maximal
expanding direction. Furthermore, due to the folding
mechanism, the perturbation is contracted also for large
perturbations of the order of the attractor system size. In
summary, for mean driven dynamics only the instability
associated to infinitesimal perturbations is present, as
reported also in [40]. In the fluctuation driven case the
situation is quite different as shown in Fig. 5, the FSLE
essentially coincides with k for small DðEÞ, but it becomes
definitely larger than k for finite perturbations, revealing
a peak around DðEÞ ’ Oð1=NÞ. These are clear indications
that finite amplitude instabilities coexist with infinitesimal
ones and they could be in principle even more relevant.

The estimation of the FSLE, as already mentioned,
suffers of several numerical problems in these systems.
Therefore we decided to consider the indicator DðDðEÞðtÞÞ,
for simplicity denoted as DðEÞ, which is less affected by
the single orbit fluctuations, since its estimation is based
on the time derivative of the averaged distance log DðtÞh i.
In Fig. 6 we report log DðEÞðtÞ

D E
and DðEÞ as a function of

time for a mean driven and a fluctuation driven case, in
both situations after an initial transient, the indicator DðEÞ

coincides with k. However, in the mean driven case it coin-
cides with k for a very long time before decreasing due to
the folding of the trajectories, while in the fluctuation dri-
ven situation it becomes soon larger than the maximal
Lyapunov exponent and it shows a clear peak at finite
amplitudes, before the folding effect sets in. The same
results are reported in the upper panel of Fig. 7 as a func-

tion of log DðEÞðtÞ
D E

, the peak in the fluctuations driven case
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Fig. 7. Indicator DðDÞ versus the complete distance Dðv ;E;PÞ (lower panel)

and versus the distance DðEÞ (upper panel) for the mean (red squares) and
fluctuation (black circles) driven cases. The curves are obtained with the
same procedure described in the caption of Fig. 6. In both panels, thick
dashed lines illustrate the corresponding value of k. The mean and
fluctuation driven cases have been examined for the same parameter
values reported in Fig. 5. (For interpretation of the references to colour in
this figure caption, the reader is referred to the web version of this
article.)
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is located around 4� 10�4 thus at a smaller amplitude
with respect to the FSLE, despite the system size and
parameters are the same in both cases. Furthermore, in
the lower panel in Fig. 7 we report the indicator
DðDv ;E;PðtÞÞ (Dðv ;E;PÞ from now on) estimated for the total
distance among the perturbed and unperturbed orbit. As
expected, the discontinuities present in the evolution of
the membrane potentials and of the auxiliary field P due
to pulse emission and pulse arrival, induce a small increase
on Dðv ;E;PÞ with respect to the infinitesimal value k at finite
amplitudes even in the mean driven case. However, in this
case the peak of Dðv;E;PÞ is definitely smaller with respect to
the one observed in the fluctuation driven case and it is
located at larger perturbations Oð1Þ. Similar effects are
observable also by considering the FSLE associated to
Dðv ;E;PÞ, data not shown. Nevertheless, in order to keep our-
selves in a consistent framework, in what follows we will
consider the distance between the perturbed and unper-
turbed continuous fields DðEÞ. By choosing this norm, we
will avoid the presence of (trivial) peaks due to discontinu-
ities as in the mean driven system, but instead, the pres-
ence of these peaks will be a genuine indication of
nonlinear instabilities, as those present in a fluctuation dri-
ven regime.

The indicator DðEÞ is reported in Fig. 8 for various system
sizes, ranging from N ¼ 400 to N ¼ 1600 for the mean and
fluctuation driven cases. We observe that in the mean dri-
ven case DðEÞ always gives a value around the correspond-
ing k at all scales, apart the final saturation effect (see
Fig. 8(a)). Notice that k, for these system sizes, strongly
depends on N (as shown in [30]), the saturation at the
asymptotic value is expected to occur for N > 5000. For
the fluctuation driven set-up, a peak (larger than k) is
always present in DðEÞ at finite amplitudes (see Fig. 8(b)).
The peak broadens for increasing N extending to larger
amplitudes and also its height increases. The presence of
more neurons in the network renders stronger the finite
amplitude effects, while nonlinear instabilities are present
at larger and larger perturbation amplitudes.
So far we have considered only chaotic regimes, both in
the fluctuation driven and in the mean driven case. How-
ever, even in linearly stable cases the dynamics can be
erratic, as shown in Fig. 1 for the fluctuation driven case
corresponding to a ¼ 5 for which the maximal Lyapunov
is negative at any system size (see Fig. 4(b)). This kind of
erratic behavior, known as stable chaos [13], is one the
most striking examples of dynamics driven by nonlinear
effects, since the linear instabilities are asymptotically
damped. In this situation neither the FSLE nor the indicator
DðDÞ can be measured. The reason is that, in order to
ensure that the dynamics will take place on the associated
attractor, finite amplitude perturbations are reached only
by starting from very small initial perturbations, which in
this case are damped. Therefore, we should employ differ-
ent indicators, namely the finite amplitude growth rate
RTðD0Þ and the probability PSðD0Þ.

As shown in Fig. 9(a), for the linearly stable fluctuation
driven case corresponding to a ¼ 5;RTðD0Þ ! 0 for suffi-
ciently small perturbations, as expected. However RTðD0Þ
becomes soon positive for finite amplitude perturbation
and it reveals a large peak RM

T located at an amplitude

DM
0 . For increasing system size N, as shown in Fig. 10(a) a

linear decrease of DM
0 with N is clearly observable, while

RM
T reveals a logarithmic increase with N. Thus suggesting

that this indicator will diverge to infinity in the thermody-
namic limit, similarly to the results previously reported in
[32,19]. However, at variance with these latter studies, in
the present context the connectivity remains finite even
in the limit N !1.

The analysis of PSðD0Þ, reported in Fig. 9(b), reveals that
the curve can be well fitted as

PSðD0Þ ¼ 1� exp ð�D0=bÞl; ð17Þ

analogously to what done in [19]. The parameter b can be
considered as a critical amplitude, setting the scale over
which nonlinear instabilities take place. At variance with
the results reported by Monteforte & Wolf in [19], we
observe a linear decrease with N of the critical amplitude
b (see Fig. 10(b)) and an exponent l ’ 2:3� 2:5, depending
on the employed system size. Instead, Monteforte & Wolf
reported a scaling b / 1=

ffiffiffiffi
N
p

and an exponent l ¼ 1. Fur-
thermore, we have verified for various continuous a pulses,
with a 2 ½4; 7�, that the measured exponent l does not par-
ticularly depend on a. The model here studied differs for
the shape of the post-synaptic currents from the one
examined in [19], where d-pulses have been considered.

In our opinion, these two latter indicators, RT and PS bear
essentially the same information: they measure the pro-
pensity of a perturbation D0 to be amplified on a short time
scale T. This is confirmed by the fact that (as shown in
Fig. 10) the values of DM

0 and b, which set the relevant
amplitude scales for the two indicators, both decrease with
the same scaling law (namely, 1=N) with the system size. A
possible explanation for this scaling could be found by
assuming that the main source of nonlinear amplification
is associated to a spike removal (addition) in the perturbed
orbit. A missing (extra) spike will perturb, to the leading
order, the distance Dðv;E;PÞ by an amount / a2

ffiffiffiffi
K
p

=N, since
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Fig. 8. Finite amplitude perturbation analysis for several sizes of the network using the procedure described in Fig. 7 for the distance DE for the mean (a) and
fluctuation (b) driven setups. In both cases the studied sizes correspond to N ¼ 400 (black circles), N ¼ 600 (green up-triangles), N ¼ 800 (red squares) and
N ¼ 1600 (blue down-triangles), averaged through 7500 realizations. Remaining parameters as in Fig. 5. (For interpretation of the references to colour in
this figure caption, the reader is referred to the web version of this article.)
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Fig. 9. Characterization of the stable chaos regime: finite amplitude instabilities for different network sizes. (a) RT indicator as a function of the initial
perturbation D0. (b) Probability PS to observe an exponential increase of the distance between a perturbed and an unperturbed orbit versus the initial
perturbation D0. Thick dashed lines refer to the fit to the data with the expression PS ¼ 1� e�ðD0=bÞl . The studied sizes are N ¼ 100 (blue down-triangle),
N ¼ 200 (green up-triangles), N ¼ 400 (black circles), N ¼ 800 (red squares), N ¼ 1600 (magenta diamonds) and N ¼ 3200 (orange right-triangles). For each
perturbation D0;RT and PS are calculated after T ¼ 5 time units, threshold defining expanding trajectories hL ¼ �2 and averaging over NT ¼ 5000
realizations. Remaining parameters as reported in Fig. 1. (For interpretation of the references to colour in this figure caption, the reader is referred to the
web version of this article.)
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Fig. 10. (a) Peak position DM
0 as a function of N in a log–log scale for a ¼ 3 (black circles) and a ¼ 5 (red squares). The continuous line are the power law

fittings DM
0 / N�U , with exponents U ¼ �0:59 (U ¼ �1:05) for a ¼ 3 (a ¼ 5). Inset, maximum value of RT as a function of the number of neurons in the

network N in a log-lin scale. The solid lines refer to fittings of the data, namely RM
T ¼ 3:09� 5:60N�0:27 for a ¼ 3; RM

T ¼ 0:23þ 0:28 logðNÞ for a ¼ 5. RT

calculated after a time span T ¼ 1 ðT ¼ 5Þ for a ¼ 3 ða ¼ 5Þ. (b) Amplitude scale b associated to the indicator PS as a function of 1=N. In the inset, b is reported
as a function of a for parameter values associated to non chaotic dynamics. In the same range the exponent l � 2:32 (not shown). The model parameters
refer to the fluctuation driven case studied in Fig. 1. Inset is obtained with N ¼ 100. (For interpretation of the references to colour in this figure caption, the
reader is referred to the web version of this article.)
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the lost (added) post-synaptic pulses are K each of
amplitude a2=

ffiffiffiffi
K
p

. This argument explains as well the loga-
rithmic increase of RM

T with the system size and the depen-

dence of DM
0 with varying a as discussed in Fig. 11(b).

Furthermore, the decrease of DM
0 and b with N seems to
indicate that in the thermodynamic limit any perturbation,
even infinitesimal, will be amplified. This is apparently in
contradiction with the fact that the system is linearly stable
and it appears to remain stable by increasing N (as shown in
Fig. 4(b)). In systems exhibiting stable chaos, it has been
reported many times the fact that the thermodynamic limit



-12 -10 -8 -6 -4 -2
log Δ0

0

0.5

1

1.5

2

2.5

R
T

1 2 3 4 5
α

0

50

100

150

200
STot

a)

1 2 3 4 5
α

0

0.1

0.2

0.3

0.4

0.5

ΔM
0

b)

Fig. 11. Finite size instabilities for fluctuation driven dynamics, for different pulse widths. (a) RT as a function of the initial perturbation D0, for a ¼ 2 (black
circle), a ¼ 3 (red square), a ¼ 4 (blue down-triangle), a ¼ 5 (green up-triangle). The system size is fixed to N ¼ 400. Inset, effective size of the attractor STot

as a function of a. (b) Peak location DM
0 as a function of a, for two sizes of the network: N ¼ 100 (black circles) and N ¼ 400 (red squares). The dashed lines

correspond to the power law fitting DM
0 / aU , with exponents U ¼ 2 (U ¼ 1:67), for N ¼ 100 (N ¼ 400). RT is calculated as described in the caption of Fig. 9.

Remaining parameters as in Fig. 1. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this
article.)
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and the infinite time limit do not commute [20]. For finite
system size, at sufficiently large times (diverging exponen-
tially with N) a stable state is always recovered, while if the
thermodynamic limit is taken before the infinite time one,
the system will remain erratic at any time [13]. In the pres-
ent case, it seems that a different non commutativity
between the thermodynamic limit and the limit of vanish-
ingly small perturbations is present, similar conclusions
have been inferred also in [19]. Therefore, we can appar-
ently conclude that a fluctuation driven system, which is
linearly stable, but presents nonlinear instabilities, will
become unstable at any amplitude and time scales in the
thermodynamic limit. However, one should be extremely
careful in deriving any conclusion from these indicators,
since they are not dynamical invariant and their values
depend not only on the considered variables, but also on
the employed norm. This is due to the fact that growth rates
associated to finite amplitude perturbations can be defined
only over finite time lapses, due to the folding processes
taking place on the attractor. Furthermore, in the present
context there is an additional problem related to the mean-
ingful definition of the norm in an infinite space, as that
achieved in the thermodynamic limit.

To understand the differences between the indicator RT

and DðEÞ, we have estimated RT also in the chaotic fluctua-
tion driven case, namely for a ¼ 3. Also in this case we
observe that DM

0 will vanish for diverging system size, but

with a different scaling law, namely DM
0 ’ N�0:6. Further-

more, RM
T increases with N, but this time it appears to satu-

rate in the thermodynamic limit as RM
T ¼ 3:09� 5:60N�0:27,

as shown in the inset of Fig. 10(a). Unlike the stable regime,
in the chaotic one we cannot justify with the simple spike
addition (removal) argument the scaling with N neither
for DM

0 nor for RM
T . It is highly probable that in this regime

the interactions of the linear and nonlinear instabilities
lead to more complicated mechanisms. The evolution of
the indicator RT suggests that for increasing N its peak will
move down to smaller and smaller amplitude scale. How-
ever, this result is in contradiction with the behavior of
DðEÞ reported in Fig. 8(b), for this latter indicator the
position of the peak is not particularly affected by N. In
particular, finite amplitude instabilities affect larger and
larger scales, contrary to what seen for RT (see Fig. 9(a)).
The same behavior is observable for Dðv ;E;PÞ, data not shown.
These contradictory results are probably due to the fact that
while the indicator DðEÞ is based on a sampling of the phase
space performed accordingly to the natural measure, the
indicators RT and PS can well be inconsistent with such
measure. This is an unavoidable point when employing
indicators based on short times and large perturbations.

Finally, in order to study the effect of the pulse shape on
the finite amplitude behavior as measured by RT , we pro-
ceeded to calculate this indicator for various a-values. As
shown in Fig. 11, for increasing a (corresponding to nar-
rower peaks) the position of the maximum DM

0 moves
towards larger amplitudes. This effect can be explained by
the fact that the maximal Lyapunov exponent decreases
with a (as shown in Fig. 4(a)) and therefore perturbations
of bigger and bigger amplitudes are required to destabilize
the system for vanishingly pulse width. Consistently also
the parameter b associated to PS increases for increasing
a-values, as shown in the inset of Fig. 10(b). Remarkably,
the growth of the peak position for N ¼ 100 obeys a qua-
dratic power law (see Fig. 11(b)), as expected from the pre-
viously reported argument concerning the spike addition
(removal) that also explained the scaling of b and DM

0 with
the system size. Unfortunately, for N ¼ 400 where the states
are chaotic for almost all the considered a-values, we can-
not employ such argument, as previously explained, and
indeed the scaling of DM

0 with a is now slower than qua-

dratic, namely DM
0 / a1:67. Furthermore, from Fig. 11(a) it

is also evident that the maximum of the indicator RM
T grows

with a. A possible explanation can be related to the fact that
DM

0 can be considered as the initial perturbation needed to

reach the size of the attractor, indeed for D > DM
0 the corre-

sponding value of the indicator RT decreases due to folding
effects. Furthermore, as shown in the inset in Fig. 11(a), the
size of the attractor, measured as STot ¼

P
jxmax � xminj,

where x ¼ fEi; Pi;v ig, increases with a. Therefore, the
increase in RM

T can be, to some extent, related to the enlarge-
ment of the attractor size with a.
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4. Discussion

We have investigated the dynamics and stability of
mean and fluctuation driven neural networks, the former
(latter) have been realized as a purely excitatory (inhibi-
tory) pulse coupled network of Leaky Integrate-and-Fire
(LIF) neurons with a sparse architecture. In particular, we
considered random networks with a constant in-degree
K ¼ 20 for any examined size.

The excitatory network, despite being chaotic, reveals a
low spiking variability. On the other hand, in the fluctua-
tion driven case the variability is high for any considered
pulse width and system size (CV ’ 0:7� 1:0). However, a
different picture arises when studying the stability of infin-
itesimal perturbations: the system is chaotic for slow syn-
apses and it becomes stable for sufficiently fast synaptic
times (6 4 ms). Furthermore, a chaotic state for the inhib-
itory network is observable already at small connectivity
K � Oð101Þ contradicting what reported in [16], where
the authors affirmed that a large connectivity is a prerequi-
site to observe chaotic motion in these models.

The maximal Lyapunov exponent k tends towards an
asymptotic value for increasing system sizes with a
power-law scaling. The exponent g associated to this scal-
ing is different in the two studied regimes, in particular
g ’ 1 for the mean driven set up [30], while, in the fluctua-
tion driven case g present different values according to the
set of parameters chosen. The origin of the observed scaling
demands for new theoretical analysis, similar to the one
developed for spatio-temporal chaotic systems [43].

Remarkably, even in the linearly stable regime an erra-
tic evolution of the network is observable. A similar phe-
nomenon has been already observed in several systems
ranging from diffusively coupled chaotic maps to neural
networks, and it has been identified as stable chaos [13].
In this context, finite amplitude perturbations are respon-
sible for the erratic behavior observed in the system. In dif-
fusively coupled systems these nonlinear instabilities have
been characterized in terms of the propagation velocity of
the information and of suitable Finite Size Lyapunov Expo-
nents (FSLEs) [37,41]. FSLEs have been previously
employed in the context of fully coupled neural networks,
where they revealed that the origin of the chaotic motion
observed in two symmetrical coupled neural populations
was due to collective chaos in the mean-field variables
driving the single LIF neurons [28]. In the context of ran-
domly coupled systems the concept of propagation veloc-
ity on a lattice looses its sense, while FSLEs reveal serious
problems in their numerical implementation.

However, FSLEs clearly show also in our case that in
the mean driven case the observed instabilities have a
purely linear origin, while in the fluctuation driven situa-
tion nonlinear mechanisms are present even when the
system is chaotic. This analysis is confirmed by a novel
indicator we have introduced, namely the local derivative
DðDÞ of the averaged logarithmic distance < log D >

between the reference and the perturbed trajectory. This
quantity suffers less than the FSLE the trial to trial fluctu-
ations, since it is based on an averaged profile. For the
fluctuation driven case this indicator is larger than the
maximal Lyapunov exponent at finite amplitudes and this
effect is present for all the examined system sizes. The
position of the peak in DðDÞ seems not to be particularly
influenced by the system size, while the peak itself broad-
ens towards larger amplitudes for increasing N. Unfortu-
nately, all these indications cannot tell us if the
nonlinear mechanisms are prevailing on the linear ones,
but just that the nonlinear effects are present. To measure
the influence of linear versus nonlinear effects on the sys-
tem dynamics, novel indicators are required, similar to
linear and nonlinear information velocities for diffusively
coupled systems [13].

As a final point we have studied nonlinear instabilities
in linearly stable systems emerging in fluctuation driven
inhibitory networks for sufficiently narrow postsynaptic
currents. For the characterization of these instabilities we
have employed the average finite amplitude growth rate
RTðD0Þ, measured after a finite time interval T, analogously
to what done in [34,41], and the probability PSðD0Þ that an
initial perturbation induces an exponential separation
between the perturbed and the reference orbits, previously
introduced in [19]. Both these indicators reveal the exis-
tence of instabilities associated to finite perturbations, in
particular the characteristic amplitude scales associated
to these indicators vanish in the thermodynamic limit as
1=N. Thus suggesting that instabilities in these systems
can occur even for infinitesimal perturbations in apparent
contradiction with the fact that these systems are linearly
stable at any system size, as revealed by the Lyapunov
analysis. This contradiction has lead Monteforte & Wolf
to conjecture in [19] that the thermodynamic limit and
the limit of vanishingly small perturbations do not com-
mute in these models. Furthermore, we measure a loga-
rithmic divergence with the system size of the peak
height of RTðD0Þ, suggesting that in the thermodynamic
limit the value of these indicator will become infinite, sim-
ilarly to what found in the high connectivity limit for a bin-
ary neuronal model in the balanced state [32] and for LIF
with d-pulses in [19]. However, in our study the connectiv-
ity remains finite and small in the limit N !1.

Our opinion, based on the comparison of the indicators
DðDÞ and RTðD0Þ performed in a fluctuation driven chaotic
situation, is that the above results can be due to the fact
that the dynamics considered for the estimation of RTðD0Þ
and PSðD0Þ do not take place on the attractor of the system.
This because the indicators are estimated at short times,
without allowing the perturbed dynamics to relax onto
the attractor. The development of new indicators is
required to analyze more in depth the phenomenon of sta-
ble chaos in randomly connected networks.
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Appendix A

The LIF model is usually expressed in physical units as
follows [44]

sm
dV
dt̂
¼ �ðV ð̂tÞ � V0Þ þ RmIext þ smĝbEð̂tÞ; ð18Þ

where Rm is the specific membrane resistance, sm the
membrane time constant, and V0 the resting potential.
The transformation of the adimensional model (1) to (18)
can be obtained by performing the following set of
transformations

Vi ¼ v iðVth � V0Þ þ V0 RmIext ¼ aðVth � V0Þ þ V0; ð19Þ

ĝ ¼ gðVth � V0Þ þ V0 t̂ ¼ tsm; ð20Þ

where Vth is the firing threshold value. Notice that

â ¼ a=sm and bE ¼ E=sm have the dimensionality of a
frequency and ĝ of a potential. Realistic values for the
introduced parameters, are sm ¼ 20 ms, V0 ¼ �60 mV,
Vth ¼ �50 mV [45].

The postsynaptic current rise times 1=â employed in
this article range from 4 to 20 ms for inhibitory cells, while
it is fixed to 2.22 ms for excitatory ones. Furthermore, the
average neuronal firing rates are of order ’50 Hz (’6 Hz)
for excitatory (inhibitory) networks, which are quite rea-
sonable values for pyramidal neurons (inter-neurons) of
the cortex [46,1,47,3].
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