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Summary

Study of the dynamical regimes emerging in pulse coupled networks composed by very
simple neuronal models (Leaky Integrate-and-Fire (LIF) neurons).

Collective solutions in fully coupled excitatory LIF networks

Splay States

Partial Synchronization

Collective solutions in two simmetrically coupled neural networks

Chimera States - First evidence in neural networks

Collective (high-dimensional) chaos
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Collective Dynamics in the Brain

Rhythmic coherent dynamical behaviours have been widely identified in different
neuronal populations in the mammalian brain [G. Buszaki - Rhythms of the Brain]

Collective oscillations are commonly associated with the inhibitory role of
interneurons

Pure excitatory interactions are believed to lead to abnormal synchronization of the
neural population associated with epileptic seizures in the cerebral cortex

However, coherent activity patterns have
been observed also in “in vivo” measure-
ments of the developing rodent neocortex
and hyppocampus for a short period after
birth, despite the fact that at this early stage
the nature of the involved synapses is essen-
tially excitatory [C. Allene et al., The Journal
of Neuroscience (2008)]

Calcium fluorescence traces
two-photon laser microscopy

WIAS Berlin 17/02/11 – p. 3



Collective Periodic Oscillations

Theoretical studies of fully coupled excitatory networks of LIF neurons have revealed the
onset of macroscopic collective periodic oscillations (CPOs):

the collective oscillations are a manifestation of a Partial synchronization

the macroscopic period of the oscillations does not coincide with the average
interspike-interval ISI (T) of the single neurons and the two quantities are
irrationally related

Since real neural circuits are not fully connected, it is important to investigate the role of
dilution for the stability of CPO
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Leaky integrate-and-fire model

Linear integration combined with reset = formal spike event

Equation for the membrane potential v , with threshold Θ and reset R :

τ v̇ = −(v − vr) + I

If I + vr > Θ Repetitive Firing

If I + vr < Θ Silent Neuron

In networks: at reset a pulse is sent to other neurons
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Pulse coupled network

A system of N identical all to all pulse-coupled neurons:

v̇j = I − vj +
g

N

N
X

i=1,( 6=j)

∞
X

k=1

P (t − t
(k)
i ) , j = 1, . . . , N

with the pulse shape given by P (t) = α2t exp(−αt).
More formally we can rewrite the dynamics as

v̇j = I − vj +
g

N
E(t), j = 1, . . . , N

the field E(t) is due to the (linear) super-position of all the past pulses

The field evolution (in between consecutive spikes) is given by

Ë(t) + 2αĖ(t) + α2E(t) = 0

the effect of a pulse emitted at time t0 is

Ė(t+0 ) = Ė(t−0 ) + α2/N

The above set of N + 2 continuous ODEs can be reduced to a time discrete N + 1-d
event driven map describing the evolution of the system between a spike emission and
the next one
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Event-driven map(I)

By integrating the field equations between successive pulses, one can rewrite the
evolution of the field E(t) as a discrete time map:

E(n + 1) = E(n)e−ατ(n) + NQ(n)τ(n)e−ατ(n)

Q(n + 1) = Q(n)e−ατ(n) +
α2

N2

where τ(n) is the interspike time interval (ISI) and Q := (αE + Ė)/N .

For the LIF model also the differential equations for the membrane potentials can be
exactly integrated

vi(n + 1) = [vi(n) − a]e−τ(n) + a + gF (n) = [vi(n) − vq(n)]e−τ(n) + 1 i = 1, . . . , N

with τ(n) = ln
h

vq(n)−a

1−gF (n)−a

i

where F (n) = F [E(n), Q(n), τ(n)] and the index q labels

the neuron closest to threshold at time n.
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Event-driven map(II)

In a networks of identical neurons the order of the potentials vi is preserved, therefore it
is convenient :

to order the variables vi;

to introduce a comoving frame j(n) = i − n Mod N ;

in this framework the label of the closest-to-threshold neuron is always 1 and that
of the firing neuron is N .

The dynamics of the membrane potentials for the LIF model becomes simply:

vj−1(n + 1) = [vj(n) − v1(n)]e−τ(n) + 1 j = 1, . . . , N − 1 ,

with the boundary condition vN = 0 and τ(n) = ln
h

v1(n)−a

1−gF (n)−a

i

.

A network of N identical neurons is described by N + 1 equations
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Fully coupled network

0 1 2
time

0

5

10

F(t)

 α=3
 α=30

 F(t) = α2
 t e

-αt
For fully coupled networks the membrane
potentials v displays only regular solutions:
periodic or quasi-periodic

Depending on the shape of the pulse (value of α) :

Excitatory Coupling - g > 0

Low α – Splay State

Larger α – Partially Synchronized State

α → ∞ – Fully Synchronized State

Inhibitory Coupling - g < 0

Low α – Fully Synchronized State

Larger α – Several Synchronized Clusters

α → ∞ – Splay State

WIAS Berlin 17/02/11 – p. 9



Splay State

Splay States are collective solutions emerging in Homogeneous Networks of N neurons

the dynamics of each neuron is periodic

the field E(t) is constant (fixed point)

the interspike time interval (ISI) of each neuron is T

the ISI of the network is T/N - constant firing rate

the dynamics of the network is Asynchronous
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Partially Synchronized State
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Partial Synchronization is a collective dynamics emerging in Excitatory Homogeneous
Networks for sufficiently narrow pulses

the dynamics of each neuron is quasi periodic - two frequencies

the firing rate of the network and the field E(t) are periodic

the quasi-periodic motions of the single neurons are arranged
(quasi-synchronized) in such a way to give rise to a collective periodic field E(t)

van Vreeswiijk, PRE (1996) - Mohanty, Politi EPL (2006)

This peculiar collective behaviour has been recently discovered by Rosenblum and

Pikovsky PRL (2007) in a system of nonlinearly coupled oscillators
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Two Populations of Neurons
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Two fully coupled networks, each made of N LIF oscillators

v̇
(k)
j (t) = a − v

(k)
j (t) + gsE(k)(t) + gcE(1−k)(t)

Ë(k)(t) + 2αĖ(k)(t) + α2E(k)(t) =
α2

N

X

j,n

δ(t − t
(k)
j,n), (k = 0, 1)

gs > 0 self-coupling strength of the excitatory interaction

gc > 0 cross-coupling strength of the excitatory interaction
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Macroscopic Attractors

gs ≡ gc Partial Synchronization (PS)

gs < gc Fully Synchronized (FS)

gs > gc Spontaneous Symmetry Breaking

Breathing Chimera: FS + PS

Generalized Chimera: PS1 + PS2

Symmetric States

AntiPhase Partial Synchronization

Torus

Collective Chaos

Kuramoto parameter

r(k)(t) = |〈e
iθ

(k)
j

(t)
〉|

θ
(k)
j (t) = 2π

t−t
(k)
j,n

t
(k)
q,n−t

(k)
q,n−1

phase of the j−th oscillator
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Chimera

La Chimera d’Arezzo
Etruscan Art

In Greek mythology, Chimera was a monstrous fire-breathing female creature of Lycia in
Asia Minor, composed of the parts of multiple animals: upon the body of a male lion with
a tail that terminated in a snake’s head, the head of a goat arose on her back at the
center of her spine (Wikipedia)
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Chimera in Oscillator Population

Let us consider two oscillator populations {θa} and {θb} made of identical oscillators,
where each oscillator is coupled to equally to all the others in its group, and less strongly
to those of the other group

dθa
i

dt
= ω +

µ

N

N
X

j=1

sin(θa
j − θa

i − α) +
ν

N

N
X

j=1

sin(θb
j − θa

i − α) µ > ν

Simulations of the 2 populations reveals two different dynamical behaviours

Synchronized state r = 1

A Chimera State: one population is synchronized and the other not

The oscillators are identical and symmetrically coupled : the
Chimera State emerges from a spontaneous symmetry breaking

Abrams, Mirollo, Strogatz, Wiley, Phys. Rev.

Lett 101 (2008) 084103
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Chimera States

A = η − ν β =
π

2
− ν

By increasing A one observes:

the chimera stays stationary

the stationary state looses stability and the chimera starts to breathe

at a critical Ac the breathing period become infinite,

beyond Ac the chimera disappears and the synchronized state becomes a global
attractor
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Collective Chaos

Collective chaos, meant as irregular dynamics of coarse-grained observables, has
been found in ensembles of fully coupled one-dimensional maps as well as in
two-dimensional continuous-time oscillators (Stuart-Landau oscillators)

What happens to one-dimensional phase oscillators’ ensembles which cannot
become chaotic under external forcing ?

The oscillator with sinusoidal force fields (Kuramoto-like) have at maximum 3
degree of freedoms, no space for high-dimensional chaotic behaviour, few
numerical evidences of collective irregular dynamics

LIF neural networks have no this kind of limitations
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Maximal Lyapunov Exponent λ1

The Finite Amplitude Lyapunov exponent λF can
be determined from the growth rate of a small fi-
nite perturbation for different amplitudes ∆ of the
perturbation itself (after averaging over different
trajectories)
[E. Aurell et al. PRL (1996)]
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High-Dimensional Chaos
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Large part of the spectrum vanishes for
N → ∞

In the thermodynamic limit, the dynamics
of globally coupled identical oscillators can
be viewed as that of single oscillators
forced by the same field

The numerically computed conditional
Lypunov exponent λc ≤ 0 of a LIF forced
by the self-consistent field is zero

Few Lyapunov exponents remains positive:

λ1 → 0.0195(3)

λ2 and λ3 grow with N and become positive for N > 200 (no evident
saturation)

High-dimensional chaos however, we cannot tell whether the number of positive
exponents is extensive (proportional to N ) or sub-extensive
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Open Problems

PS have been indentified in Kuramoto models only assuming nonlinear coupling
[Pikovsky & Rosenblum, PRL (2007)]

Breathing Chimera have been identified also in the two-population setup of
Kuramoto-like oscillators
[Abrams, Mirollo, Strogatz, Wiley, PRL (2008)]

Some preliminar indication of low dimensional chaos at a macroscopic level have
been reported in Kuramoto-like models
[Golomb, Hansel, Shraiman,Sompolinsky PRA (1992)

Marvel, Mirollo, Strogatz, Chaos (2009) ]

In the context of LIF symmetrically coupled populations :

New collective stationary states have been identified (APS and PS1-PS2)

As well as high-dimensional collective chaos

To what extent are pulse-coupled oscillators equivalent to Kuramoto-like models?

S. Olmi, A. Politi, A. Torcini EPL 92, 60007 (2010)
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