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Abstract

The paper considers reaction-diffusion systems in ex-

citable media for studying the dynamics of related

traveling waves. In particular, the one-dimensional

Fitzhugh-Nagumo model is considered to apply two

classical approaches of feedback systems and derive re-

sults of structural kind. The comparison with simula-

tions obtained by a new integration procedure indicates

the possible usefulness of such methods in this specific

context.

1 Introduction

A broad attention has been devoted from many years

to the study of pattern formation in distributed sys-

tems, due to the importance of this problem in the

fields of biology, chemistry, physics and ecology (see,

for example, [1] [2] and references therein). A particu-

lar interest is related to the case of reaction-diffusion

equations in one-dimensional and two-dimensional ex-

citable systems, which can be used to model the elec-

trical activity of biological tissues -nerve fibers, cardiac

muscle, brain tissues- and to reproduce a lot of main

phenomena experimentally observed. For example, the

onset of solitary pulses, periodic wave trains, circular

waves and also spiral waves, i.e. spatial waves of this

shape, periodic in time and rotating in the plane. These

spatiotemporal patterns model real phenomena such

as neural action potential along the axonal membrane,

organized contractions of atria and ventricles, cortical

waves in the brain, etc. . It is therefore quite impor-

tant, particularly in cardiology and neurobiology, but

also in many problems concerning chemical activities,

the knowledge of the laws of such behaviors.

The study of these systems generally presents signifi-

cant difficulties and its results are far from having de-

tected many essential characteristics of the above phe-

nomena. A common approach is to use simplified mod-

els in order to reproduce in a qualitative way the actual

system behavior and to grasp the mechanisms which

give rise to the various situations. It is evident that

the understanding of such fundamental processes is a

key point in view of a policy of their control, as can be

required in many situations.

The purpose of this paper is to give a contribution to

the analysis of reaction-diffusion systems in excitable

media, by introducing approaches coming from the area

of control engineering and using frequency methods for

feedback systems. As a paradigm of interesting sys-

tems is considered the well-known Fitzhugh-Nagumo

model [1] [2], presented in Section 2 and described in

its main features concerning the possibility of sustain-

ing traveling waves. The describing function method

of analysis [3] [4] is used and its results are discussed

in Section 3, while a technique for relay systems (the

Tsypkin method [5] [6])is applied in Section 4, with

comparisons and comments of related results. Due to

the difficulty of simulating these kind of systems, a par-

ticular attention has been devoted to such problem.

Then, a new integration scheme [7] is proposed in Sec-

tion 5, putting in evidence some specific advantages of

this algorithm, here used to obtain the true behavior

of Fitzhugh-Nagumo model. The brief conclusion of

Section 6 ends the paper.

2 The Fitzhugh-Nagumo model

As a paradigm of reaction-diffusion systems in excitable

media, consider the well-known Fitzhugh-Nagumo

(FHN) model of equations

~=v%+.f(u)-v
(1)

The variables u = U(Z, t) and v = V(Z, t) depend on
one or two-dimensional space x, in addition to time
t, and represent the activator and the inhibitor state,

respectively. The symbol V2 denotes the Laplacian,
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e (a small term) and ~ are system parameters and ~

is a S-shaped nonlinear function such that only one

equilibrium point exists.

Equations (1) area valuable qualitative model of bio-

logical media (nerve fibers and muscle tissues such as

heart tissue) and present a wide variety of solutions

known as traveling waves [1] [2]. Corresponding to real

phenomena also in chemical and physical activities ,

these waves are primarily plane waves which have a

fixed profile and propagate along the medium in a fixed

direction with constant speed. The term plane waves,

means that they are independent of any space variation

perpendicular to the direction of propagation and the

system nonlinearity only allows certain profiles with

its own velocity. Two-dimensional space models of eq.s

(1) can also exhibit waves with curvilinear propagation

front. The most important case is that of spiral waves

having the form of a single spiral in the plane, rotating

about a point [1] [2].

In order to study the dynamics of these waves, con-

sider the case of one spatial dimension, The usual ap-

proach is looklng for solutions of (1) U(Z, t) = U(z) and

v (z, t) = V(z) with z = z – et, representing waves mov-

ing to the right with speed c. In this moving coordinate

system eq.s (1) become

–-Cu’ = u“ + f(u) – v
(2)

–Cv’ = 6(U- ‘yV) ,

where UJ ~ dU/dzj etc.

The study of thk ordinary differential system can now

be dh-ected to seek homoclinic orbits and limit cycles.

In fact the first ones, starting from the rest point and

finishing to it, can be thought as solitary traveling

pulses in the original system (1), while the second ones

result in periodic wave trains. The determination of

the above dynamics can allow one to derive the essen-

tial features of such analysis. In fact, although the

considered waves are nonlinear, one can define an im-

portant characteristic of the medium, namely its dis-

persion curve, giving the wave speed c as a function of

the wavelength A, i.e. the distance on the z scale be-

tween successive wave fronts. The typical form of dis-

persion law for model of eq.s (1) is shown in Figure 1,

where the upper branch indicates stable solutions and

the lower branch refers to unstable solutions. In prac-

tice, there exists a lower bound for speed propagation ,

corresponding to the minimum wavelength of periodic

trains and an upper bound of speed propagation which

asymptotically refers, for A + co, to solitary pulses.

Unfortunately, the study of homoclinic orbits and limit

cycles in a nonlinear system as (2) is not straightfor-

ward, particularly as the wave speed c is to be deter-
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Figure 1: Dispersion curve of FHN model

mined at the same time of the wave profiles U and V.

The usual method followed in this problem exploits the

fact that the parameter e is small and therefore (2) rep-

resent a singular perturbation system, with a slow and

a fast variable, V and U respectively. This allows one to

utilize an asymptotic transition layer approach [1][2] [8]

deriving simplified dynamics conditions. In particular,

the case where ~ is assumed to be cubic

f(u) = U(?J - a)(l -u) , (3)

where O < a < 1, has been mainly considered, leading

to a dispersion curve which is a good approximation

of the upper branch (stable solutions) of the true one,

apart its spurious extension up to the origin. The re-

sults necessarily follow from a numerical approach and

it is not easy a link of the main characteristics of such

diagram with the original system parameters.

Another approach consists in introducing a piecewise

linear form for the nonlinearity ~, such as

f(u) = –u + *[1 + sgn(u - a)] , (4)

and letting ~ = O [1] [2]. This appears a crude approxi-

mation of the function (3) but the crucial point is that

its general shape is preserved, so leading to similar be-

haviors of the corresponding systems. On the other

hand, it must be recalled that the cubic FHN model

has been originally proposed as a reasonable caricature

of the classical complete model of Hodgkin-Huxley.

By solving linear problems for eq.s (2) in z domain and

applying continuity conditions where switch occurs it

is possible to obtain conditions for the desired dynam-

ics. A dispersion curve similar to that of Figure 1 can

be derived, and this result is given as a function of c,

which is not simply viewed as a small parameter as in

the previous approach, Some reduced numerical com-
putations are needed also in this case, but the intuition

on the mechanisms of traveling waves result to be en-

hanced.
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The next Sections are devoted to present two differ-

ent approaches for seeking the dynamics of interest of

(2), corresponding totravelling waves of(l). These ap-

proaches come from control engineering and generally

utilize frequency methods for feedback systems.

3 Describing Function Method

The elimination of variable V in (2) leads to the third

order differential equation

where c # O.

By considering the Laplace transform from z to the

complex variable s, (5) can be clearly separated in a

linear part and in a nonlinear one . The former is

dynamic and can be represented by its transfer function

L(s) given by

s + C-jJ/c
~(s) = S3 + (c – q/c)s2 – e-fs + c/c ‘ (6)

while the latter is simply described by the static non-

linearity j. The two parts are connected in feedback

as shown in Figure 2.

r= u(z)
L(s)

f( )

Figure 2: Lur’e system

This system structure, sometimes called of Lur’e, is

well-known and widely studied in control engineering

for different aspects of nonlinear dynamics and stabil-

it y [3] [4] [5]. In particular, the structure of Figure 2 is

suitable for applying harmonic balance techniques to

seek periodic solutions U developed in Fourier series.

In order to obtain qualitative results we can limit this

approach to the first harmonic by using the classical

describing function method.

Assume that any 27r/LJJ solution V.(z) of (5) can be
represented as

The separate balance along the loop of Figure 2 of Oand

w frequency components, neglecting the higher order

harmonics at the output of the nonlinearity f, leads to

the equations

A[l + _L(0)NO(A, B)] = O

(8)

1 + L(ju)NI(A, B) = O .

Here NO and NI represent the bias gain and the first

harmonic gain of the nonlinearity f, that is

No(A, ~) = ~ ./_:nf (A + ~COSLJZ) dwz

N1(A, I?) = ~ f~m f(A + B coswz)e-~”’duz ,

(9)

while L(O) and L(jw) are the same steady-state gains

of the linear system described by L(s).

Conditions (8) are two algebraic equations, the first one

real and the second complex, and have to be solved for

A, B, and w. Then, the characteristics of approximate

limit cycles can be frequently derived in a structural

(non numerical) form showing their dependence on sys-

tem parameters. Of course, due to the assumptions

of method, the accuracy of such predictions strongly

depends on the loop attenuation of higher harmonics

[3][4][5]. A possible measure of error can be a distor-

tion index, viewed as the ratio between the amounts of

higher harmonics and considered harmonics along the

loop, in correspondence to the obtained solution.

Coming back to (5) and then to system of Figure 2,

where L(s) is given by (6) and f by the cubic form

(3), we apply conditions (8). In particular, the second
one requires the intersection of the polar plot of L(ju)

with the locus of – I/Nl, Since N1 is real (f is a single

valued nonlinearity) this intersection must correspond

to lm[L(j w)] = O. According to the indicative Figure

3 this gives

(lo)

while the remaining conditions (8) result in

–5A3 + 5(a+ 1)A2 - [2(a + $) + #(a+ 1)2 + a-t- $A

+~(a+l)(a+ $) =0 ,
(11)

and, by the corresponding roots A, in

UO(Z)=A+BCOSWZ, B> O, W>O. (7)
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Since eqs. (8) are solved only when w and B are real,

the following conclusions can be drawn:

. for parameter values of interest w is real (e <

l/y2) and a necessary condition to have a solu-

tion is
t – Ez’yz

C2>3
l+a2–a–3ey

(13)

● according to (13), eq. (11) has generally three

real roots A. Two of them can give real values for

B leading to the indicative bifurcation diagram of

Figure 4. In a certain range of e two limit cycles

are predicted vanishing at a tangent bifurcation.

This has the graphical interpretation shown in

Figure 3 as double intersection of loci of L(ju)

and – l/N1.

Figure 3: Nyquist diagram
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Figure 4: Limit cycle amplitude

In terms of the original problem of traveling waves in

FHN model it is to consider that z = z – ct in the pe-

riodic solution (7) and then the related wavelength is

A = 27r/w. Therefore, eq. 10 indicates the dispersion
curve as a straight line to which correspond, with dif-

ferent profiles, two solutions which are presumably one
stable (the larger) and one unstable (the smaller),

The results concerning two different cases (c = 0.0004

and c = 0.02, with a = 0.01 and T = 2.5) are shown

in Figure 5 and compared with the true ones obtained

by numerical simulations (see Section 5). It appears

evident that the describing function method generally

fails in reproducing the dispersion curve. In partic-

ular, the saturation of such curve is not predicted, so

that the existence of solitary waves in the system is not

indicated. Moreover, it can be observed that the ob-

tained results tend to have some accuracy only for low

values of the wavelength ~, when the distortion in the

scheme of Figure 2 decreases, in particular for larger

e. On the other hand, when a successful application

of singular perturbation is possible it seems reasonable

that first order harmonic balance is hard to employ and

vice-versa.

1,%

1.2 -
c = 0,0?,

I

c

0.8
1/
II /“’”& = 0.0004

Figure 5: Computed (describing function method) and
simulated (o) dkpersion curves

4 Tsypkin Method

Coming back to feedback system of Figure 2 as a repre-

sentation of eq. (5), assume now that the function j is

modeled by the piecewise linear form (4), with y = O.

Simple computations lead to the corresponding block

scheme of Figure 6 where a bias is indicated, the linear

a E(z) ,

‘T ‘4

+

L(s)
u(z)

*—-

+

I

Figure 6: Relay feedback system

transfer function is

s
(14)L(s) = s3 + ~s2 + c/c ‘

and the nonlinearity is reduced to a relay with input

E(z) and output O or 1.
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This class of systems has a certain interest in control

engineering for its importance in practical applications

and presents specific opportunity of analysis [5] [6], In

particular, when a limit cycle occurs the relay out-

put signal necessarily becomes a periodic square wave

of fixed amplitude, whose parameters (the switching

times, and then the frequency) are unknown. An in-

dicative behavior is shown in Figure 7 where only one

pulse for period is assumed. For determining the pa-

-—

I

I

1’
1;

Figure 7: Periodic pulse train

rameters u and p (the relative pulse duration) we can

derive the steady-state output of the linear system L(s)

to this periodic square wave and then match the cor-

responding switching times at the input E(z) of the

relay.

Observe that also this idea exploits the feedback struc-

ture of the system. In Section 3 an approximate har-

monic input to the nonlinearity has been assumed and

the consequent balance along the loop has been im-

posed, with some simplified assumptions. Now, we give

the exact shape of the nonlinearity output. and again

impose the balance along the loop through the linear

subsystem. Apart from this analogy, the describing

function method of Section 3 is an approximate tech-

nique, while this relay system approach is oriented to

give exact results.

The application of the above idea can follow a fre-

quency domain procedure, originally proposed by
Tsypkin [5][6]. The waveform of Figure 7 is written

in Fourier series and, as input of the linear system, al-

lows one to derive the corresponding Fourier series of

output U(z), through suit able functions depending on

L(s) at frequencies s = jwk, for k = 0,1, . . . . co. In a

similar way is obtained the series of U’ (z) ~ dU(z)/dz.

Then, assuming the positive relay switching at z = O

as in Figure 7, it must be

u(o) = o , u’(o)>0
(15)

u(p27r/w) = o , u’(p27r/w) <0.

Applying these relations to the above series of U(z) and

U’(z) for the system of Figure 6 with L(s) of eq. (14),

we obtain

lrn[A(O, u) – A(27rp, w)] = an

Re[A(O, w) – A(27rp, w)] >0

(16)

lm[A(O, U) – A(–27rp, w)] = –an-

Re[A(O, u) – A(–27rp, cJ)] >0,

where the complex function A(9, w) is defined as

Re[A(O, u)] = ~{ Re[.L(jkw)] cos M3+1m[L(jkw)] sin k%}
k=l

1m[A(6, w)] = ~ ~{lrn[L(jku)] cos k6–Re[L(jkw)] sin I@}.

k=l

The equality conditions in (16) are two nonlinear equa-

tions to be solved in w and p for determining a limit

cycle of the system. The solution can be numerical

or graphical. The latter, even if appears much more

laborious than in describing function method, can bet-

ter give an idea of the exact role of system parameters

in the studied dynamics. The inequality conditions in

(16) have only to be checked.

The application of the procedure has led to the results

reported in Figure 8, where the obtained dispersion

curves are drawn for two different cases (~ = 0.001 and

e = 0.05, with a = 0.01) concerning stable solutions.

The comparison with simulations shows a quite good

accuracy of the method, which can result an efficient

tool to study in some detail the mechanism of trav-

eling waves in reaction-diffusion systems. In partic-

ular, it appears a promising technique to derive some

structural information about the basic elements of such

phenomena.

5 Integration Scheme

The integration of the FHN eq.s (1) has been performed

adopting a new time-splitting scheme, in particular a

so called Leap Frog algorithm [7]. The time-splitting

technique is based on separating the evolution operator

in a linear part (reduced to the Laplacian operator) and

a nonlinear part, whose effects are suitably combined

via the Trotter formula [7]. Then, usually the linear
part is solved in the spectral domain by two FFT~,

while the nonlinear part is integrated using a simple

finite difference (Euler) scheme.
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Figure 8: Computed (Tsypkin method) and simulated (o)

dkpersion curves

The novelty of the algorithm here used consists in per-

forming also the integration of the linear part in space

domain. This corresponds in the particular case of

FHN model, to evaluate the related value u at t + dt as

the convolution integral

/
K(Y, dt)u(x – y, t)dy , (18)

where the expression of the kernel K is

_e-lY12/4t ,‘(y’‘)=A (19)

The main idea behind this scheme deals with the eval-

uation of the integral (18) on a discrete spatial grid of

N points. A very limited number Nc of sites around

the central value of the convolution is used. We em-

ploy a” modified” kernel instead of discretizing directly

the expression (19) and such a kernel is constructed to

reproduce, with a given accuracy, the first terms of

the Fourier expansion of true kernel. Technical details

about the implementation of such algorithm are in [7].

This technique is local in space and can be quite fast

with respect to the usual pseudo-spectral algorithms,

maintaining almost the same integration precision, as

shown in the considered applications [7]. In particular,

the computational burden of the present scheme will

scale as Nc/ ln(~) with respect to that requested by
the spectral algorithms. Therefore, for grids with a

sufficiently high number of points the scheme will be

faster than the algorithms employing the FFTs.

fully employed in problems with complicate boundaries

where spectral algorithms are no more suitable.

6 Conclusion

The paper has considered a well-known model of

reaction-diffusion systems in excitable media, namely

the Fitzhugh-Nagumo equation. To study the dynam-

ics of traveling waves fors ystems of this kind, two clas-

sical frequency methods of feedback systems have been

employed, for deriving more qualitative information

than usually is obtained on the mechanism of such be-

haviors. The comparison of preliminary results with

numerical simulations, obtained by a new integration

scheme, has put in evidence positive and negative as-

pects of proposed approaches.
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Another point to stress is that, due to the locality of

this algorithm, now different boundary conditions can

be treated employing the same” modified” kernel in the

greater part of the grid, while only at the boundaries
the convolution should be handled differently. This

suggest that such integration technique could be fruit-
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