Periodic orbits in coupled Hénon maps: Lyapunov and multifractal analysis
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A powerful algorithm is implemented in a 1-d lattice of Hénon maps to extract orbits which
are periodic both in space and time. The method automatically yields a suitable symbolic
encoding of the dynamics. The arrangement of periodic orbits allows us to elucidate the
spatially chaotic structure of the invariant measure. A new family of specific Lyapunov
exponents is defined, which estimate the growth rate of spatially inhomogeneous perturbations.
The specific exponents are shown to be related to the comoving Lyapunov exponents.

Finally, the {-function formalism is implemented to analyze the scaling structure of the

invariant measure both in space and time.

I. INTRODUCTION

Various approaches have been devised in the past to
describe low-dimensional chaotic attractors. The two most
promising methods are based, respectively, on (i) the ex-
traction of periodic orbits and the subsequent computation
of a suitable dynamical ¢ function; (ii) symbolic encod-
ing of the trajectories, detection of forbidden sequences and
the construction of suitable directed graphs.® Knowledge
of the symbolic dynamics, revealing the arrangements of
the orbits onto hierarchical trees, is useful (essential) in
either case, to increase the convergence of thermodynamic
averages. Although the problem of finding an abstract and
effective description of a strange attractor is, per se, a re-
markable challenge, standard algorithms suffice, whenever
just the estimate of either the fractal dimension, or a Ly-
apunov exponent is needed. However, the game is com-
pletely different, when dealing with relatively high-
dimensional chaotic systems. There, the development of an
approach ensuring a fast convergence is crucial also for the
determination of rough reliable estimates.

Spatially extended systems provide perhaps the most
prominent class of high-dimensional attractors. In this
case, even a direct simulation can require prohibitively
long CPU times. Coupled-map-lattice (CML) models have
been invented to overcome part of the numerical difficul-
ties.* A CML model can be essentially seen as the space-
time discretization of a set of partial differential equations.
Discretization of the time variable finds a justification in
the procedure of constructing a Poincaré section for a flow.
Space discretization, even if it cannot be rigorously justi-
fied, appears to be a reasonable assumption in all such
cases where a physical cutoff is naturally appearing below
a certain length scale. Moreover, it is an exact assumption
in all systems inherently discrete (e.g., chains of coupled
oscillators, arrays of Josephson junctions).

The most studied CML model is a 1-d chain of logistic
maps, where the simplest chaotic maps are diffusively cou-
pled to generate a large variety of spatio-temporal phe-
nomena.* However, this dynamical system (and, more in
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general, all lattices involving maps of the interval) is char-
acterized by a noninvertible dynamics, a property which
can be hardly considered as realistic for a physical system.
In order to overcome this difficulty, we have recently gen-
eralized the model, introducing a chain of coupled Hénon
maps.’ Throughout this paper, we will consider such a
system as a test model for studying extended systems. A
detailed analysis of the invariant measure is made possible
by the implementation of an algorithm to extract all the
orbits periodic both in space and time. This is based on the
extension of a technique invented for the single Hénon
map.®

Besides the analysis of short spatial chains, which clar-
ify how the diffusive coupling affect the time evolution, we
also look at the arrangements of the orbits of short time
period for increasing space, very much in the same philos-
ophy as in Eckmann and Procaccia.” For small coupling
strength, it is shown the existence of a fully developed
spatial chaos, which guarantees a fast convergence (in
space) of thermodynamic averages.

The linear stability of generic trajectories is investi-
gated in Sec. III with reference to perturbations exponen-
tially growing (decaying) in space. This leads to the defi-
nition of specific Lyapunov exponents which depend on the
spatial growth rate. The maximum specific Lyapunov ex-
ponent is shown to be the Legendre transform of the max-
imal comoving exponent,® and the same relation is conjec-
tured to hold for the other exponents. This provides an
alternative and more efficient way of computing the co-
moving Lyapunov exponents. Afterwards, the problem of
estimating the Lyapunov spectrum of a spatially periodic
orbit embedded in an infinite chain is investigated. The
periodicity of the Jacobian allows us to reduce the problem
to a finite dimensional one.

The knowledge of the Lyapunov spectra is finally ex-
ploited in Sec. IV, to compute appropriate { functions and
determine the multifractal properties of dynamical entro-
pies. This is done, by studying independently the temporal
scaling (at fixed spatial length) and the spatial scaling (at
fixed time length).
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Il. THE MODEL

The model of coupled Hénon maps is defined by

X =a— () +bx;_y, Q1)
with

i € i i € vt

n=yx +{-ex+3x", (2.2)

where ¢ and i denote time and space variables, respectively;
a and b are the usual parameters of the Hénon map and €
is the diffusive coupling parameter. For 6=0, Egs. (2.1)
and (2.2) reduce to those of the familiar lattice of logistic
maps,4 while for €=0, the evolution reduces to that of
uncoupled Hénon maps. Notice that, for periodic bound-
ary conditions, the Jacobian of map (2.1) is ( —b)f , where
# is the length of the chain. Therefore, the parameter b
controls the dissipation exactly as it does in the single Hé-
non map. In particular, for b=1, a conservative dynamics
is recovered. This set of properties establish the most seri-
ous justification for the choice of the coupling introduced
in Eq. (2.1). Finally, one should notice that the depen-
dence of the state variable at time (z+41) on the state
variable at two previous time steps prevents the simple
interpretation of dynamics (2.1) as the composition of a
local chaotic evolution with a diffusion process.

Whatever the method used to study chaos in a highly
dimensional system, one is faced with the difficulty of col-
lecting and dealing with a huge amount of information. In
particular, a brute force approach is certainly hopeless if
one is willing to extract periodic orbits. In fact, the New-
ton’s method typically converges only in a small region
around a given periodic orbit. Thus, one should generally
iterate the map for a time long enough to pass sufficiently
close to any cycle of interest. Moreover, one is never sure
to have found all cycles of a given length. Here, we intro-
duce a method which solves these difficulties for small val-
ues of the coupling strength €.

The method is basically an extension of the approach
introduced by Biham and Wenzel for the single Hénon
map.® A fictitious dynamics is introduced along the con-
tinuous “‘time” axis 7,

x(1)=(=11*[x, (1) —a(y(1)P—bx;_ ()], (2.3)

where the symbols s(z,i)€{0,1} have to be suitably chosen
(the reason of their name will become clear in the follow-
ing). Equation (2.3) is integrated by fixing periodic
boundary conditions both in space and time (x,=x,
xi=xb, xI*1=x!, and x’=x!). This means that any fixed
point (in 7) corresponds to a spatio-temporal cycle (1,T)
of period 7 in space and T in time. Notice that the choice
of the s(¢,i) values does not affect the stationary property
of a given solution, while one can expect it to affect its
stability. Detailed numerical investigations have shown
that the dynamical system (2.3) is characterized by the
following properties: (i) any orbit (Z,T’) is stable for only
one choice of the pattern of the 7 X T symbols s(2,i); (ii)
different periodic orbits are stable for different configura-
tions of the s(z,i)’s. Accordingly, the s(z,i)’s provide a

good symbolic representation of the dynamics generated by
model (2.1). In particular, since such properties hold also
for b=0, this approach can be also used to investigate the
more familiar lattice of logistic maps.

A direct construction of the associated generating par-
tition is practically unfeasible in a CML, since in a phase
space of dimension 27 it requires the definition of a 27-1
dimensional volume. However, let us recall that in the sin-
gle Hénon map (for the usual parameter values), the re-
sulting partition coincides with that one directly con-
structed via the determination of homoclinic tangecies.’

The search of periodic orbits is further simplified by
another property of model (2.1): in fact, a small coupling,
apart from affecting the stability of the various orbits, es-
sentially prunes out some of cycles which are present for
€=0. Therefore, the knowledge of the topological structure
of the single Hénon map allows us to restrict from the very
beginning the set of symbol patterns to be investigated. As
a matter of fact, an increasing, although small, number of
exceptions to property (i) has been found when the cou-
pling strength and the time period increase. For instance,
for a=1.4, b=0.3, and €=0.1, less than 1% of failures has
been detected for orbits up to temporal period 18. This is
not a severe limitation, as this coupling strength is large
enough to generate interesting phenomena.!® Moreover,
the few orbits missed by this technique can be identified
through the implementation of a Newton’s method tracing
the orbits from the value of € where they have been lost.

Among the spatio-temporal periodic orbits, we can
find both stationary patterns and traveling waves. These
two classes of solutions are clearly identified through their
symbolic encoding. For instance, patterns like

0110
01y |1 100
(10) 1001

0011

represent a same spatial string shifted by one step at each
time. They would be seen as stationary patterns in a refer-
ence frame moving with velocity v=1. This argument in-
troduces also the multiplicity of the various periodic pat-
terns. In the case of a single map, the multiplicity of a
given orbit (i.e., the number of different patterns obtained
by shifting the symbolic sequence) coincides with the pe-
riodicity of the orbit itself. The above examples show that
in the spatio—temporal case, the multiplicity does not sim-
ply coincide with the number /T of different symbols de-
fining the pattern. In the first case, the multiplicity is 2
rather than 4 and in the second case, it is 4, rather than 16.
An occurring discrepancy is also a way to distinguish be-
tween stationary patterns and traveling waves. In the latter
case, the multiplicity is given by IT only in the appropriate
reference frame, where the minimal time period is detected.
We will return on this subject in Sec. IV, for the imple-
mentation of the {-function formalism.

A serious problem in reconstructing the statistical
properties of an attractor from periodic orbits is to check
whether all the orbits indeed belong to the natural invari-
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FIG. 1. Stationary periodic orbits of the model (2.1) for a=1.4, $=.03,
and €=0.2. The arrows point to the fixed points of the single Hénon map.

ant measure. For instance, in the single Hénon map, it is
well known that one of the two fixed points is isolated and
it does not belong to the strange attractor. Obviously, we
expect that something similar should occur in the CML. In
the case of coupled logistic maps, we know that the invari-
ant measure is restricted to the interval delimited by the
maximum of the map and its forward iterate. Therefore,
any periodic orbit exhibiting at least one point out of such
an interval must be discarded. This procedure finds a sim-
ple interpretation in the space of symbol sequences: any
spatio—temporal periodic orbit characterized by a sequence
of all 0’s in at least one site has to be discarded (except for
the special case a=2). The strict relation between logistic
and Hénon maps suggests that the same rule applies in the
latter case. Numerical simulations confirm this conjecture.

To further clarify this point we have plotted in Fig. 1
all stationary orbits up to period 8 in space. They are pre-
sented in the plane (x'x"*1) for €=.2, and a Cartesian-
product structure of two Cantor sets emerges. The two
arrows point toward the fixed points of the single Hénon
map; according to the previous considerations, only the
positive one belongs to the invariant measure.

The representation adopted in Fig. 1 is justified by the
fact that all stationary solutions are found by iterating in
space Egs. (2.1) and (2.2), once the time dependence has
been dropped. Straightforward algebra shows that a 2-d
map is obtained,

. 2 . . )
x‘+‘=z(:l: Ja—(1—b)x'— (1—€)x)—x""1.

The Jacobian of this map is 1. This is a consequence of the
invariance of model (2.1) under space reflection: accord-
ingly, forward and backward iterations in space must be
equivalent.

The periodic orbits plotted in Fig. 1 represent the skel-
eton of the invariant set associated with map (2.4). Such a
map has the unpleasant property of being ill-defined be-
cause of the sign indeterminacy in front of the square root.
However, this difficulty, which should not arise in a real-

(24)

FIG. 2. Phase-space plot of map (2.4) for =0, a=2, and €=0.86. The
center of the tori is the fixed point of the logistic map x,=1.

istic physical system, is easily removed if one interprets Eq.
(2.1) as the limit case (§—-0) of the more general model

xj 1 =a— D +bxi_ +80 +Th, (2.5)
where a next-to-nearest neighbor coupling has been added.
The spatial map describing the stationary solutions of Eq.
(2.5) can be written in a compact form, by exploiting Eq.
(2.2),

. 2 . L
HH=Z (Y- (1—e)x) —x'",

y"+‘=§ ((1-b)x'—a—())—y"". (2.6)
We can see that, at the expense of doubling the phase-space
dimension, the sign indeterminacy has disappeared. It can
be interpreted as the effect of the strong expansion due to
the multiplier 2/8 appearing in the second equation of Eq.
(2.6). The fluctuating sign is essentially the mechanism
which leads to the Cantor-like structure seen in Fig. 1.
However, one might ask whether, besides this mechanism,
the nonlinearity of map (2.4) can, per se, give rise to spa-
tial chaos. The simplest step in this direction, is repre-
sented by the stability analysis of map (2.4) for fixed sign
(i.e., spatial stability of the two homogeneous solutions).
Straightforward calculations show that the eigenvalues be-
come purely complex above the critical value

€. =3+ (1—b)/4x,

where x; represents the stationary solution (for the logistic
maps at a=2, €,=3/4). Above the critical value, spatially
quasiperiodic solutions should appear around the fixed
point. Moreover, since a 2-d conservative map is not in
general integrable, a chaotic structure should be present as
well. This is confirmed by the numerical iteration of Eq.
(2.4) for b=0, a=2, and €=0.86. The results of the sim-
ulations, reported in Fig. 2, are the typical picture obtained
for a nearly integrable Hamiltonian system.

(2.7)
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FIG. 3. Projection of the invariant measure onto the local space x/, ;, x..
In (a) the result of a direct iteration of a chain of 1000 maps is reported;
in (b), (c), and (d) periodic orbits up to period (3,9), (4,7), and (5,4),
respectively, are reported.

It is important to notice that all the trajectories re-
ported in Fig. 2 are characterized by a positive x’. As they
are, by construction, stationary solutions, it turns out that
the simple partition—defined for logistic maps by associ-
ating either O or 1 to the site (i,?), according to the sign of
x—is not (at least in this parameter range) a generating
partition. In fact, all such trajectories would be encoded in
the same way. Another important point to observe is that
in the region €> €, the birth of spatially quasiperiodic so-
lutions indicates that an increase of the coupling strength
corresponds to an increase in the number of orbits and
presumably an increase of the topogical entropy.

A complementary and more standard representation is
presented in Fig. 3, where x! is plotted vs x’ +1- In Fig. 3(a)
the result of the direct iteration of model (2.1) is reported
for €=0.075. The resemblance with the Hénon attractor is
evident. In Figs. 3(b), 3(c), and 3(d), the same represen-
tation is adopted to plot the orbits of period (7,7) up to
(3,9), (4,7), and (5,4), respectively. All the points clearly
fall inside the region visited by the direct simulation.

lil. LYAPUNOV ANALYSIS

The linear stability analysis of strange attractors con-
cerns the problem of measuring the divergence in time of
nearby trajectories. In extended systems, the spatial depen-
dence of the state variable leads also to propagation phe-
nomena and, more in general, to spatial inhomogeneities.

Various dynamical indicators have been introduced to
characterize the different effects. In particular, two com-
plementary approaches have been developed based, respec-
tively, on the temporal (spatial) growth rate of given space
(time) periodic perturbations. The former approach is the

standard method to determine the spectrum of Lyapunov
exponents. The latter one, which leads to the spatial Ly-
apunov exponents is useful both in revealing the localiza-
tion properties of Lyapunov vectors!! and characterizing
the stability properties in open-flow systems (i.e., systems
with an asymmetric spatial coupling).!? Still another ap-
proach, conceived to quantify the growth rate of a distur-
bance in a moving reference frame, has been developed by
Deissler and Kaneko,® who introduced the so-called co-
moving Lyapunov exponents. This last technique can be
seen as a sort of combination of the previous ones.

A general question naturally arises as to whether such
indicators are really independent from one another and
whether they guarantee an exhaustive description of all
possible instabilities. In the following we make a first step
in this direction by showing that the introduction of more
general boundary conditions leads to define a wider class of
Lyapunov exponents (specific exponents) which are in fact
related to the comoving exponents.

Let us start from the linear stability problem for a
chain of Hénon maps. In model (2.1), we have chosen
periodic boundary conditions in view of the characteriza-
tion of spatio-temporal chaos in terms of periodic orbits.
In the tangent space, it is useful to assume a more general
spatial dependence of the perturbation, namely, 8/=e*u’,
where p is an exponential spatial growth rate and where
periodic boundary conditions are assumed for u (i.e.,

ul t'=ul, uP=u’). The evolution of u’ is ruled by the
equation

i i€ i1 iy € u it i
U1 =—2y, ¢ U +(1—€)u,+ze"u, +bu,_;.

(3.1

Iteration of Eq. (3.1) allows the computation of the spe-
cific Lyapunov exponents 4,(1<j<2.#) which measure the
time stability of exponentially spatially increasing (de-
creasing) perturbations. For u =0, strictly periodic bound-
ary conditions are recovered also for the perturbation and
the standard Lyapunov exponents are recovered.

In general, we expect that the Lyapunov exponents
scale as

L(p=j/F p)=4,p)

for a sufficiently long chain length 1.!?

An alternative approach to the stability of spatial sys-
tems is based on the so-called comoving Lyapunov expo-
nents. They are defined in terms of the growth rate of an
initial perturbation &} spread over the finite interval — L,/
2<i<Ly/2. Due to the nearest-neighbor coupling, the dis-
turbance remains confined to the light cone —Ly/2—t<i
< Lo/2+t. Previous numerical analyses indicate that for ¢
sufficiently long,

(3.2)

| 8] =MD", (3.3)
where A, the maximal comoving Lyapunov exponent,? is a
function of v=i/t only. Hence, A(v) represents the time
growth rate of the perturbation in a frame moving with
velocity v. Notice that the limit /- o (required by a mean-
ingful definition of A) implicitely requires the infinite-
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FIG. 4. Maximal comoving Lyapunov exponent A vs the velocity v. The
dots refer to the direct estimate from Eq. (3.3); the line is obtained by
taking the Legendre transform of A(u) [defined in Eq. (3.4) and com-
puted by iterating Eq. (3.1)].

chain limit and that the initial width L, of the disturbance
is not a relevant parameter. This is no longer true when the
whole spectrum of comoving exponents is investigated,
since L, is related to the dimension of the tangent space of
interest.®

From Eq. (3.3) it is clear that the spatial profile of the
perturbation is locally exponential. Indeed, by considering
two nearby sites and expanding A, we obtain

() )

where the prime denotes the derivative with respect to the
argument. From the definition of spatial exponent, u=1log
(6:+1/8'), and from Egs. (3.3) and (3.4), we obtain

p=A’(v). (3.5)

The locally exponential shape of the perturbation indicates
that the temporal growth rate at fixed site is simply the
previously defined specific exponent A(u), namely,

|8y 7| = |8} W7 (3.6)

provided that T is sufficiently long and p does not change
appreciably between ¢ and 7+ T in the site i. It is readily
seen that the latter condition is satisfied for T«¢. From
Eqgs. (3.3) and (3.6), and after expanding A around v=i/%,
we find

Ap) =A) —vA’ (v). (3.7)

Equations (3.5) and (3.7) show that the comoving expo-
nent A(v) is linked to the specific exponent A(y) through
a Legendre transform. Such a transformation generalizes
the result of Ref. 14, where it was derived in the case of a
linear equation with constant coefficients, following a
somewhat different approach, based onto dispersion rela-
tions. We have tested Eqgs. (3.5) and (3.7) for randomly
generated coefficients y.. The outcomes of numerical sim-
ulations are reported in Fig. 4, where the dots refer to the
direct estimate of the comoving exponent, while the con-
tinuous line is the result of the Legendre transform. The

34)

very good agreement confirms the correctness of the as-
sumptions made in the derivation of Egs. (3.5) and (3.7).
It is natural to conjecture that the other comoving expo-
nents are related in the same way to the specific exponents
obtained from Eq. (3.1).

From now on, we restrict the analysis to the standard
case u=0 and discuss the computation of Lyapunov expo-
nents of orbits periodic both in space and time. This is an
important problem, recalling that periodic orbits are essen-
tial ingredients to estimate the Taylor expansion of dynam-
ical § functions. In the limit of an infinitely extended sys-
tem (£ — « ), even the stability analysis of an orbit with
finite spatial period I must be carried out in an infinite-
dimensional space. Such an additional difficulty can be
partly overcome by exploiting the spatial periodicity of the
orbit under investigation. Indeed, in the following, we
show that the Floquet theorem allows us to reduce the
dimensionality of the space to 2/. This method is analo-
gous to that one devised in Ref. 12, where “quasi-
Lyapunov” exponents have been introduced to describe the
spatial stability of time periodic oscillations, which are sta-
tionary in space (i.e., space and time variables are inter-
changed).

We first rewrite Eq. (3.1) in vector notations,

(ut+l)=J, (llt) ,
Z z,
where the Jacobian J, is the spatially periodic operator

oI bE
(5 o)

(3.8)

E 0

®, is a diagonal matrix such that (®,);=—2)), T is the
tridiagonal symmetric matrix responsible of the diffusive
coupling, and E is the identity matrix.

In the case of a stationary solution, ®, and, in turn, J,
are independent of ¢ and the stability of the orbit is de-
duced from the eigenvalues of J (we can drop the depen-
dence on #). According to the Floquet theorem, the eigen-
vectors (v,w) of J can be expressed as (j being the
imaginary unit)

vi(Lk) =M, (LK), w'(Lk)=e*ui,(Lk), (3.9)

where the wave number & is equal to 27m¢# (0<d<1), [ is
the band index (1</<2[), and v p)» W(p) are periodic func-
tions of i. By substituting Eq. (3.9) in the eigenvalue prob-
lem for J, we find

mv,y = —y'[2(1—€)v(,
+e(e M) +e M) ]+ bu,

mw(,) =v{,, (3.10)
where m is an eigenvalue, and the dependence on / and &
has been dropped for the sake of simplicity. For each
choice of the wave number £, 2.# eigenvalues are found by
solving the linear system (3.10). The Lyapunov exponents
are then given by log|m| (|-| denotes the modulus oper-
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FIG. 5. Lyapunov spectra L of the map (2.1) for some spatio-temporal
periodic orbits (1,7): (1,1) (a), (1,9) (b), (2,7) (c), (4,5) (d). The two
curves appearing in (d) refers to two distinct spatio-temporal cycles
(4,5). L is reported as a function of the continuous variable p.

ation), and the spectrum L(p) is determined after ordering
the various bands, and taking into account possible over-
laps.

The extension to orbits also periodic in time is straight-
forward. It is sufficient to introduce again the dependence
on t in Eq. (3.10) (through y,) and iterate it 7 times. In
other words, we must calculate the product Jp=II",
J,(k), where J,(k) is the operator implicitely defined in the
r.h.s. of Eq. (3.10). The Lyapunov exponents are then
given by log |my|/T, where the my’s are the eigenvalues
of J;(k). Accordingly, the infinite-dimensional problem of
determining the Lyapunov spectrum of a spatio-temporal
periodic orbit is reduced to that of finding the eigenvalues
of 2.7 X 2.7, matrices.

However, an analytic estimate of the spectrum cannot
be generally found even for periodic solutions. In the case
of a stationary and spatially homogeneous solution x/=x,
this is possible, and the solution is

el +P) = _x(1—2e sin%(mp/2))

4b
i -
X1 \/1+4)?(1—2esin2(17p/2))

(3.11)

This expression generalizes the result of Ref. 15, deter-
mined for logistic maps. The spectrum (3.11) is also re-
ported in Fig. 5(a) for €=0.075. The two bands L and
L_ arise from the two Lyapunov exponents of the single
Hénon map, to which they reduce for e=0. A small diffu-
sive coupling removes the degeneracy, leading to two thin
bands. The spectra of other spatio-temporal periodic orbits
are also reported in Fig. 5, the number of distinct bands

being connected with the spatial periodicity. Notice that
the number of states characterized by a positive Lyapunov
exponents depends on the orbit, and this represents a new
feature arising in extended systems which makes the struc-
ture of the invariant measure still more intriguing.>'®

IV. MULTIFRACTAL ANALYSIS

The computation of Lyapunov exponents, fractal di-
mensions, and metric entropies require to construct—
either implicitely, or explicitely—increasingly fine parti-
tions of the phase-space. This can be done in a natural way
by exploiting symbolic dynamics. Each element S; of the
partition is defined as the set of the points generating tra-
jectories which are characterized by the same given sym-
bols both in the future (f) and in the past (p). The num-
bers f,p control the size of S; along the unstable, resp.
stable manifold. The measure Z; of the element S; (i.e.,
the probability to observe a given symbol sequence of
length T=p+ 14f) can be shown to scale as'’

P jme AT, (4.1)

where H; is the sum of all positive Lyapunov exponents.
Since, in the case of spatio—temporal chaos, the dynamical
entropy H; is an extensive quantity,'>'® it is convenient to
introduce the intensive variable #;=H/.#. In the thermo-
dynamic limit (-# - ), the entropy density 4; is thus
expressed in terms of an integral of the Lyapunov spec-
trum,

where the integration extends over positive L/s. An anal-
ogous expression can be written for the local dimension
density (see Ref. 5).

We are now in the position to apply the thermody-
namic formalism to characterize the invariant measure.
Typically, one has to determine the scaling behavior of a
sum of variables R /s (e.g., multipliers, box sizes) associ-
ated with the elements of a given partition (that is the
trajectories of length T or, equivalently, orbits of period
T ))

(4.2)

Y R,~éT. (4.3)
j
One of the most effective approaches to determine B is the
¢-function method, developed along the lines of the grand-
canonical formalism. After multiplying Eq. (4.3) by the
factor z7 and summing over T, we arrive, with some alge-
braic manipulations, at the dynamical ¢ function!
&)= II a=2"R)™, (4.4)
J
where the product is extended to orbits distinct under tem-
poral rotations. The multiplicity m; denotes the number of
the different trajectories identified by the same value R. In
fact, we have seen in Sec. II that translational invariance
(as well as reflection symmetry) implies the existence of
classes of orbits characterized by the same Lyapunov ex-
ponents. The rate B is implicitely given by the first zero of
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&~ !(log B) =0. (4.5)

While the exact evaluation of { requires the knowledge of
an infinity of orbits, a truncation of its Taylor expansion
guarantees, in many cases, an accurate determination of B.z

So far, we have mainly summarized the formalism as it
was developed for low-dimensional chaos. In the case of a
CML, the factors R; depend exponentially both on space
and time variables (R;~ rf"). This suggests that the -
function formalism could be effectively extended, by per-
forming an additional sum over all spatial periods. Unfor-
tunately, a straight implementation of this scheme is not so
effective as in the low-dimensional case. Therefore, we
limit ourselves to apply the standard formalism, checking
afterwards the dependence on the length chain .#.

Let us consider the generalized entropy densities /(q),
defined by

3 e~ AT _ J DTS
j

where the sum is extended over the primitive orbits of
period T in time and .# in space (and their submultiples),
while /; is the local entropy density in a chain of length .#.
One should observe that the scaling assumption implicitely
made in (4.6), as all the analogous assumptions made
throughout this paper are strictly referred to closed sys-
tems, where no flow of information comes through the
boundaries, in which case the expected scaling dependence
would be less clear.'

An equivalent, but more enlightening presentation of
the generalized entropies is provided by the Legendre
transform of l(q),2°

g(h)=hq—1(q), h=I(q). (4.7)

The comparison of Eq. (4.6) with Eq. (4.3), indicates that
/(g) and in turn g,(4) can be determined by introducing an
appropriate § function.

Since T and .# play a perfectly symmetric role, we can
alternatively develop the {-function formalism by fixing the
time period T, and letting .# diverge to . This approach
is perfectly complementary to the standard one. It is more
suited in accounting for the spatial coherence, while less
effective for what concerns the temporal convergence. Let
us define the spectra obtained from these two approaches
as the temporal (g,(4)) and the spatial (g (%)) spectrum,
respectively. However, assuming that the limits ¥ —
and T— o do commute, we expect that

(4.6)

lim g,(h)= lim gy(h). (4.8)

j - o0
The results of numerical simulations for a=1.4, 5=0.3,
and €=0.075 are illustrated in Figs. 6 and 7, where tem-
poral, reps. spatial spectra have been reported. The spec-
trum g,(h) of a chain of length .# =2 has been obtained by
truncating the expansion of £~! after 18 terms (i.e., con-
sidering all orbits up to period T'=18). It almost coincides
with the spectrum for .# =3 (obtained with 7=15), re-
vealing a fast convergence for increasing chain length .#.

The spatial spectra g,(4) reported in Fig. 7 correspond
to temporal periods T'=7, 8, and 9. They have been ob-

T

0.6 1 g+(h) 7

FIG. 6. Multifractal temporal spectra of entropy density g,(#) for a=1.4,
b=0.3, and €=0.075. The numbers denote the chain lengths correspond-
ing to the different spectra. The spectrum of the single map (dashed line)
coincides with that of the CML for €=0.

tained, by considering all orbits of spatial period .# =6, 4,
and 5, respectively. The comparison between the spectra
obtained for increasing .# (i.e., successive truncations of
the & function) indicates that the spatial convergence is
very fast, thus allowing us to arrive at such long time
periods. On the other hand, the relatively large differences
among the three spectra of Fig. 7 indicate a slow conver-
gence in time. We have encountered the same difficulty in
the computation of the temporal spectrum, where a good
convergence for g,(h) is achieved only considering a large
number of terms (7>15). However, the reasonable agree-
ment between g,(#) for T=9 and g,(h) for # =3 suggests
that such spectra are not far from the asymptotic limit,
when Eq. (4.8) holds.

Finally, the multifractal analysis allows us to clearly
reveal the stabilizing effect of the diffusive coupling €. In-
deed, the comparison between the spectrum of the single
map (which coincides with the spectrum of the CML for
€=0) and those obtained for 2 and 3 coupled maps (see
Fig. 6) indicates that the latter ones are restricted to

0.6

gs(h) L

0.0 .
0.0 0.2

0.4 h 06

FIG. 7. Multifractal spatial spectra of entropy density g,(#) for a=1.4,
b=0.3, and €=0.075. The numbers denote the temporal period corre-
sponding to each spectrum.
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0.7

0.6 1 Tl

0.5 A

0.4 - ©
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0.00 005 & 0.10

FIG. 8. Entropy densities vs the coupling parameter €. The dashed lines
refers to the maximum entropy density, computed from the spectrum
given in Eq. (3.11). Triangles and circles denote the topological entropy
density for a chain length # =2, 3, respectively. The solid line represents
a linear fit obtained from the data for /" =2.

smaller entropy values.. The effect of the diffusive coupling
is better elucidated by investigating the dependence of the
topological entropy density /(0) on €. In Fig. 8, /(0) is
reported for different € values (triangles and circles refer to
2, 3 maps, respectively). The numerical results indicate a
linear decrease of the topological entropy density for small
values of €. For comparison, we have also reported the
behavior of the maximum entropy density (dashed line).
The maximum is obtained in correspondence of the sta-
tionary homogeneous orbit and has been computed from

Egs. (4.2) and (3.11). Its behavior confirms the linear
decrease displayed by /(0) for .# =2,3.
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