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Thermally activated processes in polymer dynamics
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Jumps between neighboring minima in the energy landscape of both homopolymeric and heteropolymeric
chains are numerically investigated by determining the average escape time from different valleys. The nu-
merical results are compared to the theoretical expression derived by Langer@J.S. Langer, Ann. Phys.~N.Y.!
54, 258 ~1969!# with reference to a 2N-dimensional space. Our simulations indicate that the dynamics within
the native valley is well described by a sequence of thermally activated process up to temperatures well above
the folding temperature. At larger temperatures, systematic deviations from the Langer’s estimate are instead
observed. Several sources for such discrepancies are thoroughly discussed.
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I. INTRODUCTION

Polymeric chains exhibit quite a rich variety of dynamic
properties. At high temperatures, kinetic energy is la
enough to allow a chain exploring most of the access
phase space. In this regime, the polymer typically assum
‘‘random-coil’’ structure. At intermediate temperatures, inte
nal forces and the interaction with the solvent become str
enough to stabilize compact configurations@1#. However, ki-
netic energy fluctuations are still able to drive the chain fr
one to another minimum of the energy landscape. The p
erties of this itinerant dynamics depend on several fact
the height of the barriers separating neighboring minim
their accessibility, and, more generally, the overall struct
of the energy landscape. Upon further decreasing the t
perature, an heteropolymer typically undergoes a glass t
sition and may freeze in one of several distinct free-ene
minima. Only some peculiar heteropolymers exhibit a tra
sition to a ‘‘folding regime’’—i.e., are characterized by
relatively fast convergence towards the absolute energy m
mum, irrespectively of the initial state. In this case, the h
eropolymer is said to be a ‘‘good folder’’ and it can b
viewed as a specimen of a protein, which always evolve
its native configuration~NC! @2#.

Independently of whether a given polymer is homog
neous or heterogeneous, whether it is a good or a bad fo
a complete understanding of its dynamical properties pa
through the description of the jump processes between
ferent energy valleys@3,4#. Free-energy valleys are indee
collections of distinct minima and studying the connectiv
of such minima can help identify and parametrize the r
evant macroscopic states@5,6#. In the hope of eventually
making substantial progress along this line, in this paper
aim at testing the validity of the expressions utilized to ch
acterize the single-escape processes. In the current litera
1063-651X/2003/68~6!/061111~12!/$20.00 68 0611
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the escape is often viewed as an activation process
Kramers-like formulas, derived for low-dimensional sy
tems, are applied to characterize high-dimensional syst
without testing their validity. In this paper we present a d
tailed check of the formula derived by Langer in 1969@7#,
finding that the escape process is strongly influenced by
entropic contribution associated with the local geometry
the energy landscape.

In Sec. II we introduce the polymer model used as a te
ing ground for numerical analysis of the activation proces
in relatively high-dimensional systems@8#. It consists of a
chain of two types of beads embedded in a two-dimensio
~2D! space. In the same section, we briefly recall the relev
properties of both homogeneous and heterogeneous sys
upon varying the temperature. In Sec. III, the general th
retical ideas lying behind the derivation of Langer’s formu
are briefly summarized. The technical difficulties associa
with the determination of geometrical factors are also d
cussed together with some possible approximation schem
In Sec. IV, theoretical predictions are compared with nume
cal simulations for specimens of bad and good folders.
spite of an overall qualitative agreement, systematic de
tions are found at relatively high temperatures, the origin
which is discussed in Sec. V, where several effects are s
rately discussed. Finally, in Sec. VI, the main conclusions
summarized and the open problems briefly recalled.

II. MODEL: DEFINITIONS AND THERMODYNAMICAL
PROPERTIES

In this paper we study the escape process from an en
valley with reference to a model thoroughly investigated
@9#, where the authors slightly modified a previous versio
originally introduced in@8#. The model, designed to simulat
sequences of amino acids interacting within a solvent,
©2003 The American Physical Society11-1
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scribes a chain ofL monomers embedded in a two
dimensional space. At variance with@8#, where monomers
were rigidly linked along the backbone, in@9# a nearest-
neighbor harmonic potential was instead assumed,

V1~r i ,i 11!5a~r i ,i 112r 0!2, ~1!

where r i , j5A(xi2xj )
21(yi2yj )

2 is the distance betwee
the i th and j th monomer, whilexi , yi are the coordinates o
the i th monomer. Without loss of generality, the equilibriu
distancer 0 is set equal to 1, while the interaction constanta
has been fixed equal to 20 so as to induce an almost r
interaction between neighboring monomers@10#.

The second term expresses the energy cost of local b
ing; it is described by the three-body interaction term

V2~u i !5
12cosu i

16
, ~2!

whereu i is the angle formed between the links connect
the (i 21)st, i th, and (i 11)st monomers. In particular,

cosu i5
~xi2xi 21!~xi 112xi !1~yi2yi 21!~yi 112yi !

r i ,i 21r i 11,i
,

~3!

where2p,u i,p.
Finally, heterogeneity is ensured by a Lennard-Jon

type interaction between non-neighboring monom
(u i 2 j u.1):

V3~r i , j !5
1

r i , j
12

2
ci , j

r i , j
6

, ~4!

where

ci , j5
1

2
~223j i23j j15j ij j !

andj i50 indicates that thei th monomer is hydrophobic~H!,
while j i51 corresponds to a polar~P! one. As a result, the
interaction is attractive if the two monomers are either b
hydrophobic or both polar (ci , j51 and 1/2, respectively!,
while it is repulsive if the monomers belong to different sp
cies ~in which caseci j 521/2). This potential choice simu
lates the effective interaction among H and P monomer
the presence of a solvent. In fact, since H monomers pr
to avoid direct contact with the solvent, they tend to clust
ize in the interior where they can be shielded from water
a shell of P monomers. The net result is an effective H
attraction and an H-P repulsion as assumed in the mode

Altogether, the heteropolymer Hamiltonian is written a

H5(
i 51

L px,i
2 1py,i

2

2m
1 (

i 51

L21

V1~r i ,i 11!1 (
i 52

L21

V2~u i !

1 (
i 51

L22

(
j 5 i 12

L

V3~r i j ,j i ,j j !, ~5!
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where all monomers are assumed to have the same mam

and momenta are defined as (px,i ,py,i)ªm( ẋi ,ẏi).
Accordingly, each heteropolymer is perfectly identified

a binary sequence of 0’s and 1’s specifying the nature of e
monomer. Those sequences for which the heteropoly
shape converges systematically~at intermediate tempera
tures! towards the same ‘‘native’’ configuration indepe
dently of the initial condition are identified as ‘‘good fold
ers.’’ Previous studies, mostly based on Monte Ca
techniques, indicate that this happens only in a few ca
@11–13# and the scenario has been confirmed also by m
lecular dynamics simulations@9#.

In what follows, we shall limit our investigations to th
three following cases, all of lengthL520.

~i! @S0#5@0000 0000 0000 0000 0000#, a homopolymer
composed of hydrophobic residues only.

~ii ! @S1#5@0001 0001 0001 1001 1000#, a sequence firs
studied in@12# ~therein indicated with the code number 8!
where it was identified as a good folder.

~iii ! @S4#5@1110 0100 0000 0001 0010#, a randomly
generated sequence with six P-type residues, identified
bad folder in@9#.

A reasonably accurate characterization of each seque
can be obtained by determining three transition temperatu
The first oneTu denotes the temperature below which t
polymer is in a collapsed rather than in a random-coil co
figuration@1#. It can be determined by studying the tempe
ture dependence of the gyration radiusRgy(T): Tu corre-
sponds to the maximum of]Rgy(T)/]T.

The folding temperatureTf is the temperature below
which the heteropolymer stays predominantly in the nat
valley. Here, analogously to@9#, we define the native valley
as the basins of attraction of the NC and of its neighbor
minima. A quantitative estimate ofTf can be then obtained
by determining the temperature at which the chain spe
50% of the time within the native valley.

Finally, the glass-transition temperatureTg can be identi-
fied by comparing~finite! time averages performed startin
from different initial conditions. Specifically, we have con
sidered unfolding~US’s! and folding ~FS’s! simulations,
whose initial conditions correspond to the NC and
random-coil configurations, respectively. In practice,Tg is
defined as the temperature below which the relative diff
ence between US and FS averages of the internal energyU is
larger than 10%.

We have determinedTu , Tf , andTg , by means of Lange-
vin molecular-dynamics simulations with each monomer
ing in contact with a stochastic thermal reservoir at tempe
ture T:

żi~ t !5pz,i /m, ṗz,i~ t !52
]H

]zi
2gpz,i~ t !1hz,i~ t !. ~6!

Here zi is introduced as a shorthand notation for both t
spatial coordinatesxi and yi , g is the dissipation rate, and
hz,i(t) is a Gaussian distributed,d-correlated random noise

^hz,i~ t !hz, j~0!&52gmkBTd~ t !d i , j , ~7!
1-2



r

a
p
to

ge

ec
p

y
vis

im
-
f

ose

rest-
e
ima
e
g to

t is
he

the

nal
ops

al-
ally

ers
a

con-
s-
of

r
hat
x-

changes with the thermal bath~through collisions with water

THERMALLY ACTIVATED PROCESSES IN POLYMER DYNAMICS PHYSICAL REVIEW E68, 061111 ~2003!
wherekB denotes the Boltzmann constant andT is the tem-
perature~for the sake of simplicity, bothkB andm have been
set to unity!.

The temperature values obtained for S0-S1-S4 are
ported in Table I, together with the numbern0 of the minima
directly connected with the NC. The glassy transition h
been determined by performing averages over a time la
on the order of 106 units. These results are very close
those reported in@9#, where a deterministic Nose´-Hoover
thermostatting scheme@14# was used instead. The advanta
of using the Langevin equation~6! is that the damping rate
can be directly controlled. As we shall see in the next s
tion, this is a crucial ingredient for characterizing the esca
rate from a given valley.

A more detailed characterization of heteropolymer d
namics can be obtained by identifying at least the most
ited minima of the potential energyV5V11V21V3. Here,
we have proceeded by sampling a generic trajectory at t
intervals of lengthDt;1 –5. Then, the resulting instanta
neous configurations have been taken as initial conditions
the overdamped dynamics:

TABLE I. The collapse-transition temperatureTu , the glassy
temperatureTg , the folding temperatureTf , and the numbern0 of
nearest-neighbor minima of the NC for the sequences S0~ho-
mopolymer!, S1 ~good folder!, and S4~bad folder!

S0 S1 S4

Tu 0.16 0.11 0.13
Tg 0.022 0.048 0.025
Tf 0.044 0.061 0.044
n0 31 37 36
06111
e-

s
se

-
e

-
-

e

or

żi52
]H

]zi
, ~8!

which drives the system to the minimum-energy state, wh
basin of attraction contains the initial condition@3#. The
minima separated from the absolute minimum~the NC! by a
single energy barrier have been denoted as nea
neighboring minima~NNM!, while those separated from th
NC by two barriers as second-nearest neighboring min
~2NNM! and so on. The NNM configurations for all the thre
examined sequences are reported in Fig. 1. Before passin
a specific discussion of the escape from a given valley, i
convenient to illustrate the outcome of a typical FS in t
temperature rangeTg,T,Tu . The evolution of the differ-
enceDV between the instantaneous potential energy and
potential energyV0 of the NC is reported in Fig. 2 for the
heteropolymer S1. A series of sudden conformatio
changes is clearly identifiable from the various energy dr
~notice the logarithmic scale of both axes!. Once S1 enters
the native valley, it remains there for a very long time,
though jumps towards neighboring minima can occasion
occur.

III. ESCAPE RATE FROM A METASTABLE STATE

Since the publication of the pioneering paper of Kram
@15#, the problem of determining the escape rate from
metastable state has been addressed in many different
texts. Here, we will derive the well known Langer’s expre
sion @7,16# for the overdamped dynamics of an ensemble
N interacting particles in a 2D environment. We restrict ou
discussion to the overdamped limit, since it is expected t
in the protein folding problem, the time scale of energy e
FIG. 1. Configurations of all
the NNM’s for the three consid-
ered sequences S0~a!, S1 ~b!, and
S4 ~c!.
1-3
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molecules! is rather fast~we shall anyway return to this poin
later on!. The probability densityP(r ,t) for a configuration
to be in an infinitesimal volume around the stater
[(r 1 , . . . ,r 2N)5(x1 ,y1 ,x2 , . . . ,xN ,yN) at time t satisfies
the Fokker-Planck equation

]P

]t
5

1

gm (
i 51

2N
]

]r i
S ]V~r !

]r i
P1kBT

]P

]r i
D , ~9!

where V(r ) represents the energy potential. The above
nothing but a continuity equation, with the right-hand si
representing the divergence of the probability flux:

Ji[2
1

gm F]V~r !

]r i
1kBT

]

]r i
GP~r ,t !

52
kBT

gm
expS 2V~r !

kBT D ]

]r i
FexpS V~r !

kBT D P~r ,t !G . ~10!

The stationary solution~with no flux boundary conditions
Ji50) is simply given byP(r )5exp@V(r )/(kBT)#. Let us
now assume that the energy landscape exhibits at least
local minimama andmb with energies, respectively, equal
Va and Vb : we want to estimate the escape rate from
basin of attraction ofma . The boundary separating the b
sins of attractions of the two minima coincides with t
stable manifold of possibly more than one saddle point.
us denote the energy on the saddle withr s is Vs . If the
system is prepared into the statema , a flux J sets in: if the
flux itself is weak, it is basically constant in time and one c
approach the problem by determining the stationary s
with J being a solenoidal field. OnceJ is given, the escape
rateG can be obtained by integrating the outgoing flux ov
the whole boundary of the well. We are not aware of a g
eral solution in more than one dimension.

The most general case amenable to an analytic treatm
is that of a potential which, in the vicinity of the sadd
point, can be separated into two distinct contributions

FIG. 2. Potential energy vs time during a folding simulation f
the sequence S1 atT50.055~gray circles!. The solid line is a local
average with exponentially increasing window size.
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V~r !2Vs5Vi~r i!1V'~r'!, ~11!

wherer i is the distance from the basin boundary~measured
along the unstable manifold of the saddle!, while the vector
r' parametrizes all other directions in phase space. Fina
the zeros ofVi andV' are set in the saddle point. Under th
above assumptions, the only nonzero component of the
is

Ji52
kBT

gm
expS 2V~r !

kBT D ]Q

]r i
, ~12!

where we have introducedQ(r )5exp@V(r )/kBT#P(r ) andJi
depends only onr i. The vanishing ofJ' implies thatQ de-
pends only onr i . Accordingly, Eq.~12! can be solved to
yield

Q~r i!5
1

CEr i

r s
eVi(j)/kBTdj, ~13!

where the integration constant is determined by impos
thatQ(r ) and, accordingly,P(r ) vanish along the boundary
The multiplicative constantC can be finally determined by
normalizing the integral ofP(r ):

C5e2Va /kBTE e2[V(r )2Va]/kBTdrE
r i

r s
eVi(j)/kBTdj. ~14!

The first integral is restricted to the basin of attraction ofma .
In the small-temperature limit, in the region whe
e2[V(r )2Va]/kBT is significantly different from 0, the last inte
gral is basically constant, so that we can replace its low
border withr a , thus writing

C5e2Va /kBTI aI i , ~15!

where

I a5E e2[V(r )2Va]/kBTdr , ~16!

I i5E
r 1

r s
eVi(j)/kBTdj. ~17!

The flux is then written

Ji5
kBT

gm

e2DV/kBT

I aI i
e2V' /kBT, ~18!

whereDV5Vs2Va . By integrating on the basin boundar
one finally obtains

G5
kBT

gm

I'

I aI i
e2DV/kBT, ~19!

where

I'5E e2V'(r')/kBTdr' . ~20!
1-4
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Equation~19! holds under the assumption of a sufficien
small temperature (DV.kBT) and the separability condition
~11!. The former hypothesis is needed to ensure a sufficie
slow flux to guarantee that a quasistationary approach h
and the integral in Eq.~14! factorizes. The latter hypothes
ensures that Eq.~13! indeed represents a meaningful soluti
of the problem. One should notice that separability is
quired to hold only in the region around the saddle where
integral I' has to be performed.

If the temperature is small enough, only the leading q
dratic terms are relevant in the computation of the integ
I a , I i , andI' . In this harmonic limit, they reduce to Gaus
ian integrals that can be computed by diagonalizing
Hamiltonian. Upon denoting withva

( i ) the 2N frequencies in
the vicinity of the minimumma (@va

( i )#252La
( i )/m, La

( i )

being the negativei th eigenvalue of the Hessian!, with v'
( i )

the 2N21 frequencies around the saddle~those correspond
ing to the stable directions!, and withv i the rate associate
to the only expanding direction (@v i#

25Ls
(2N)/m), one ob-

tains the expression first derived by Langer in 19
@7,16,17#:

GL5
v i

pg

)
i 51

2N

va
( i )

)
i 51

2N21

v'
( i )

e2DV/kBT[
v i

2

pgR
e2DV/kBT, ~21!

whereRªA) i 51
2N uLs

( i )u/) i 51
2N uLa

( i )u can be interpreted as a
entropy factor@18,19#. In the case of continuous symmetrie
~such as, e.g., translational and rotational symmetries!, Hes-
sian eigenvalues corresponding to Goldstone modes va
They have to be excluded in the frequency products app
ing in Eq. ~21! @16#.

Expression~21! is routinely employed in studies of many
body systems, including relaxation dynamics in glasses@18#
and in the estimation of entropy barriers in clusters@19#.
However, its validity range has not been thoroughly inve
gated. For instance, in Ref.@20# a master equation is con
structed for a cluster of 19 atoms by identifying direc
minima and saddles, but estimating transition probabilit
only from an expression similar to Eq.~21!.

In the weak-damping limit, Eq.~21! generalizes to@21#

GL5
zv i

2

pgR
e2DV/kBT, ~22!

where the multiplicative correction

z5
2

11A11~2v i /g!2
~23!

depends on the ratio between the damping constant and
divergence rate along the expanding direction.

Finally, we mention a simplified formula for the esca
rate that is somehow halfway between the general expres
~19! and that one corresponding to the linearization, Eq.~21!.
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Under the hypothesis of a fully separable potential, one
factorize the two integralsI a and I i into products of one-
dimensional integrals:

I a5)
i 51

2N E e2Vi (r i )/kBTdri , ~24!

I i5 )
i 51

2N21 E e2V( i )(r ( i ))/kBTdr ( i ), ~25!

whereVi is thei th component of the potential in the vicinit
of the minimum with the zero of the scale such thatVi(0)
50, andV( i ) is the analogous component around the sadd
for the stable directions.

In the following section we compare the Langer pred
tion ~21! with our numerical results. In Sec. V we discuss t
limits of applicability of Eq.~21! and we test the improved
expression for the escape rate~19! @with the integrals esti-
mated as in Eqs.~24! and ~25!#.

IV. NUMERICAL RESULTS

In order to characterize the dynamics of the polymer
the native valley we have determined both analytically a
numerically the escape rate from the NC towards any of
NNM. The procedure for identifying the NNM from a data
base of ‘‘inherent’’ minima, constructed by following th
method outlined in Sec. II, relies on identification of th
minimal-energy path connecting each NNM to the NC. T
algorithm used to find these paths is described in the App
dix: it allows identifying the saddle separating any tw
minima.

A few pairs of NNM turn out to be connected by mo
than one~up to three! minimal-energy paths, this implying
that they are separated by more than one saddle. In t
cases, one should, in principle, compare the numerically
termined escape rate with the sum of the probability flo
GL through the different saddles. As a matter of fact,
limited ourselves to consider the contribution of the sad
yielding the maximal flow. This approximation is definite
negligible with respect to the discrepancies between num
cal and theoretical estimates fully discussed in the followi

In Fig. 3 the three potential contributionsV1 , V2, andV3
are reported for a minimal-energy path connecting the NC
one of the NNM. A common feature to all the examine
paths is that the main contribution to the potential ene
barrier arises from the Lennard-Jones term. This confir
that the term driving the folding is indeed the long-ran
potential term mimicking the hydrophobicity effects~as al-
ready mentioned in@9#!.

The evaluation ofGL requires knowledge of the eigenva
ues of the Hessian in both the NC and a suitable saddle
our model, because of translational and rotational symm
tries, three eigenvalues always vanish. This is clearly see
Fig. 4, where the frequency spectrumva

( i ) of the NC is plot-
ted for the three sequences@panel ~a!#, together with the
spectrumv'

( i ) of one saddle@panel ~b!#. The va
( i ) spectrum

decreases smoothly from values around 13 down to 0.
1-5
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interesting to notice that all spectra do not differ significan
from what one would obtain for a purely harmonic chain,
which case the spectrum would decrease from a maxim
frequency equal to 2A2a512.6 down to zero. It is only a
lower frequencies that differences among the various
quences can be appreciated: in fact, this spectral ban
basically determined by the angular motion that is prima
controlled by the cosine~2! and Lennard-Jones~4! poten-
tials.

For what concerns the value ofv i , it turns out to range
between 0.3 and 1.8 in all saddles.

Then, we have directly determined the escape rateG( j )
from the NC by performing several US’s with the dampi
constant set equal to 6.9. EveryDt time units, the ‘‘inherent’’
polymer configuration is determined by a steepest des
method. As soon as the polymer leaves the basin of attrac
of the NC, the corresponding time is registered together w
the new minimum that has been reached. Let us denote
M j the number of US’s ending in thej th minimum, with^t j&
the corresponding average escape time and withM
5( j 51

n0 M j the total number of US’s. We have verified th
^t j& is independent ofj. This indicates that the polyme
spends most of the time before any jump in exploring

FIG. 3. Potential energy profiles vs the distance from the
~measured along the unstable manifold of the saddle! r i . The three
curves correspond to the different potential contributions for a m
mal energy path connecting the NC to a nearest-neighboring m
mum for the sequence S1. The solid line indicates the Lenn
Jones contributionV3 ~4!, while the dashed line the harmonic ter
V1 ~1! and the dot-dashed line the potential termV2 ~2!. The last
two terms are shifted along the vertical axis by a factor of25.2 and
25.75, respectively.
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same region in the phase space, consistently with the hyp
esis of a thermally activated process. Thus, the escape
toward thej th minimum can be numerically estimated as

G~ j !5
M j

M

1

^t&
, ~26!

where we have dropped the dependence onj in the escape
time.

We have focused our numerical analysis in the tempe
ture range@Tg ,Tu#, where the polymer spends most of th
time in a collapsed state. In order to obtain a sufficient s
tistics the parameters of US’s have to be suitably tuned
cording to the temperature values. In particular, the samp
timeDt has to be maintained sufficiently short to avoid bac
crossings of the barrier and multiple jumps. More precise
it must be smaller than the lifetime of all NNM. Since a
lifetimes decrease with temperature, increasingly sma
Dt ’s have to be adopted when the temperature is increa
@22#. We have chosenDt values ranging from 1 at low tem
peratures (T.Tg) to 1023 at high temperatures (T.Tu),
while the integration time step has been kept equal to 123

~a few tests performed with an integration time step.1024

have not revealed any relevant difference!. Anyway, at low
temperatures the escape rate towards a subset of NNM
small that in practice they are never found to be visited o
an extremely large number of simulations. This is why
Table II we indicate the numbernv of visited NNM as a
function of the temperature: it turns out that all NNM a
visited already atT50.08 for both S0 and S1, while for S
new minima are found up toT50.1 ~the highest temperatur
we have examined!.

The numerically computed transition rates are presen
in Fig. 5, where only the results for the most visited NN
are reported~see the dashed lines!. The solid lines refer to
the theoretical estimates. We expect that Eq.~21! holds, since
the chosen value of the damping coefficient,g56.9, should
guarantee an overdamped dynamics.

While at T.0.04 the analytic expressionGL is in good
agreement with the numerical estimates~for all of the three
sequences!, at higher temperatures the theoretical express
overestimates the escape rate. In order to perform a qu
tative comparison, it is convenient to compute the ratio

r j5
GL~ j !

G~ j !
, ~27!

i-
i-

d-
-
e

-
C
.

FIG. 4. ~a! Angular frequen-
ciesva

( i ) associated with the Hes
sian of the NC for the sequenc
S0 ~squares!, S1 ~circles!, and S4
~diamonds!; ~b! angular frequen-
ciesv'

( i ) associated with the Hes
sian of a saddle separating the N
from a NNM for the sequence S1
1-6
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THERMALLY ACTIVATED PROCESSES IN POLYMER DYNAMICS PHYSICAL REVIEW E68, 061111 ~2003!
for each escape process towards an NNM and to then a
age over all neighboring minima,

^r &5(
j

Pj r j , ~28!

where Pj5G( j )/( iG( i ) is the probability that an US end
up in thej th NNM and the sum is restricted to those minim
that have been visited at least twice. The values of^r & for the
three sequences at four different temperatures from 0.04
to 0.1 are reported in Table II. In this range, statistica
reliable estimates are obtained already forM.103. In all
cases, the theoretical formula is reasonably accurate at

TABLE II. For all sequences and four different temperaturesT
we report, the numerically estimated average escape time^t&, the
number of visited NNM,nv ~the numbers within brackets refer t
the minima visited more than once!, and the weighted ratiôr &.

T ^t& nv ^r &

S0 0.04 6484 20~16! 1.37
0.06 265 27~25! 1.42
0.08 42 31~30! 1.76
0.10 19 31~30! 3.43

S1 0.04 4375 28~23! 1.31
0.06 168 32~27! 1.95
0.08 24 37~34! 2.05
0.10 19 37~36! 3.89

S4 0.04 129 12~11! 1.30
0.06 58 28~24! 1.42
0.08 30 27~25! 2.16
0.10 18 30~24! 3.74
06111
er-

up

w

temperatures, but it downgrades when going above
‘‘folding’’ temperatures and the phenomenon is more evid
in the case of the good folder S1.

V. DISCUSSION OF THE RESULTS

In this section we discuss several independent factors
cana priori affect the observed escape rates. First of all,
have investigated whether intrinsic fluctuations due to
chaotic dynamics contribute significantly to the escape ra
In order to examine this point, we performed microcanoni
simulations at various temperatures~namely,T50.04, 0.06,
and 0.08!. Although the potential energy is larger than th
barrier height, no jumps have been observed in simulati
lasting up to 23106 time units. This means that local fluc
tuations are not strong enough to trigger jumps betw
neighboring valleys in the presence of a global energy c
servation. Therefore, fluctuations due to the coupling w
independent heat baths are a crucial ingredient in estab
ing the time scale of the escape rate.

Yet the observed discrepancy between the analytic exp
sion ~21! and the numerically evaluated escape rate calls
an explanation. Equation~21! has been derived by makin
several assumptions that may not be fulfilled in practice.

~i! The value of the friction coefficientg should be
larger than the frequency associated with the expanding
rection of the saddlev i ; i.e., the dynamics should be ove
damped.

~ii ! The configurational probability densityP(r ,t)
should be almost stationary; i.e., the polymer should be w
thermalized before a jump occurs.

~iii ! The potential energy should be well approximated
the quadratic contributions in the relevant regions arou
both the saddles and the NC.
-

r
l

FIG. 5. Transition ratesG vs
the barrier heightDV: comparison
of the theoretical expression~21!
~solid line! with the numerical es-
timate ~26! ~dashed line! for two
different temperatures (T50.04
andT50.06) for the three studied
sequences: namely,~a! S0, ~b! S1,
and~c! S4. The numerical data re
fer to a total number M
51000–5000 of US’s and to a
sampling timeDt51. In panel~a!
and ~b! the dot-dashed lines refe
to the corresponding exponentia
terms exp@2DV/kBT#, with kB

51, multiplied by an arbitrary
scale factor.
1-7
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BONGINI et al. PHYSICAL REVIEW E 68, 061111 ~2003!
In the following we investigate the validity of these assum
tions.

A. Overdamped limit

Throughout this paper we have fixedg equal to 6.9 in
adimensional units. In order to check whether this is a me
ingful choice in the protein context, we must express
damping rate in physical units,g56.9m/to , wherem is the
mass of a typical amino acid, whileto is the period of small
oscillations within the potential well. Sincem;10222 g and
to;10212 s, it follows thatg;1029 g/s, a value to be com
pared with the typical relaxation rate due to collisions w
water molecules,gH2O.1028–1029 g/s ~see Ref.@23# for a

more detailed discussion!. Our choice ofg is, therefore, not
too far from reality. Moreover, sinceg is already 4 times
larger than the maximumv i , we expect the system dynam
ics to be in the overdamped regime.

Anyhow, it is instructive to investigate whether the dam
ing rate is responsible for the non perfect agreement betw
numerical data and the approximate theoretical express
In order to clarify this point we performed further US’s wit
both a smaller (g51) and a larger (g549) friction. Sinceg,
in the former case, is of the order ofv i , one should merely
expect multiplicative corrections arising from thez/g factor
in Eq. ~22!. By neglecting saddle-to-saddle fluctuations ofv i
~assumed always equal to its average value 1.17!, this
amounts to a correction term 4930.56. In Fig. 6, we have
multiplied by this factor the numerical data obtained forg
549. The quite good overlap between the two sets of d
confirms that the dependence on the damping term is
reproduced by the theoretical formula~part of the oscilla-
tions is of statistical nature and part is due to the neglec
v i fluctuations!.

B. Thermalization time

A fundamental hypothesis implicitly made in the deriv
tion of the analytical expression for the escape rate is that
probability density of initial conditions inside the native va
ley can be approximated by the product of the Boltzma

FIG. 6. Numerical transition ratesG vs the barrier heightDV for
two different g values. Solid circles refer tog51, while open
triangles correspond tog549. The latter have been scaled by
factor 4930.56 ~see text!. Simulations refer to sequence S1 atT
50.07. The number of US’s isM.4000.
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Gibbs distribution times a factor that differs significant
from 1 only in the neighborhood of the saddle. In order
verify the validity of this assumption, we have studied t
decay of the autocorrelation functions for the kinetic a
potential energy in several US’s with S0 and S1.

From the data reported in Table III, it is evident that t
typical correlation times are much smaller than the aver
escape times at all the examined temperatures. Since the
relation time is a reasonable estimate for the time require
reach a ‘‘local thermal equilibrium,’’ these results sugge
that, whatever the distribution of initial condition used f
the US’s is, the system thermalizes before escaping. In f
US’s performed by starting from different sets of initial co
ditions lead to closeG values. For instance, in Fig. 7 one ca
compare the results of simulations started from a Maxwell
distribution of the velocities~dot-dashed line! with those ob-
tained by gradually warming~with a 731024 rate! an ini-
tially frozen configuration. The relative differences are mu
smaller than the deviations from the theoretical expecta
~dashed line!.

However, Table III brings forth some interpretative pro
lems: while the correlation time of the kinetic energy do
not depend onT and is proportional to the friction coeffi
cient, the correlation time of the potential energyV(t)
5V1(t)1V2(t)1V3(t) decreases with temperature. Th
phenomenon can be directly observed in Fig. 8, where

FIG. 7. Transition ratesG vs the barrier heightDV. Langers’s
expression~21! ~dashed line! is compared with the numerical est
mate for two choices of initial conditions: with~dot-dashed line!
and without~solid line! thermalization. Data refer to the sequen
S1 at temperatureT50.07 withM51000 and a thermalization time
T5100.

TABLE III. Decay times for the autocorrelation function of th
kinetic energytK and potential energytV , for S0 and S1 at various
temperaturesT. The timestK,V are estimated by assuming an exp
nential decay for the autocorrelation functions. The functions h
been obtained by averaging overM510 different US’s.

T tK - S0 tV - S0 tK - S1 tV - S1

0.02 0.13 0.70 0.10 0.65
0.04 0.12 1.16 0.10 0.95
0.06 0.14 2.17 0.10 1.55
0.08 0.13 2.66 0.10 1.52
1-8
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THERMALLY ACTIVATED PROCESSES IN POLYMER DYNAMICS PHYSICAL REVIEW E68, 061111 ~2003!
absolute value ofC(t)5^V(t)V(t1t)& is plotted for differ-
ent temperatures. The partial slowing down is an entir
nonlinear effect, since no temperature dependence can
in a purely harmonic potential. In the next subsections
shall see that nonlinearities are indeed at the origin of
limited validity of the theoretical formula.

C. Role of nonlinearities

Langer’s estimate assumes that the potential is harm
in the vicinity of both the NC and the saddle. In order to te
whether nonlinear corrections may be important, we h
estimated expression~19! under the hypothesis of a fully
separable potential. In fact, from the products of the o
dimensional integrals in Eqs.~24! and ~25!, one can at leas
establish whether nonlinear corrections are truly importa
In practice, we have evaluated the integrals along the eig
directions of the Hessian in the NC and in the correspond
saddle. The integration interval for thei th eigendirection is
set equal to@2r i* ,r i* #, wherer i* 53A2pT/va

( i ) for I a and
analogouslyr i* 53A2pT/v'

( i ) for I' .
The comparison of this expression with both numeri

results and the standard Langer’s formula is presented in
9 for the sequence S0. Although there is no reason to ex
the potential to be separable, it is interesting to notice t
the refined theoretical expression improves over Lang
formula. On the other hand, the remaining sizable deviati
from the numerical results indicate the need of a really
proved theoretical formula.

The derivation of Langer’s formula reveals that an activ
tion process can be decomposed into an Arrhenius fac
controlled by the energy differenceDV, and an entropic fac-
tor R. The analysis of the latter one conveys useful inform
tion on the structure of the potential energy landscape
helps shed some light on the above-mentioned discrepan
While a priori there is no reason to expectR to be either
smaller or larger than 1, in practice it is almost alwa
smaller than 1~see Fig. 10!; the only exceptions are fou
saddles all around the energy minimum of S4, which are a
characterized by extremely low barriers. In fact, such sad
are quite peculiar in that they almost coincide with the N

FIG. 8. Initial decay of the absolute value of the autocorrelat
functionC(t) for the potential energy during canonical simulatio
at T50.02 ~solid line!, T50.04 ~dashed line!, T50.06 ~dot dashed
line!, andT50.08 ~dotted line!. For each temperatureC(t) is av-
eraged over a time span of 50 and over 10 different trajectorie
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except for the first three to four beads, which are, on
other hand, relatively distant from the core of the configu
tion @24#. Similar distributions ofR values have been als
found in small clusters of particles interacting throu
Lennard-Jones potentials@18,19#.

The presence of such large entropic factors accounts
the peculiar dependence of the escape rate onDV for S4. The
abrupt drop ofG whenDV is decreased below 0.2~see Fig.
5! is due the smallness of the entropic contribution (G is
inversely proportional toR). This interpretation is further
confirmed by the slow dependence ofG on the temperature
for such saddles.

Leaving aside this peculiarity, there is an average t
dency ofR to decrease upon increasing the barrier heigh
both S0 and S4; this indicates that higher barriers corresp
to flatter saddles and thereby can be more easily overco
This is not the case of the good folder, whereR does not
show any clear trend and is always bounded in the inte
@1022,1021#. Accordingly, all the NNM are entropically
equivalent and the escape rate is essentially determine
the Arrhenius factor.

The most interesting observation can be, however, m
by parametrizing the relative errorej @see Eq.~27!# of the
escape rater j towards thej th NNM. From Fig. 11, one can
see that the deviation of Langer’s formula becomes syst
atically larger upon decreasingR. This is qualitatively under-
standable, since a smallR implies a flat saddle; therefore it i
reasonable to expect nonlinear corrections to be more
evant. What is less obvious is the observed dependenceej
on R. The data reported in Fig. 11 reveal thatej'a/R, which
amounts to conjecturing thatG.1/(R1a) with a basically
independent ofj. This is quite a remarkable result conside
ing that the fit is more convicing at larger temperatur
when values as large as 60 ofej are observed.

VI. CONCLUDING REMARKS

We have studied in detail the unfolding dynamics of sh
homo- and heteropolymeric chains made ofN beads in two
dimensions. Polymers have been simulated via an off-lat
model previously introduced@8# and their evolution has bee

n FIG. 9. Transition rateG vs the barrier height: comparison o
Langer’s expression~21! ~solid line! with numerical estimate~26!
~dashed line! and with expression~19! equipped with Eqs.~24! and
~25! ~dot-dashed line! for S0 atT50.1. Numerical estimates hav
been obtained with a sampling timeDt50.03 and performingN
53000 US’s.
1-9
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FIG. 10. Entropy ratiosR vs
the barrier heightDV for the three
studied sequences~a! S0, ~b! S1,
and ~c! S4.
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examined within the canonical ensemble. Our results sug
that the dynamics of polymers within theirnative valleycan
be described as a thermally activated process in
2N-dimensional space in a whole range of temperatu
above and below the folding temperature.

As a matter of fact, Langer’s estimate for the escape
represents a good approximation for all the examined
quences at low temperatures. We have verified that disc
ancies between Langer’s estimate and numerical data
mainly due to the poor approximation~limited to the har-
monic terms! of the potential around the stationary points.
better estimate can be derived by taking into account hig
order terms in the expansion of the potential. Since the fo
ing temperatures for the homopolymer~S0! and the bad
folder ~S4! are relatively low, for these sequences the dyna
ics within the native valley can be reproduced reasona
well already with Langer’s approximation. While for th

FIG. 11. The relative errorej vs the entropic factorR for S0
~circles!, S1 ~diamonds!, and S4~crosses!. The data have been ob
tained by sampling a trajectory every 0.3 time units at a tempera
T50.1. The dashed line is a guide for the eye and it correspond
a slope of 1.
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good folder~S1!, this is not the case, thus suggesting a m
relevant role of nonlinearities at the folding temperature.
any case all the examined estimates turn out to be up
bounds for the escape rates.

An analysis of the entropic contribution to the escape r
suggests that the folding behavior of a sequence can be
lated to topological properties of the landscape around
NC. For bad folders higher-energy barriers are associa
with flatter saddles, thus favoring jumps towards more u
folded configurations. On the other hand, for the good fol
the entropy ratio seems not to be related to the heigh
barriers.

We would like to stress that our analysis amounts to
ploring the free-energy landscape of a polymer, since in
jumping rate estimates are included not only Kramers’ ter
but also entropic contributions. The relevance of the latte
determining the equilibrium and kinetic properties of pe
tides has been recently pointed out in@5,6#.

In order to further explore the role of activation process
for the complete folding dynamics we plan to extend o
analysis to the whole energy landscape. A complete gr
describing all the folding and unfolding paths with their a
sociated probabilities will allow us to determine the equili
rium properties of the system and possibly to distinguish b
and good folders.
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project RBAU01BZJX ‘‘Dynamical and statistical analys
of biological microsystems.’’

APPENDIX: ALGORITHM FOR THE IDENTIFICATION
OF THE SADDLES

The algorithm described in this appendix~see also@25#!
aims at determining the path of minimal potential ener
connecting two minima indicated asa1 anda2.

Due to the symmetries of the potentials defined in Sec
@see Eq.~5!#, each spatial configuration of the polymer
chain is defined apart from a translation, a reflection, an
rotation around an axis perpendicular to thexy plane. Ac-
cordingly, after having expresseda1 in an arbitrary reference
frame, it is convenient to determine the coordinate ofa2 by
minimizing its Euclidean distance froma1 with respect to the
above-mentioned symmetry transformations.

The algorithm then consists in evolving a suitably chos
path connectinga1 anda2 according to a gradient dynamic
until the maximum of the energy along the path converge
a minimum corresponding to a saddle. More precisely,
approach is split into three steps.

~i! Choice of the initial configurations. The initial pathC0
connectinga1 anda2 is generally chosen by linearly interpo
lating between their coordinates,

x~ i !5x1~ i !1r „x2~ i !2x1~ i !…,

y~ i !5y1~ i !1r „y2~ i !2y1~ i !…,

i 51, . . . ,N. ~A1!

The sequence of initial configurations along the pathC0 is
fixed by varying the parameterr between 0 and 1~we typi-
cally chooser5m/100, 0<m<100).

~ii ! Evolution of the configurations. Each configuration is
then let evolve according to the gradient dynamics

ẋi52
1

g̃

]H

]xi
,

ẏi52
1

g̃

]H

]yi
. ~A2!

In practice, the damping coefficientg̃ can be chosen equal t
1, since it only determines the evolution time scale. The
s

at
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tegration time stepdt is adapted to the instantaneous value
the force field, dt5min(0.01,0.01/Fmax), where Fmax
5maxi$ufi

xu,ufi
yu% while f i

x and f i
y are thex andy components

of the force acting on thei th bead.
~iii ! Interpolation phase. After letting the system evolve

for a time t̄ 510dt, the Euclidean distanceDm( t̄ ) between
the mth and the (m11)st point is computed. IfDm( t̄ )
.2Dm(0), a newconfiguration is added between the tw
points by linearly interpolating between them. IfDm( t̄ )
,Dm(0)/2, the (m11)st configuration is removed. In thi
way, we are able to work with a set of uniformly distribute
configurations, without losing resolution in the regio
where the energy gradient is large.

The last two steps are repeated untilFmax in the
maximum-energy configuration along the path becom
smaller than a fixed threshold typically chosen equal
1023. The coordinates of the saddle point are finally refin
by implementing a standard Newton scheme.

On the one hand, the path connecting two generic min
can exhibit more than one relative energy maximum~see,
e.g., Fig. 12!: this is an indication that the two minima ar
not nearest neighbors. In this case, our approach allows i
tifying new minima. On the other hand, it can happen th
neighboring minima are separated by more than one sad
upon choosing different initial paths, one can, in princip
identify all saddles. Our simulations suggest that multip
saddles are not very common at least in the vicinity of
NC.

FIG. 12. Potential energy profileV connecting the NCa1 to a
2NNM a3 via two saddles for the sequence S1; the symbola2

indicates a NNM. The indexr i refers to the distance measure
along the unstable manifold connecting the minima.
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