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Jumps between neighboring minima in the energy landscape of both homopolymeric and heteropolymeric
chains are numerically investigated by determining the average escape time from different valleys. The nu-
merical results are compared to the theoretical expression derived by Ldr§etanger, Ann. PhysN.Y.)

54, 258(1969] with reference to a B-dimensional space. Our simulations indicate that the dynamics within

the native valley is well described by a sequence of thermally activated process up to temperatures well above
the folding temperature. At larger temperatures, systematic deviations from the Langer’s estimate are instead
observed. Several sources for such discrepancies are thoroughly discussed.
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I. INTRODUCTION the escape is often viewed as an activation process and
Kramers-like formulas, derived for low-dimensional sys-
Polymeric chains exhibit quite a rich variety of dynamical tems, are applied to characterize high-dimensional systems
properties. At high temperatures, kinetic energy is largavithout testing their validity. In this paper we present a de-
enough to allow a chain exploring most of the accessibldailed check of the formula derived by Langer in 1969,
phase space. In this regime, the polymer typically assumesfinding that the escape process is strongly influenced by the
“random-coil” structure. At intermediate temperatures, inter- €Ntropic contribution associated with the local geometry of
nal forces and the interaction with the solvent become stron{f1€ €nergy landscape.
enough to stabilize compact configuratidad However, ki- N Sec. Il we introduce the polymer model used as a test-
netic energy fluctuations are still able to drive the chain fromiNg ground for numerical analysis of the activation processes
one to another minimum of the energy landscape. The prop! relatively high-dimensional systeni8]. It consists of a
erties of this itinerant dynamics depend on several factorsthain of two types of beads embedded in a two-dimensional
the height of the barriers separating neighboring minima,(ZD) space. In the same section, we briefly recall the relevant
their accessibility, and, more generally, the overall structurd"oPerties of both homogeneous and heterogeneous systems
of the energy landscape. Upon further decreasing the teniPOn varying the temperature. In Sec. Ill, the general theo-
perature, an heteropolymer typically undergoes a glass traﬁetmal.ldeas lying pehmd the denvgtlon (_)f_Lan_ger’s formula
sition and may freeze in one of several distinct free-energ'e briefly sumrr_]arl_zed. The techn[cal difficulties assouatgd
minima. Only some peculiar heteropolymers exhibit a tranWith the determlnatlon of geome_trlcal facto_rs are also dis-
sition to a “folding regime’—i.e., are characterized by a cussed together vy|th some possmle apprOX|mat|qn schem_es.
relatively fast convergence towards the absolute energy mini S€C. IV, theoretical predictions are compared with numeri-
mum, irrespectively of the initial state. In this case, the het:cal simulations for specimens of bad and good folders. In
eropolymer is said to be a “good folder” and it can be SPite of an overall qualitative agreement, systematic devia-

viewed as a specimen of a protein, which always evolves t§0ns are found at relatively high temperatures, the origin of
its native configuratioiNC) [2]. which is discussed in Sec. V, where several effects are sepa-

Independently of whether a given polymer is homoge_rately discussed. Finally, in Sec. VI, the main conclusions are
neous or heterogeneous, whether it is a good or a bad foldetdmmarized and the open problems briefly recalled.
a complete understanding of its dynamical properties passes
through the description of the jump processes betvyeen d|f-”_ MODEL: DEEINITIONS AND THERMODYNAMICAL
ferent energy valley$3,4]. Free-energy valleys are indeed PROPERTIES
collections of distinct minima and studying the connectivity
of such minima can help identify and parametrize the rel- In this paper we study the escape process from an energy
evant macroscopic stat¢$,6]. In the hope of eventually valley with reference to a model thoroughly investigated in
making substantial progress along this line, in this paper wg9], where the authors slightly modified a previous version,
aim at testing the validity of the expressions utilized to char-originally introduced ir[8]. The model, designed to simulate
acterize the single-escape processes. In the current literatusequences of amino acids interacting within a solvent, de-
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scribes a chain ofL monomers embedded in a two- where all monomers are assumed to have the same mass
dimensional space. At variance wif], where monomers and momenta are defined a3, Py.i) :=mM(X;.Yi).

were rigidly linked along the backbone, (9] a nearest- Accordingly, each heteropolymer is perfectly identified by
neighbor harmonic potential was instead assumed, a binary sequence of 0's and 1's specifying the nature of each
) monomer. Those sequences for which the heteropolymer
Va(riird) =a(riic1=ro)% (1) shape converges systematicallgt intermediate tempera-

_ . 5 . ) tureg towards the same “native” configuration indepen-
wherer; ;= y(x;—x))*+(y;—y;)* is the distance between gyenty of the initial condition are identified as “good fold-
theith andjth monomer, whilex;, y; are the coordinates of o< »” previous studies, mostly based on Monte Carlo
theith monomer. Without loss of generality, the equilibrium techniques, indicate that this happens only in a few cases

distancer g is set equal to 1, while the interaction constant [11-13 and the scenario has been confirmed also by mo-
has been fixed equal to 20 so as to induce an almost rigighs,1ar dynamics simulatior®].

interaction between neighboring monomgts. In what follows, we shall limit our investigations to the
The second term expresses the energy cost of local bengsee following cases, all of length= 20.

ing; it is described by the three-body interaction term (i) [SO]=[0000 0000 0000 0000 00POa homopolymer
1— coso composed of hydrophobic residues only.
V()= - ) (ii) [S1]=[0001 0001 0001 1001 10D0a sequence first
16 studied in[12] (therein indicated with the code number)81

. ) _where it was identified as a good folder.
where ¢; is the angle formed between the links connecting (iii) [S4]=[1110 0100 0000 0001 0010 a randomly

the (—1)stith, and {+1)st monomers. In particular, generated sequence with six P-type residues, identified as a
bad folder in[9].

Cosgi:(Xi_xifl)(x”l_xi)ﬂyi_yifl)(y”l_yi), A reasonably accurate characterization of each sequence

Fii—1livaj can be obtained by determining three transition temperatures.

(3 The first oneT, denotes the temperature below which the
polymer is in a collapsed rather than in a random-coil con-

where — < 6 <. figuration[1]. It can be determined by studying the tempera-

Finally, heterogeneity is ensured by a Lennard-Jonesg,re gependence of the gyration radis,(T): T, corre-
type interaction between non-neighboring monomers,sponds to the maximum @R, (T)/JT
gy .

(li=j[>1): The folding temperaturel; is the temperature below
which the heteropolymer stays predominantly in the native
_ 1 Gy valley. Here, analogously ®], we define the native valley
V3(|’i'j)—E_T, (4) ! . ! . . g
_ re; as the basins of attraction of the NC and of its neighboring
minima. A quantitative estimate af; can be then obtained
where by determining the temperature at which the chain spends
50% of the time within the native valley.
1 Finally, the glass-transition temperatufg can be identi-
Ci,j:§(2_3§i_351+55i§j) fied by comparingfinite) time averages performed starting
from different initial conditions. Specifically, we have con-
and¢ =0 indicates that thith monomer is hydrophobigd), ~ Sidered unfolding(US's) and folding (FS's) simulations,
while & =1 corresponds to a pol&P) one. As a result, the Whose initial conditions correspond to the NC and to
interaction is attractive if the two monomers are either botrfandom-coil configurations, respectively. In practidg, is
hydrophobic or both polarci ;=1 and 1/2, respectively defined as the temperature below which the relative differ-
while it is repulsive if the monomers belong to different spe-€nce between US and FS averages of the internal etergy
cies (in which casec;;= —1/2). This potential choice simu- larger than 10%.
lates the effective interaction among H and P monomers in_ We have determine@,, T, andTg, by means of Lange-
the presence of a solvent. In fact, since H monomers preféfin molecular-dynamics simulations with each monomer be-
to avoid direct contact with the solvent, they tend to cluster/Nd in contact with a stochastic thermal reservoir at tempera-
ize in the interior where they can be shielded from water bylure T:
a shell of P monomers. The net result is an effective H-H
attraction and an H-P repulsion as assumed in the model. : . H
Altogether, the heteropolymer Hamiltonian is written as z(D)=pzi/m, pgi(t)=— oz YPz,i (1) + 72 (t). (6)

i

L 2 2 L-1 L-1
Px,i T Py,i Here z; is introduced as a shorthand notation for both the
H=) ———+ A RS V,(6; |
izl 2m Zl fi+a) ;2 2(6) spatial coordinateg; andy;, v is the dissipation rate, and
Lo L 7,,(t) is a Gaussian distributed;correlated random noise:
+ 2 2 ValriL6.8), (5)
S T (72i(0)7,(0))=2ymkgT5(D) 8, (7)
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TABLE |. The collapse-transition temperatufie,, the glassy ) IH
temperaturél ¢, the folding temperatur@;, and the numben, of zZi=— 7
nearest-neighbor minima of the NC for the sequences(l80 !
mopolymej, S1(good foldej, and S4(bad foldejy

®

which drives the system to the minimum-energy state, whose
basin of attraction contains the initial conditig8]. The

S0 st 4 minima separated from the absolute minim(tire NO by a
T, 0.16 0.11 0.13 single energy barrier have been denoted as nearest-
Tg 0.022 0.048 0.025 neighboring minimgNNM), while those separated from the
T 0.044 0.061 0.044 NC by two barriers as second-nearest neighboring minima
No 31 37 36 (2NNM) and so on. The NNM configurations for all the three

examined sequences are reported in Fig. 1. Before passing to
a specific discussion of the escape from a given valley, it is
convenient to illustrate the outcome of a typical FS in the
temperature rangé,<T<T,. The evolution of the differ-
enceAV between the instantaneous potential energy and the
. otential ener of the NC is reported in Fig. 2 for the
The _temperature values. obtained for 80'81'8_4_ are reEeteropolymergmé()l. A series ofpsudden cgnformational
ported in Table |, together with the numbigy of the minima.  onanges is clearly identifiable from the various energy drops
directly connected with the NC. The glassy transition has(notice the logarithmic scale of both aye®nce S1 enters
been determined by performing averages over a time lapsge native valley, it remains there for a very long time, al-
on the order of 10 units. These results are very close t0 though jumps towards neighboring minima can occasionally
those reported if9], where a deterministic Noddoover gccur.
thermostatting schenjd4] was used instead. The advantage
of using the Langevin equatio(®) is that the damping rate Il ESCAPE RATE FROM A METASTABLE STATE
can be directly controlled. As we shall see in the next sec-
tion, this is a crucial ingredient for characterizing the escape Since the publication of the pioneering paper of Kramers
rate from a given valley. [15], the problem of determining the escape rate from a
A more detailed characterization of heteropolymer dy-metastable state has been addressed in many different con-
namics can be obtained by identifying at least the most vistexts. Here, we will derive the well known Langer’s expres-
ited minima of the potential energy=V;+V,+V5. Here, sion[7,16] for the overdamped dynamics of an ensemble of
we have proceeded by sampling a generic trajectory at timdl interacting particles in a2 environment. We restrict our
intervals of lengthAt~1-5. Then, the resulting instanta- discussion to the overdamped limit, since it is expected that
neous configurations have been taken as initial conditions fdn the protein folding problem, the time scale of energy ex-
the overdamped dynamics: changes with the thermal batthrough collisions with water

wherekg denotes the Boltzmann constant ahdé the tem-
perature(for the sake of simplicity, botkg andm have been
set to unity.

b) |
Y T 3 3 oo 1 2 3 FIG. 1. Configurations of all
X X the NNM’s for the three consid-
3 ered sequences %8), S1(b), and
L S4(c).
2_
y -
1_
0_
_1_
.2_
_3_ 1 1 1 1 1 1 1
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10: T T T T T ] V(I’)—VS=VH(I’H)+VJ_(I’J_), (12

wherer | is the distance from the basin boundanyeasured
along the unstable manifold of the saddiehile the vector

r, parametrizes all other directions in phase space. Finally,
the zeros of/| andV, are set in the saddle point. Under the
above assumptions, the only nonzero component of the flux
is

kBTe F<_V(r))£ 12

JH:_y_m kgT (9I'H ’

where we have introduce@(r) =exd V(r)/kgT]P(r) andJ;

5 L " " i = ¢  depends only om. The vanishing ofl, implies thatQ de-
10 10 10 10 10 i 10 10 pends only onr|. Accordingly, Eq.(12) can be solved to
yield

FIG. 2. Potential energy vs time during a folding simulation for
_ . T . 1 (r

the sequence S1 &t O.QSS(Qray C|r.cles). The SO|I.d line is a local Q) = = SeVu(é*)/kBng (13
average with exponentially increasing window size. ’=c | '
moleculeg is rather fastwe shall anyway return to this point where the integration constant is determined by imposing
later on. The probability densityP(r,t) for a configuration thatQ(r) and, accordinglyP(r) vanish along the boundary.
to be in an infinitesimal volume around the state The multiplicative constan€ can be finally determined by
=(rq, ... fon)=(X1,¥Y1,%X2, ... Xy, Yn) at timet satisfies  normalizing the integral oP(r):
the Fokker-Planck equation
C:e—va/kBTJ e—[V(r)—va]/kBTdrJ'rsev”(g)/kBng_ (14)

dl

I

gt ym =1 o,

aV(r) JP
+ B! -
ar; ar;

, €)
The first integral is restricted to the basin of attractiomngf.

: .In the small-temperature limit, in the region where
where V(r) represents the energy potential. The above I9,— V() ~Val/keT jg significantly different from 0, the last inte-

nothing b.Ut a continuity equation, with thg_rlght-hand Sldegral is basically constant, so that we can replace its lower
representing the divergence of the probability flux: border withr ,, thus writing
a?

1 |aV(r J — a—ValkgT
ym ﬂri ﬂri
where
kgT F{—V(r)) d [{V(r))P( ol. @
=——ex —expg —=|P(r,t)|.
ym kT /ar; kT = f e~ V(N -VallkeTqyy (16)

The stationary solutiorfwith no flux boundary conditions,
J;=0) is simply given byP(r)=exdV(r)/(kgT)]. Let us | :Jrs V|(&)/kgT

e I e dé. (17
now assume that the energy landscape exhibits at least two
local minimam, andmy, with energies, respectively, equal to
V, andV,: we want to estimate the escape rate from theThe flux is then written
basin of attraction ofn,. The boundary separating the ba-
sins of attractions of the two minima coincides with the _kBT e Vel ~V, IkgT
stable manifold of possibly more than one saddle point. Let ™ ym 1 € :
us denote the energy on the saddle withis V. If the
system is prepared into the staitg, a fluxJ sets in: if the whereAV=V,—V,. By integrating on the basin boundary,
flux itself is weak, it is basically constant in time and one canone finally obtains
approach the problem by determining the stationary state
with J being a solenoidal field. Onckis given, the escape _KeT 1 vkt
rate" can be obtained by integrating the outgoing flux over ~ym HH :
the whole boundary of the well. We are not aware of a gen-
eral solution in more than one dimension. where

The most general case amenable to an analytic treatment

is that of a potential which, in the vicinity of the saddle | _f VL ()keTg
point, can be separated into two distinct contributions T fo-

r

(18

(19

(20)
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Equation(19) holds under the assumption of a sufficiently Under the hypothesis of a fully separable potential, one can
small temperatureXV>kgT) and the separability condition factorize the two integral$, and | into products of one-
(12). The former hypothesis is needed to ensure a sufficientlgimensional integrals:
slow flux to guarantee that a quasistationary approach holds
and the integral in Eq(14) factorizes. The latter hypothesis 2N
ensures that Eq13) indeed represents a meaningful solution |a=_H f e VikeTdr, (24
of the problem. One should notice that separability is re- =t
quired to hold only in the region around the saddle where the IN—1
integrall | has to be p_erformed. _ = H f e,v(i)(r(i))/kBTdr(i), 25)

If the temperature is small enough, only the leading qua- =1
dratic terms are relevant in the computation of the integrals
la, Iy, andl, . In this harmonic limit, they reduce to Gauss- whereV; is theith component of the potential in the vicinity
ian integrals that can be computed by diagonalizing thef the minimum with the zero of the scale such thg(0)
Hamiltonian. Upon denoting witw{) the 2N frequencies in =0, andv( is the analogous component around the saddles
the vicinity of the minimumm, ([0{’]1?=—A{/m, A}’  for the stable directions.
being the negativéth eigenvalue of the Hessignwith w(l') In the following section we compare the Langer predic-
the 2N—1 frequencies around the saddieose correspond- tion (21) with our numerical results. In Sec. V we discuss the
ing to the stable directionsand withw) the rate associated limits of applicability of Eq.(21) and we test the improved
to the only expanding directior[@H]2=A(52N)/m), one ob-  expression for the escape rdatE9) [with the integrals esti-
tains the expression first derived by Langer in 1969Mated as in Eqs24) and(25)].

[7,16,17:
IV. NUMERICAL RESULTS
2N . . .
H (i) In order to characterize the dynamics of the polymer in
w| i1 @a wﬁ the native valley we have determined both analytically and
I =— 1€ 2VkeT=—_e 2VkeT ~ (21)  numerically the escape rate from the NC towards any of the

TR NNM. The procedure for identifying the NNM from a data-

base of “inherent” minima, constructed by following the
method outlined in Sec. Il, relies on identification of the
where R:=\TIN, [AD|/TIN, [AY| can be interpreted as an minimal-energy path connecting each NNM to the NC. The
entropy factof18,19. In the case of continuous symmetries algorithm used to find these paths is described in the Appen-
(such as, e.g., translational and rotational symmetriges-  dix: it allows identifying the saddle separating any two
sian eigenvalues corresponding to Goldstone modes vanisfinima.
They have to be excluded in the frequency products appear- A few pairs of NNM turn out to be connected by more
ing in Eq.(21) [16]. than one(up to thre¢ minimal-energy paths, this implying
Expressior(21) is routinely employed in studies of many- that they are separated by more than one saddle. In these
body systems, including relaxation dynamics in glagd&€  cases, one should, in principle, compare the numerically de-
and in the estimation of entropy barriers in clustgt§]. termined escape rate with the sum of the probability flows
However, its validity range has not been thoroughly investi-I', through the different saddles. As a matter of fact, we
gated. For instance, in Reff20] a master equation is con- limited ourselves to consider the contribution of the saddle
structed for a cluster of 19 atoms by identifying directly yielding the maximal flow. This approximation is definitely
minima and saddles, but estimating transition probabilitieiegligible with respect to the discrepancies between numeri-

Ty ,
Il of
i=1

only from an expression similar to E(R1). cal and theoretical estimates fully discussed in the following.
In the weak-damping limit, Eq(21) generalizes t¢21] In Fig. 3 the three potential contributiovs, V,, andV;
are reported for a minimal-energy path connecting the NC to
5 one of the NNM. A common feature to all the examined
FL:ﬂe—AWkBT' (22)  Ppaths is that the main contribution to the potential energy
myR barrier arises from the Lennard-Jones term. This confirms
o ) that the term driving the folding is indeed the long-range
where the multiplicative correction potential term mimicking the hydrophobicity effedtas al-
ready mentioned if9]).
= 2 23) The evaluation of"| requires knowledge of the eigenval-
1+ \/m ues of the Hessian in both the NC and a suitable saddle. In

our model, because of translational and rotational symme-

depends on the ratio between the damping constant and tftiées, three eigenvalues always vanish. This is clearly seen in
divergence rate along the expanding direction. Fig. 4, where the frequency spectrunj’ of the NC is plot-
Finally, we mention a simplified formula for the escapeted for the three sequencgpanel (a)], together with the
rate that is somehow halfway between the general expressimpectrumwﬂ) of one saddlgpanel(b)]. The wg') spectrum

(19 and that one corresponding to the linearization, @4). decreases smoothly from values around 13 down to O. It is
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T ' ' ' T ' same region in the phase space, consistently with the hypoth-
esis of a thermally activated process. Thus, the escape rate
toward thejth minimum can be numerically estimated as

)

5 = 1 26
= ()= RCS (26)
3

8 where we have dropped the dependencg onthe escape

time.

We have focused our numerical analysis in the tempera-
ture rangg Ty, T,], where the polymer spends most of the
time in a collapsed state. In order to obtain a sufficient sta-
tistics the parameters of US’s have to be suitably tuned ac-

FIG. 3. Potential energy profiles vs the distance from the Nccording to the temperature values. In particular, the sampling
(measured along the unstable manifold of the s3dgleThe three time At has to be maintained sufficiently short to avoid back-
curves correspond to the different potential contributions for a mini-crossings of the barrier and multiple jumps. More precisely,
mal energy path connecting the NC to a nearest-neighboring minit must be smaller than the lifetime of all NNM. Since all
mum for the sequence S1. The solid line indicates the Lennardlifetimes decrease with temperature, increasingly smaller
Jones contributioiV; (4), while the dashed line the harmonic term At’s have to be adopted when the temperature is increased
V; (1) and the dot-dashed line the potential tevfn (2). The last  [22]. We have chosent values ranging from 1 at low tem-
two terms are shifted along the vertical axis by a factor-&.2 and peratures T:Tg) to 1073 at high temperaturesT&T,),
—5.75, respectively. while the integration time step has been kept equal t6°10

(a few tests performed with an integration time stef0™*
interesting to notice that all spectra do not differ significantlyhave not revealed any relevant differencgnyway, at low
from what one would obtain for a purely harmonic chain, intemperatures the escape rate towards a subset of NNM is so
which case the spectrum would decrease from a maximursmall that in practice they are never found to be visited over
frequency equal to g2a=12.6 down to zero. It is only at an extremely large number of simulations. This is why in
lower frequencies that differences among the various sefable Il we indicate the numbarm, of visited NNM as a
guences can be appreciated: in fact, this spectral band fsnction of the temperature: it turns out that all NNM are
basically determined by the angular motion that is primarilyvisited already af =0.08 for both SO and S1, while for S4
controlled by the cosin€2) and Lennard-Jone&l) poten- new minima are found up t6=0.1 (the highest temperature

tials. we have examined
For what concerns the value afj, it turns out to range The numerically computed transition rates are presented
between 0.3 and 1.8 in all saddles. in Fig. 5, where only the results for the most visited NNM

Then, we have directly determined the escape Fdtg are reportedsee the dashed lingsThe solid lines refer to
from the NC by performing several US’s with the damping the theoretical estimates. We expect that @4) holds, since
constant set equal to 6.9. Eveky time units, the “inherent”  the chosen value of the damping coefficiept 6.9, should
polymer configuration is determined by a steepest descemgjuarantee an overdamped dynamics.
method. As soon as the polymer leaves the basin of attraction While at T=0.04 the analytic expressidn, is in good
of the NC, the corresponding time is registered together wittagreement with the numerical estimatésr all of the three
the new minimum that has been reached. Let us denote witbequences at higher temperatures the theoretical expression
M; the number of US’s ending in theh minimum, with(7;) overestimates the escape rate. In order to perform a quanti-
the corresponding average escape time and wwMh tative comparison, it is convenient to compute the ratio

=E?21M]— the total number of US’s. We have verified that

(7j) is independent of. This indicates that the polymer r:FL(J) 27
spends most of the time before any jump in exploring the T
15 T T T T T T T a) 15 T T T b)
o, Tia, ) 1 of T, 1 FIG. 4. (8 Angular frequen-
10 s i sy cies !} associated with the Hes-
28e 10 Aa, B . a
*tyy “aL, sian of the NC for the sequence
"Esa.. 1 “A“ 1 S0 (squarey S1 (circles, and S4
’WE:. A‘AA (diamonds, (b) angular frequen-
& *t2eee., il 5 i, A cies 0" associated with the Hes-
GEEEE;.. J ‘AAM | sian of a saddle separating the NC
oo from a NNM for the sequence S1.
% 10 20 0 0 9% 16 20 30 20
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TABLE II. For all sequences and four different temperatufes temperatures, but it downgrades when going above the
we report, the numerically estimated average escape (timethe  “folding” temperatures and the phenomenon is more evident
number of visited NNM,n, (the numbers within brackets refer to in the case of the good folder S1.
the minima visited more than ongend the weighted ratiér ).

T (1) N, (r)
V. DISCUSSION OF THE RESULTS
S0 8 'gg 2224 %2 12; In thi; s.ection we discuss several independent factors that
0.08 12 3130) 176 cana priori affect the observed escape rates. First of all, we
0.10 19 3130) 3.43 have investigated whether intrinsic fluctuations due to the
chaotic dynamics contribute significantly to the escape rates.
S1 0.04 4375 283 1.31 In order to examine this point, we performed microcanonical
0.06 168 327) 1.95 simulations at various temperaturggamely, T=0.04, 0.06,
0.08 24 3734 2.05 and 0.08. Although the potential energy is larger than the
0.10 19 3736) 3.89 barrier height, no jumps have been observed in simulations
lasting up to 2< 1P time units. This means that local fluc-
S4 0.04 129 1a1) 1.30 tuations are not strong enough to trigger jumps between
0.06 58 2824) 1.42 neighboring valleys in the presence of a global energy con-
0.08 30 2725) 2.16 servation. Therefore, fluctuations due to the coupling with
0.10 18 3024) 3.74 independent heat baths are a crucial ingredient in establish-

ing the time scale of the escape rate.

Yet the observed discrepancy between the analytic expres-
for each escape process towards an NNM and to then avegion (21) and the numerically evaluated escape rate calls for

age over all neighboring minima, an explanation. Equatiof21) has been derived by making
several assumptions that may not be fulfilled in practice.
<r>:z Pir| (28) (i) The value of the friction coefficienty should be
]

larger than the frequency associated with the expanding di-
rection of the saddle; i.e., the dynamics should be over-
where P;=T'(j)/Z;I'(i) is the probability that an US ends damped.
up in thejth NNM and the sum is restricted to those minima (i) The configurational probability densityP(r,t)
that have been visited at least twice. The value§ pfor the  should be almost stationary; i.e., the polymer should be well
three sequences at four different temperatures from 0.04 uhermalized before a jump occurs.
to 0.1 are reported in Table II. In this range, statistically (iii) The potential energy should be well approximated by
reliable estimates are obtained already fér-10%. In all  the quadratic contributions in the relevant regions around
cases, the theoretical formula is reasonably accurate at loboth the saddles and the NC.

-2

10 b) T T T T T

FIG. 5. Transition rated” vs
the barrier heighAV: comparison
of the theoretical expressiof21)
(solid line) with the numerical es-
timate (26) (dashed ling for two
different temperatures T(=0.04
andT=0.06) for the three studied
sequences: namelfg) SO, (b) S1,
and(c) S4. The numerical data re-
fer to a total number M
=1000-5000 of US’'s and to a
sampling timeAt=1. In panel(a)
and (b) the dot-dashed lines refer
to the corresponding exponential
terms exp—AV/KksT], with kg
=1, multiplied by an arbitrary
scale factor.

f 1 1 1
100 01 02 03 04 05 06 0.7 08
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2 T T T J T TABLE Ill. Decay times for the autocorrelation function of the
1o ] kinetic energyryx and potential energy, , for SO and S1 at various
temperature§. The timesry \ are estimated by assuming an expo-
0%k i nential decay for the autocorrelation functions. The functions have
0 been obtained by averaging ovdr= 10 different US's.
r
10 i T T« - SO 7v - SO T - S1 7y - S1
0.02 0.13 0.70 0.10 0.65
10°h i 0.04 0.12 1.16 0.10 0.95
L L L 1 L 0.06 0.14 2.17 0.10 1.55
0.3 0.4 0.5 0.6 0.7 0.8 0.9
AV 0.08 0.13 2.66 0.10 1.52

FIG. 6. Numerical transition ratd3 vs the barrier heighAV for

two different v values. Solid circles refer tgy=1, while open . S . . N
triangles correspond ty=49. The latter have been scaled by a Gibbs distribution times a factor that differs significantly

factor 49<0.56 (see text Simulations refer to sequence S1Tat from 1 only 'r,] 'the nelghborhood (,)f the saddle. In o'rder to
—0.07. The number of US's i =4000. verify the validity of this assumption, we have st_udu_ad the
decay of the autocorrelation functions for the kinetic and
potential energy in several US’s with SO and S1.

From the data reported in Table I, it is evident that the
typical correlation times are much smaller than the average
escape times at all the examined temperatures. Since the cor-
A. Overdamped limit relation time is a reasonable estimate for the time required to
) ) ) reach a “local thermal equilibrium,” these results suggest

Throughout this paper we have fixedequal to 6.9 In  hat \whatever the distribution of initial condition used for
adimensional units. In order to check whether this is a meang,q ys's is, the system thermalizes before escaping. In fact,
ingful choice in the protein context, we must express theyg's performed by starting from different sets of initial con-
damping rate in physical unitg;=6.9m/7,, wheremis the  itions lead to closé values. For instance, in Fig. 7 one can
mass of a typical amino acid, whilg, is the perlogzgf small - compare the results of simulations started from a Maxwellian
oscillations within the potential well. Sinaa~10"“"g and  gistribution of the velocitiegdot-dashed lingwith those ob-
To™ 10_1_2 s, it follows thaty~ _10_9 g/s, avalue to be com- ained by gradually warmingwith a 7x 10 4 rate an ini-
pared with the typical relz?éanon Jate due to collisions withyjq|ly frozen configuration. The relative differences are much
water moleculesy,;,o=10""-10 " g/s(see Ref[23] for a  gmaller than the deviations from the theoretical expectation
more detailed discussi@nOur choice ofy is, therefore, not (dashed ling

In the following we investigate the validity of these assump-
tions.

too far from reality. Moreover, since is already 4 times However, Table IIl brings forth some interpretative prob-
larger than the maximumy, we expect the system dynam- lems: while the correlation time of the kinetic energy does
ics to be in the overdamped regime. not depend orT and is proportional to the friction coeffi-

Anyhow, it is instructive to investigate whether the damp-cient, the correlation time of the potential enery(t)
ing rate is responsible for the non perfect agreement betweea V,(t) + V,(t) +V3(t) decreases with temperature. This
numerical data and the approximate theoretical expressiophenomenon can be directly observed in Fig. 8, where the
In order to clarify this point we performed further US’s with
both a smaller ¥=1) and a larger ¥=49) friction. Sincey, »
in the former case, is of the order @fj, one should merely
expect multiplicative corrections arising from tliéy factor
in Eq. (22). By neglecting saddle-to-saddle fluctuationsupf 10°
(assumed always equal to its average value )1.1ffis r
amounts to a correction term A9.56. In Fig. 6, we have
multiplied by this factor the numerical data obtained for
=49. The quite good overlap between the two sets of data
confirms that the dependence on the damping term is well 10°
reproduced by the theoretical formu(part of the oscilla-
tions is of statistical nature and part is due to the neglected L ' ' L

) 0.3 0.4 05 0.6 0.7 0.8
| fluctuations. AV

FIG. 7. Transition rate$’ vs the barrier heighAV. Langers’s
expression21) (dashed lingis compared with the numerical esti-
A fundamental hypothesis implicitly made in the deriva- mate for two choices of initial conditions: wittdot-dashed ling
tion of the analytical expression for the escape rate is that thend without(solid line) thermalization. Data refer to the sequence
probability density of initial conditions inside the native val- S1 at temperatur&=0.07 withM = 1000 and a thermalization time

ley can be approximated by the product of the BoltzmannT=100.

B. Thermalization time
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100 T T T T 10_1 T T T T T T
col | s,
104_ ~\\_ . Sl T ..t.:
10%F T
10-5 1 1 1 L 1 1
-3 1 L 1 L . 4 . . 7 . . 1
10°% : n L . ! 03 04 05 05 07 08 09

T

FIG. 8. Initial decay of the absolute value of the autocorrelation F|G', 9. Transition ratd” vs the barrier height: comparison of
function C() for the potential energy during canonical simulations L@nger's expressiof21) (solid ling) with numerical estimat¢26)
atT=0.02(solid line), T=0.04(dashed ling T=0.06 (dot dashed ~ (dashed lingand with expressioflL9) equipped with Eqsi24) and
line), and T=0.08 (dotted lind. For each temperatui@(7) is av- (25) (dot-dashed linefor SO atT=0.1. Numerical estimates have

eraged over a time span of 50 and over 10 different trajectories. be;gogblﬂasi,ned with a sampling timet=0.03 and performing\
= s.

absolute value o€(7) =(V(t)V(t+ 7)) is plotted for differ-  except for the first three to four beads, which are, on the
ent temperatures. The partial slowing down is an entirelyother hand, relatively distant from the core of the configura-
nonlinear effect, since no temperature dependence can ariien [24]. Similar distributions ofR values have been also
in a purely harmonic potential. In the next subsections weound in small clusters of particles interacting through
shall see that nonlinearities are indeed at the origin of thé.ennard-Jones potential$8,19.

limited validity of the theoretical formula. The presence of such large entropic factors accounts for
the peculiar dependence of the escape rat&é\dtior S4. The
C. Role of nonlinearities abrupt drop ofl’ whenAV is decreased below 0(8ee Fig.

Langer’s estimate assumes that the potential is harmonic) is due the smaliness of the entropic contributidn i§
9 P Ihversely proportional tdR). This interpretation is further

in the vicinity of both the NC and the saddle. In order to test .
. : . confirmed by the slow dependencelofon the temperature
whether nonlinear corrections may be important, we haV(?Or such saddles

estimated expressiofi9) under the hypothesis of a fully Leaving aside this peculiarity, there is an average ten-

separable potential. In fact, from the products of the one- . . . o
dimensional integrals in Eq€24) and (25), one can at least dency ofR to decrease upon increasing the barrier height in

establish whether nonlinear corrections are truly importantbOth S0 and S4; this indicates that higher barriers correspond

. X . to flatter saddles and thereby can be more easily overcome.
In practice, we have evaluated the integrals along the eIgenk . ic not the case of the good folder, whéRedoes not

directions of the Hessian in the NC and in the correspondin%hOW any clear trend and is always bounded in the interval
saddle. The integration interval for théh eigendirection is [10°2,10 1. Accordingly, all the NNM are entropically

set equal td —rf ,r'], whererf =32aT/wgy’ for Iz and o4 ivalent and the escape rate is essentially determined by
analogously ¥ =327 T/w}" for I, . the Arrhenius factor.
The comparison of this expression with both numerical The most interesting observation can be, however, made
results and the standard Langer’s formula is presented in Figyy parametrizing the relative erre [see Eq.(27)] of the
9 for the sequence SO. Although there is no reason to expegkcape rate; towards thejth NNM. From Fig. 11, one can
the potential to be separable, it is interesting to notice thafee that the deviation of Langer's formula becomes system-
the refined theoretical expression improves over Langer'gtically larger upon decreasitigy This is qualitatively under-
formula. On the other hand, the remaining sizable deviationgtandable, since a sma&limplies a flat saddle; therefore it is
from the numerical results indicate the need of a really imyeasonable to expect nonlinear corrections to be more rel-
proved theoretical formula. __evant. What is less obvious is the observed dependeneg of
The derivation of Langer’s formula reveals that an activa-yq R The data reported in Fig. 11 reveal tiet=a/R, which
tion process can be decqmposed into an Arrhenigs factohmounts to conjecturing thdt=1/(R+a) with a basically
controlled by the energy differencV, and an entropic fac- jydependent of. This is quite a remarkable result consider-
tor R. The analysis of the latter one conveys useful im‘orma—ing that the fit is more convicing at larger temperatures,

tion on the structure of the potential energy landscape angnen values as large as 60 @fare observed.
helps shed some light on the above-mentioned discrepancies.

While a priori there is no reason to expeBRtto be either
smaller or larger than 1, in practice it is almost always
smaller than 1(see Fig. 1@ the only exceptions are four We have studied in detail the unfolding dynamics of short
saddles all around the energy minimum of S4, which are alshomo- and heteropolymeric chains madeNobeads in two
characterized by extremely low barriers. In fact, such saddledimensions. Polymers have been simulated via an off-lattice
are quite peculiar in that they almost coincide with the NCmodel previously introducef8] and their evolution has been

VI. CONCLUDING REMARKS
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1 107 .
R
1 10%F T
10-3 P P R R SR PR R 10-3 1 1 1 1 1
AV AV

the barrier heighAV for the three
studied sequence®) SO, (b) S1,
and(c) S4.

10-3 ! 1 1 1
0 0.2 0.4 0.6 0.8 1
AV

examined within the canonical ensemble. Our results suggegbod folder(S1), this is not the case, thus suggesting a more
that the dynamics of polymers within theiative valleycan  relevant role of nonlinearities at the folding temperature. In
be described as a thermally activated process in any case all the examined estimates turn out to be upper
2N-dimensional space in a whole range of temperaturegounds for the escape rates.
above and below the folding temperature. An analysis of the entropic contribution to the escape rate
As a matter of fact, Langer’s estimate for the escape ratguggests that the folding behavior of a sequence can be re-
represents a good approximation for all the examined seated to topological properties of the landscape around the
quences at low temperatures. We have verified that discrefyc, For bad folders higher-energy barriers are associated
ancies between Langer's estimate and numerical data aih flatter saddles, thus favoring jumps towards more un-
mainly due to the poor approximatidiimited to the har-  ¢54eq configurations. On the other hand, for the good folder
monic terms of the potential around the stationary points. A o entropy ratio seems not to be related to the height of
better estimate can be derived by taking into account highelsrriers.
order terms in the expansion of the potential. Since the fold- \yie \would like to stress that our analysis amounts to ex-
ing temperatures for the homopolymé80) and the bad 5ring the free-energy landscape of a polymer, since in the
folder (S4) are relatively low, for these sequences the dynams,mpning rate estimates are included not only Kramers’ terms
ics within the native valley can be reproduced reasonably, ;; 5156 entropic contributions. The relevance of the latter in
well already with Langer's approximation. While for the getermining the equilibrium and kinetic properties of pep-
tides has been recently pointed out §6].

W00~ T In order to further explore the role of activation processes
E® e, ] for the complete folding dynamics we plan to extend our
" e . . analysis to the whole energy landscape. A complete graph
o® X%,% o X T describing all the folding and unfolding paths with their as-
10k ° \\ o x 4 sociated probabilities will allow us to determine the equilib-
; ¢ 3;'.%} ° ] rium properties of the system and possibly to distinguish bad
o°ERox and good folders.
o%o %,:
x % 0‘3\0
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APPENDIX: ALGORITHM FOR THE IDENTIFICATION -43
OF THE SADDLES
\

The algorithm described in this appendbee alsd 25])
aims at determining the path of minimal potential energy -4.5
connecting two minima indicated as anda,.

Due to the symmetries of the potentials defined in Sec. Il a
[see Eq.(5)], each spatial configuration of the polymeric 47
chain is defined apart from a translation, a reflection, and a r

rotation around an axis perpendicular to theplane. Ac-
cordingly, after having expresseg in an arbitrary reference
frame, it is convenient to determine the coordinatepby
minimizing its Euclidean distance from with respect to the
above-mentioned symmetry transformations.

PHYSICAL REVIEW B58, 061111 (2003

-4.1 T T T

"

FIG. 12. Potential energy profil¢ connecting the NG to a
2NNM a; via two saddles for the sequence S1; the symdpol
indicates a NNM. The index refers to the distance measured
along the unstable manifold connecting the minima.

The algorithm then consists in evolving a suitably chosengyaiion time stept is adapted to the instantaneous value of

path connectingy anda, according to a gradient dynamics ha force field St=min(0.01,0.0%,,), where F

max

until the maximum of the energy along the path converges ta_ maxx{|f,|f/|} while < and f¥ are thex andy components
a minimum corresponding to a saddle. More precisely, they e folrcelacting on thith bead.

approach is split into three steps.

(i) Choice of the initial configurationsThe initial pathC,
connectinga; anda, is generally chosen by linearly interpo-
lating between their coordinates,

x(1)=x(1)+r(x3(i)—x(i)),
y(i)=yX(i)+ry?(i)—y(i)),

i=1,...N. (A1)

The sequence of initial configurations along the péghis
fixed by varying the parameterbetween 0 and {we typi-
cally chooser=m/100, 0<m=100).

(ii) Evolution of the configurationd€Each configuration is
then let evolve according to the gradient dynamics

19H

?;,6?Xi’

109H

oy (A2)

Yi:

In practice, the damping coefficieptcan be chosen equal to

(iii ) Interpolation phaseAfter letting the system evolve
for a time t=106t, the Euclidean distanc&,(t) between
the mth and the (nh+1)st point is computed. IfA,(t)
>2A,,(0), a newconfiguration is added between the two
points by linearly interpolating between them. A (t)
<A, (0)/2, the fn+1)st configuration is removed. In this
way, we are able to work with a set of uniformly distributed
configurations, without losing resolution in the regions
where the energy gradient is large.

The last two steps are repeated unfil,,, in the
maximum-energy configuration along the path becomes
smaller than a fixed threshold typically chosen equal to
10" 3. The coordinates of the saddle point are finally refined
by implementing a standard Newton scheme.

On the one hand, the path connecting two generic minima
can exhibit more than one relative energy maxim(see,
e.g., Fig. 12 this is an indication that the two minima are
not nearest neighbors. In this case, our approach allows iden-
tifying new minima. On the other hand, it can happen that
neighboring minima are separated by more than one saddle:
upon choosing different initial paths, one can, in principle,
identify all saddles. Our simulations suggest that multiple
saddles are not very common at least in the vicinity of the

1, since it only determines the evolution time scale. The inNC.
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