
Synchronization of extended chaotic
systems
Alessandro Torcini

alessandro.torcini@isc.cnr.it

Istituto dei Sistemi Complessi - CNR
Firenze - Italy

0 200 400 600 800 1000
x

0

500

1000

1500

2000

t

(a)

0 200 400 600 800 1000
x

0

500

1000

1500

2000
t

(b)

IMEDEA - Palma de Mallorca, 20/12/06 – p.1/19



Du rôle de la biophysique dans l’applaudissement synchrone et (ou) chaotique
Article publié le 26 Février 2000 – Par HERVE MORIN

QUI AURAIT l’idée de s’intéresser à la synchronisation des applaudissements, et de
comparer ce phénomène aux oscillations observées dans certaines réactions
chimiques ou à la rythmique des " flashes " émis par les lucioles d’Asie ? Des
scientifiques, bien sûr. " Avec un collègue, Zoltan Neda, de l’université de Cluj en
Roumanie, je travaillais sur des problèmes de physique statistique, se souvient Yves
Bréchet, du laboratoire de thermodynamique et physicochimie métallurgique de
Grenoble. Nous sommes allés au Théâtre hongrois de Cluj."

L’horloge biologique est indépendante des mécanismes de la vision.
Une synchronisation par la lumière (16.04.99)

Francisco Varela, le chercheur par qui la pensée se fait chair:
Une question de synchronisation (18.02.99)

" L’épilepsie est une synchronie pathologique tellement forte et généralisée que le
cerveau perd toute fonctionnalité. En situation normale, les tâches cognitives s’y
traduisent par des synchronies successives, courtes et localisées, portées par des
oscillations gamma de fréquence de 30 à 80 hertz. "
(Parkinson disease & essential tremor).
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Plan of the Talk
Summary of Old Results

Chaotic Synchronization in Low Dimensional Systems λT = 0

Chaotic Synchronization in Spatially Extended Systems VF = 0 (Diffusive Coupling)

The transition is analyzed as a a nonequilibrium phase transition
The transition is continuous and its critical properties correspond to

Multiplicative Noise (MN) VF = λT = 0

Directed Percolation (DP) VF = 0 ; λT < 0
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The transition is analyzed as a a nonequilibrium phase transition
The transition is continuous and its critical properties correspond to

Multiplicative Noise (MN) VF = λT = 0

Directed Percolation (DP) VF = 0 ; λT < 0

New Results

Spatially Extended Chaotic Systems with Power-Law Coupling
The synchronization transitions (STs) are continuous
The critical indexes vary continuously with the interaction range
The family of STs correspond to Anomalous Directed Percolation (ADP)

ADP has been found for Lévy-fligth spreading of epidemic processes
ADP critical exponents have been measured for stochastic lattice models
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Low Dimensional Chaotic Systems
Chaotic Dynamics

u̇k(t) = ϕk(u(t)) k = 1, 2, 3, . . . maximum Lyapunov exponent λ > 0
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Low Dimensional Chaotic Systems
Chaotic Dynamics

u̇k(t) = ϕk(u(t)) k = 1, 2, 3, . . . maximum Lyapunov exponent λ > 0

Systems Coupled via Stochastic forcing

Two replicas u and w of the same dynamical system:

u̇k(t) = ϕk(u(t)) + γ · η(t) u(0) 6= w(0)

ẇk(t) = ϕk(w(t)) + γ · η(t)

η is a δ-correlated random variable < η(t′)η(t) >= δ(t′ − t).

For a sufficiently large noise amplitude γ > γc the replicas can eventually
synchronize.

IMEDEA - Palma de Mallorca, 20/12/06 – p.4/19



Low Dimensional Chaotic Systems
Chaotic Dynamics

u̇k(t) = ϕk(u(t)) k = 1, 2, 3, . . . maximum Lyapunov exponent λ > 0

Mutually Coupled Systems

Two replicas u and w of the same dynamical system:

u̇k(t) = (1 − γ) · ϕk(u(t)) + γ · ϕk(w(t)) u(0) 6= w(0)

ẇk(t) = (1 − γ) · ϕk(w(t)) + γ · ϕk(u(t))

For a sufficiently strong coupling γ > γc the replicas can eventually
synchronize
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Low Dimensional Chaotic Systems
Chaotic Dynamics

u̇k(t) = ϕk(u(t)) k = 1, 2, 3, . . . maximum Lyapunov exponent λ > 0

Def: Synchronization is observed when the distance between replicas
asymptotically vanishes

lim
t→∞

z(t) = lim
t→∞

|u(t) − w(t)| = 0

Condition to observe synchronization in low dimensional systems :

the transverse Lyapunov exponent should be negative
λ⊥ = lim

t→∞
lim

z(0)→0
ln

z(t)

z(0)
< 0

[Maritan & Banavar, PRL 72, 1451 (1994); Pikovsky, PLA 165, 33

(1992), PRL 73, 2931 (1994); Herzel & Freund, PRE 52, 3238 (1995);

Lai & Zhou, EPL 43, 376 (1998)]
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Spatially Extended Systems
Coupled Map Lattices

ut+1
x = F

ˆ

(1 + ∇2
ε)ut

x

˜

∇2
εux = ε{[ux+1 + ux−1]/2 − ux}

where x and t are discrete, F is a chaotic map, typically one dimensional.
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Spatially Extended Systems
Coupled Map Lattices

ut+1
x = F

ˆ

(1 + ∇2
ε)ut

x

˜

∇2
εux = ε{[ux+1 + ux−1]/2 − ux}

where x and t are discrete, F is a chaotic map, typically one dimensional.

Mutually Coupled

ut+1
x = (1 − γ)F

ˆ

(1 + ∇2
ε)ut

x

˜

+ γ · F
ˆ

(1 + ∇2
ε)wt

x

˜

wt+1
x = (1 − γ)F

ˆ

(1 + ∇2
ε)wt

x

˜

+ γ · F
ˆ

(1 + ∇2
ε)ut

x

˜

Stochastic Forcing

ut+1
x = F

ˆ

(1 + ∇2
ε)ut

x

˜

+ γ · ζt
x

wt+1
x = F

ˆ

(1 + ∇2
ε)wt

x

˜

+ γ · ζt
x

where the noise is δ-correlated in space and time < ζt
xζs

y >∝ δx,yδt,s.

The local difference field is defined as zt
x = |ut

x − wt
x|.
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Spatially Extended Systems
Coupled Map Lattices

ut+1
x = F

ˆ

(1 + ∇2
ε)ut

x

˜

∇2
εux = ε{[ux+1 + ux−1]/2 − ux}

where x and t are discrete, F is a chaotic map, typically one dimensional.

Synchronization
For sufficiently strong coupling γ the spatially averaged difference field

ρ(t) =< z(t) >=
1

L

L
X

x=1

zt
x

could eventually vanish in the long time limit.

The synchronization transition is no longer fully described in terms of the transverse
Lyapunov exponent (TLE).

An extreme nonlinearity in the local map F can induce transport of Finite Size Disturbances
even for linearly stable states (i.e. Negative TLE).

A new indicator is required to fully characterize the transition for spatially extended systems.
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Spatially Extended Systems
Coupled Map Lattices

ut+1
x = F

ˆ

(1 + ∇2
ε)ut

x

˜

∇2
εux = ε{[ux+1 + ux−1]/2 − ux}

where x and t are discrete, F is a chaotic map, typically one dimensional.

Propagation Velocity of Finite Size Perturbations
A droplet of unsynchronized sites (N(0)) is inserted in a completely synchronized state:

vF = lim
t→∞

N(t) − N(0)

2t
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Universality Classes
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FIG. 1. The synchronization transition for coupled CMLs con-

The Synchronization Transition is a Non-Equilibrium
Phase Transition leading from an “active phase” (ρ > 0)
to an “absorbing phase” (ρ ≡ 0).

The transition point ac is located in the thermodynamic limit (L → ∞) by the vanishing of the
order parameter ρ(t) ≡< z(t) >→ 0.

A continuous transition is typically characterized by a critical behavior :

ρ(t) ∝ t−δ ρ(t) = L−zδg(t/Lz) at a ≡ ac

< ρ >t∝ |a − ac|
β

Lc ∝ |a − ac|
−ν‖ Tc ∝ |a − ac|

−ν⊥

only 3 exponents are independent (e.g. δ β and z)
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FIG. 1. The synchronization transition for coupled CMLs con-

The Synchronization Transition is a Non-Equilibrium
Phase Transition leading from an “active phase” (ρ > 0)
to an “absorbing phase” (ρ ≡ 0).

Two different types of transitions have been observed:

Multiplicative Noise

vF = λ⊥ = 0

Linear Effects rule the Transition

Directed Percolation

vF = 0 λ⊥ < 0

Strong Nonlinear Effects (|F ′| >> 1)

[Baroni, Livi & AT , PRE 63, 036226 (2001); Ahlers & Pikovsky, PRL, 88, 254101 (2002)]
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FIG. 4. Coupled Bernoulli CMLs: finite-size scaling at the

MN Tent DP Bernoulli
δ 1.10(5) 1.26(3) 0.159464(6) 0.16
β 1.70(5) 1.50(5) 0.276486(6) 0.28
z 1.53(7) 1.5 1.580745(6) 1.581

Ahlers & Pikovsky, PRL, 88, 254101 (2002); V. Ahlers , PhD Thesis (Berlin, 2001)
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Multiplicative Noise
The corresponding field equation for the coarse-grained variable w(x, t) = z̄ is:

ẇ(x, t) = ∇2w(x, t) + aw(x, t) − bwp(x, t) + w(x, t)η(x, t)

where η is a Gaussian noise δ-correlated in space and time and p ≥ 2. Pikovsky & Kurths
(94) have shown that this model describes the dynamics of CMLs within a linear framework.

This problem can be mapped on that of a depinning of a
KPZ interface from a hard substrate through a Hopf-Cole
Transformation h(x, t) = − ln w(x, t). This leads to a KPZ-
like equation

ḣ(x, t) = ∇2h(x, t)−(∇h(x, t))2−a′−be−(p−1)h(x,t)+η(x, t)

The adsorbing state w = 0 is now mapped into h = ∞

[M.A. Muñoz, cond-mat/0303650 (2003) ]
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Directed Percolation
The corresponding field equation is:

ẇ(x, t) = ∇2w(x, t) + aw(x, t) − bw2(x, t) +
p

w(x, t)η(x, t)

where η is a Gaussian noise δ-correlated in space and time.
This equation is usually associated to Infection Spreading Models: the Domany-Kinzel
cellular automaton:

black sites are infected (active phase), white sites are healthy (absorbing phase).

The infection spreads only by contact
No revival of infection within healthy region: the absorbing state is stable

[H. Hinrichsen Adv. Phys. 49, 815-958 (2000)]

Some of the DP exponents have been for the first time measured in an experiment on a ring
of oscillating ferrofluidic spikes at the transition to spatiotemporal intermittency [Rupp,
Richter, & Rehberg, PRE 67, 036209 (2003)]
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DP or not DP ?
Microscopic models exhibiting DP critical behaviour are typically defined in terms of
discrete and finite state variables (e.g. cellular automata).

In such cases an absorbed region is stable, it can only be changed from its boundaries
(contact process).
In the present case the condition zt

x = 0 is never exactly fulfilled at every finite time,
even for finite systems.
A priori, one cannot exclude that due to large fluctuations the system will be driven out
of the absorbing state, sooner or later.
[Peter Grassberger (1997)]

However it can be shown that :

An effective threshold Wc can be identified, below which the synchronization is
ruled by linear (contracting) mechanisms: once ρ(t) < Wc the system can no
more escape from the absorbing (synchronized) state;
It is possible to derive heuristically the DP field equation starting from the
difference field zt

x evolution equation for replica of coupled lattices.

[Ginelli,Livi,Politi, & AT PRE 67, 046217 (2003)]
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Summary of the first part
In spatially extended systems (CMLs) with diffusive coupling two different
synchronization transitions are observed :

if the linear behaviour prevails on nonlinear effects the transition belongs to the
MN universality class;
if nonlinear effects dominate the dynamics DP scaling laws are observed.
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• R. Livi (Firenze) • D. Mukamel (Rehovot)
• A. Pikovsky (Potsdam) • A. Politi (Firenze)
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Long-Range Interactions
Coupled Map Lattices with Power-Law Coupling

ut+1
x = F

ˆ

(1 + ∇σ
ε )ut

x

˜

∇σ
ε ux = −εux +

ε

η(σ)

M
X

m=1

ux−jm(q) + ux+jm(q)

(jm(q))σ

where x ∈ [1, L] and t are discrete, F = 2x (mod 1) is the Bernoulli map and periodic
boundary conditions are assumed.

η(σ)=2
M

X

m=1

1

(jm(q))σ
normalization factor

σ → 0 Globally Coupled Maps σ → ∞ Usual CMLs
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M

X
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1

(jm(q))σ
normalization factor

σ → 0 Globally Coupled Maps σ → ∞ Usual CMLs

Coupling Schemes

Fully Coupled: jm(q) = m , M = (L − 1)/2

Reduced Coupling: jm(q) = qm − 1 , M = logq(L/2) with q = 2, 4 and 8

The coupling scheme does not alter the critical properties of the transition, but the reduced
scheme is much faster (O(L logq L) versus O(L2)),
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Chaotic Synchronization
The synchronization transition of two coupled replicas is studied

ut+1
x = (1 − γ)F

ˆ

(1 + ∇σ
ε )ut

x

˜

+ γ · F
ˆ

(1 + ∇σ
ε )wt

x

˜

wt+1
x = (1 − γ)F

ˆ

(1 + ∇σ
ε )wt

x

˜

+ γ · F
ˆ

(1 + ∇σ
ε )ut

x

˜

by examining the synchronization error zt
x = |ut

x − wt
x| for different coupling exponents σ.

IMEDEA - Palma de Mallorca, 20/12/06 – p.12/19



Chaotic Synchronization
The synchronization transition of two coupled replicas is studied

ut+1
x = (1 − γ)F

ˆ

(1 + ∇σ
ε )ut

x

˜

+ γ · F
ˆ

(1 + ∇σ
ε )wt

x

˜

wt+1
x = (1 − γ)F

ˆ

(1 + ∇σ
ε )wt

x

˜

+ γ · F
ˆ

(1 + ∇σ
ε )ut

x

˜

by examining the synchronization error zt
x = |ut

x − wt
x| for different coupling exponents σ.

IMEDEA - Palma de Mallorca, 20/12/06 – p.12/19



The critical exponents

10-3

10-2

102 103 104 105 106

ρ γ
(t)

t

(a)

10-2

10-1

10-4 10-3 10-2

ρ* γ

γc-γ

(b)

10-3
10-2
10-1
100

10-4 10-3 10-2 10-1 100 101

ρ γ
c(t)

Lδz

t/Lz

(c)

M=4
M=5
M=6
M=7

10-2

10-1

102 103 104

ρ γ
c(t)

t

(d)

q=2
q=4

Fully Coupled

System size 6 × 104 ≤ L ≤ 4 × 106

Averages over 100 − 1000 different realizations

IMEDEA - Palma de Mallorca, 20/12/06 – p.13/19



The critical exponents

10-3

10-2

102 103 104 105 106

ρ γ
(t)

t

(a)

10-2

10-1

10-4 10-3 10-2

ρ* γ

γc-γ

(b)

10-3
10-2
10-1
100

10-4 10-3 10-2 10-1 100 101

ρ γ
c(t)

Lδz

t/Lz

(c)

M=4
M=5
M=6
M=7

10-2

10-1

102 103 104

ρ γ
c(t)

t

(d)

q=2
q=4

Fully Coupled

System size 6 × 104 ≤ L ≤ 4 × 106

Averages over 100 − 1000 different realizations

0.2

0.4

0.6

0.8

1.0

 0  0.5  1  1.5  2  2.5  3

β

σ

q=2
q=4
q=8

0.2

0.4

0.6

0.8

1.0

0 0.5 1 1.5 2 2.5 3

δ

σ

The critical exponents vary continu-
ously, we have a family of universality
classes labelled by the coupling expo-
nent σ.
δDP ∼ 0.16 βDP ∼ 0.27
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Anomalous Directed Percolation
Distribution of human travels
Brockmann et al.Nature (2006)In many realistic spreadig processes short-range

interactions do not appropriately describe the trans-
port mechanism of the infection

infectious disease transported by insects;
disease spread triggered by aviation traffic;
spreading agent subjected to a turbulent
flow.

The motion of the agent can be super-diffusive.

Mollison in 1977 proposed a generalization of the usual DP in which the agent can perform
Lévy flights, where the distribution of the spreading distances r is given by

P (r) ∝ 1/rd+σ σ > 0

d being the spatial dimension of the system.

Mollison, J R Stat Soc B 39 (1977) 283; Grassberger, Fractals in physics, (1986)
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Field Theoretic Prediction
The generalization of the usual field equation to anomalous DP reads as:

ẇ(x, t) = (∇2 + ∇α)w(x, t) + aw(x, t) − bw2(x, t) +
p

w(x, t)η(x, t)

where η is a Gaussian noise δ-correlated in space and the anomalous diffusion operator is
defined as

∇σeikx = −kσeikx

The renormalization group calculations indicate that

for σ < 0.5 the mean-field description should become exact;
for σ > 2.0677(2) the usual DP results should be recovered

Mean-field exponents obtained by neglecting correlations are:

βMF = δMF = 1.0 zMF = σ

Jannsen et al. EPJB 7 (1999) 137; Hinrichsen & Howard EPJB 7 (1999) 635.
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Stochastic Lattice Model

si-1s

i-7s i+9s

i+1

(a) Ordinary directed bond percolation:

t

t+1

t

t+1

is

is

2d  -1L 2d   -1R

(b) Anomalous directed bond percolation: 
si = 1 (infected) - si(t) = 0 (healthy)
Only infected sites can propagate the disease.
The control parameter is
the bond probability 0 ≤ p ≤ 1

At the next time t + 1 all the sites are initially healthy;
two distances (dL, dR) are randomly generated from the distribution P (r) ∝ 1/r1+σ ;
the sites located at those distances from a site i (infected at time t) become infected if
by choosing two random numbers (yL, yR) between 0 and 1

si+1−2dL
(t = 1) = 1 if yL < p

si−1+2dR
(t = 1) = 1 if yR < p

The length of the examined system was L = 4 × 1019 , no finite size effects.

Hinrichsen & Howard EPJB 7 (1999) 635.
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Critical Indeces
Extremely accurate estimation of the critical exponents in the whole range 0 < σ < 2.4.
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Our results for the chaotic synchronization transitions are in very good agreement
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Conclusions & Prospectives
The synchronization transition (ST) of two replicas of chaotic
discontinuous coupled maps with long range interactions is
characterized by a continuum of universality classes labeled by the
exponent σ.
The critical properties for these STs correspond to Anomalous
Directed Percolation, previously examined in the context of epidemic
spreading.
Preliminary results indicate that also for continuous maps the
exponents depend on σ, but do not correspond to anomalous DP.
If an Anomalous Multiplicative Noise class exists it has been not yet
studied. Therefore the subject of ST for continuous maps is
completely new and worth to address in the next future.
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