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The collective dynamics of excitatory pulse coupled neurons with spike-timing dependent plasticity is

studied. The introduction of spike-timing dependent plasticity induces persistent irregular oscillations

between strongly and weakly synchronized states, reminiscent of brain activity during slow-wave sleep.

We explain the oscillations by a mechanism, the Sisyphus Effect, caused by a continuous feedback

between the synaptic adjustments and the coherence in the neural firing. Due to this effect, the synaptic

weights have oscillating equilibrium values, and this prevents the system from relaxing into a stationary

macroscopic state.
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Sisyphus was the mythological king of Corinth com-
pelled to roll a heavy boulder up a hill, only to watch it roll
back down as it approached the top. Sisyphus was con-
demned by Zeus for his iniquity and pride to repeat eter-
nally his efforts, without any hope of success. However, in
the brain, such endless motion can have a positive func-
tional relevance. Fluctuating spontaneous activity has been
observed in several areas of the brain [1]. In particular,
irregular oscillations between more and less synchronized
states have been revealed in the hippocampus during slow-
wave sleep and this activity has been related to memory
consolidation in the neocortex [2].

Recent studies have suggested synaptic plasticity as a
fundamental ingredient to ensure multistability in neuronal
circuits [3–6]. In particular, spike-timing dependent plas-
ticity (STDP) is considered one of the central mechanisms
underlying information elaboration and learning in the
brain [7]. A series of experiments performed in vivo and
in vitro on neural tissues revealed that the strength of a
synapse, conveying spikes from a presynaptic to a post-
synaptic neuron, depends crucially on the precise spike
timing of the two connected neurons [8–10]. The STDP
rules prescribe that whenever the presynaptic (postsynap-
tic) neuron fires before the postsynaptic (presynaptic) one,
the synapse is potentiated (depressed). The synapse is
modified only if the spikes occur within certain time
intervals (learning windows). Asymmetric learning win-
dows have repeatedly been found experimentally (e.g., see
Refs. [11–13]). This asymmetry is a prerequisite, at least in
phase oscillator networks, to observe the coexistence of
states characterized by different levels of synchrony [3,4].
Furthermore, in the presence of propagation delays STDP
can provide a negative feedback mechanism contrasting
highly synchronized network activity and promoting, in
randomly driven networks, the emergence of states at the
border between randomness and synchrony [5].

In this Letter, a novel deterministic mechanism, the
Sisyphus effect (SE), able to generate spontaneous fluctua-
tions in a neural network between asynchronous and
synchronous regimes is presented. In particular, we study
excitatory pulse coupled neural networks with STDP, where
the interaction among neurons is mediated by� pulses [14].
For nonplastic interactions, the excitatory coupling leads
to synchronization only for sufficiently fast synapses [15].
Furthermore, the desynchronizing effect is amplified at
large coupling [16]. In absence of plasticity, the macro-
scopic activity of the network is stationary: asynchronous
for large synaptic weights and partially synchronized for
sufficiently weak coupling [16,17].
The introduction of STDP completely modifies the

dynamical landscape leading to a regime where a strongly
and a weakly synchronized state coexist. The activity of
the network is, thus, characterized by irregular oscillations
between these two states. These transitions are driven by
the evolution of the synaptic weights, which in turn is dict-
ated by the level of synchrony in the network. For small
synaptic weights, the system is fully synchronized, while
above a critical coupling it desynchronizes. Furthermore,
whenever the network is synchronized (desynchronized)
the synaptic weights tend towards large (small) equilib-
rium values corresponding to asynchronous (synchronous)
dynamics. In summary, the neuronal activity can be repre-
sented in terms of an order parameter diffusing over an
effective free energy landscape displaying two coexisting
equilibrium states. Small (large) synaptic weights tilt the
landscape towards the strongly (weakly) synchronized
state; in turn, the induced activity increases (reduces) the
weights until a tilt in the opposite direction occurs. Thus,
the landscape oscillates endlessly.
The model.—We study a fully coupled network of N

leaky integrate-and-fire neurons, for which the membrane
potential ViðtÞ 2 ½0:1� of neuron i evolves as:
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_ViðtÞ ¼ a� ViðtÞ þ IiðtÞ; i ¼ 1; . . . ; N; (1)

whenever the neuron reaches the threshold Vi ¼ 1, an �
pulse p�ðtÞ ¼ �2t expð��tÞ is instantaneously transmitted
to all other neurons and Vi is reset to zero. Furthermore,
a > 1 is the suprathreshold dc current, Ii ¼ gEi the syn-
aptic current, and g the excitatory homogeneous coupling.
The field Ei represents the linear superposition of the
pulses received by neuron i and its evolution is ruled by
a second order differential equation [Eq. (S2) in Ref. [18]].
For a fully coupled nonplastic network the synaptic
weights associated to the connection from the presynaptic
jth neuron to the postsynaptic ith one are wij ¼ 1 (apart

from the autaptic terms: wii ¼ 0).
In the presence of plasticity, we assume that the weights

evolve in time according to a nearest-neighbor STDP rule
with soft bounds [4,7,19–21]. Therefore, in the case of a
post- (presynaptic) spike, emitted by neuron i (j) at time t,
the weight wij is potentiated (depressed) as wijðtþÞ ¼
wijðt�Þ þ �ijðtÞ, with

�ijðtÞ ¼
(
p½wM � wijðt�Þ�e�ð�ij=�þÞ if �ij > 0

�dwijðt�Þeþð�ij=��Þ if �ij < 0;
(2)

where �ij ¼ t� tðjÞ > 0 (�ij ¼ tðiÞ � t < 0) is the firing

time difference and tðkÞ the last firing time of neuron k. The
potentiation and depression factors (p and d, respectively)
coincide, unless otherwise specified [22]. The bounds keep
the synapses from achieving unrealistically large values or
becoming inhibitory, namely 0 � wji � wM. The learning

windows over which post- (pre-) synaptic spikes will
cause synaptic potentiation (depression) are indicated as
�þ (��). Following experimental evidences [11], we
assume �� > �þ. The degree of synchronization of the

neurons is measured by the order parameter [23,24] RðtÞ ¼
jð1=NÞPke

i�kðtÞj, where �kðtÞ ¼ 2�ðt� tðkÞm Þ=ðtðkÞmþ1 � tðkÞm Þ
is the phase of the kth neuron at time t between its mth
and ðmþ 1Þth spike emission. A perfectly synchronized
(asynchronous) system has R ¼ 1 (R ¼ 0), while inter-
mediate values indicate partial synchronization.

Phase diagram.—We analyze how the phase diagram of
the network is modified by the plasticity. In particular, we
focus on the variation of the neuronal coherence by varying
the dc current. Similar results can be obtained by varying
the coupling g and the pulse width � (as shown in [18]). To
compare with previous results obtained without plasticity,
we fix g ¼ 0:4 and � ¼ 9 as in [17,25]. In absence of
plasticity, the homogeneous system exhibits two phases: an
asynchronous regime with R � 0, and a partially synchro-
nized phase with finite R [17]. The emergence of one or
the other regime depends crucially on the ratio of two time
scales: the pulse rise time 1=� and the interspike-interval
(ISI) [15,25]. For slow synapses (relative to the ISI) the
system dynamics is asynchronous, while for sufficiently
fast synapses coherent oscillations emerge. The system

becomes fully synchronized only for instantaneous synap-
tic rise times (i.e., � ! 1). For fixed network size N and
pulse shape, the ISI can be reduced by increasing either the
external dc current or the synaptic coupling. Therefore,
partial synchronization is observable for sufficiently small
a or g values (whenever � * 3:4), while incrementing
these parameters will desynchronize the system [16] [as
shown in Fig. 1(a) in [18]].
The average level of synchronization �R is reported in

Fig. 1(a) as a function of a for the nonplastic and plastic
cases. In absence of plasticity, the system is partially
synchronized for low dc currents and asynchronous for
a � ac ’ 1:35. The introduction of plasticity does not alter
the scenario at small a values, where the system is in a
high synchronization (HS) regime. The main difference is
observable in the dynamics of RðtÞ, which displays irregu-
lar oscillations: the associated Fourier spectrum resembles
a Lorentzian with a small subsidiary peak around period
’ 34–36. However, for sufficiently large currents, namely
a > 1:5, the asynchronous regime is substituted by a state
of low synchronization (LS) characterized by a rapidly
fluctuating order parameter (over a time scale of the order
of 70–150) with an associated small level of synchroniza-
tion �R ’ 0:32� 0:12. At intermediate a values, in the
range a 2 ½1:23; 1:46�, R exhibits wide irregular temporal
oscillations between values ’1 and zero with characteristic
time scales ’1100–1400. These latter oscillations repre-
sent low frequency fluctuations (LFFs), while rapid
fluctuations are still present over time scales ’50–60
[see Fig. 1(c)].
In this Letter, we will mainly focus on the intermediate

regime, fixing a ¼ 1:30, where the LFF of RðtÞ resembles
the evolution of a particle in a double well potential subject
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FIG. 1 (color online). (a) Average order parameter �R as a
function of a for the nonplastic network (black solid line) and
in the presence of STDP for N ¼ 200 (red filled squares) and
N ¼ 500 (blue dashed line). (b) Free energy profile FðRÞ versus
R for N ¼ 200, obtained by evaluating R at regular time inter-
vals�t ¼ 1 for a time span�5� 106. (c) Time evolution of RðtÞ
(black solid line) and ofWðtÞ (red dashed line) for N ¼ 500. The
dotted (blue) line is theW predicted via Eq. (3). The data refer to
a ¼ 1:3, g ¼ 0:4, � ¼ 9, d ¼ p ¼ 0:01, �� ¼ 3�þ ¼ 0:3, and
wM ¼ 2, and are measured after a transient �105.
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to thermal fluctuations. To clarify this analogy, we have
estimated the probability distribution function (PDF),
PðRÞ, of the order parameter, by examining its trajectory
for a sufficiently long time span, and derived the associated
free energy profile as FðRÞ ¼ � logPðRÞ. As shown in
Fig. 1(b), FðRÞ exhibits two minima corresponding to a
HS phase at RH ’ 0:905 and a LS state at RL ’ 0:32. The 2
coexisting minima are separated by a saddle, located at
RS ’ 0:61. As clarified in the following the jumps between
minima are driven by the macroscopic evolution of net-
work plasticity. The rapid fluctuations, present in all
regimes, are instead due to the microscopic evolution of
the synaptic weights, which can be interpreted as a noise
source for the dynamics of RðtÞ. The analysis of these
noise-induced oscillations goes beyond the scope of this
Letter and it is left for future studies.

Constrained phase diagram.—As shown in Fig. 1(c), the
LFFs of RðtÞ are associated with oscillations in the average
synaptic weight WðtÞ � P

i;jwjiðtÞ=NðN � 1Þ. In parti-

cular, when the system is in a HS (LS) state W increases
(decreases).

To better investigate the origin of these correlations and
the interaction between the STDP induced synaptic dy-
namics and the level of synchronization in the system, we
perform the following numerical experiments. We simulate
the system by constraining the synaptic weights to have a
constant average value W0, by rescaling, at regular time
intervals, the weights wij. Initially, W0 ¼ 0 and we follow

the evolution of the system for a time span TS. We then
perform a new simulation for the same time lapse with a
larger W0 value, starting from the last configuration of the
previous run. The procedure is repeated by increasing W0

at regular steps�W0 untilW0 ¼ wM is reached. Then, with
the same protocol, W0 is decreased (in steps of �W0) until
finally W0 returns to zero [26]. The results of these simu-
lations are shown in Fig. 2 for N ¼ 200. At low W0 the
system is fully synchronized, while with increasingW0, the
system desynchronizes via a discontinuous transition. By
further increasing W0 the level of synchronization contin-
ues to decrease and another smooth transition seems to
occur. For the explanation of the SE, it is sufficient to limit
the analysis to the first transition.

As shown in Fig. 2, the constrained system exhibits a
hysteretic transition from HS to LS (from LS to HS) for

Wð1Þ
0 ¼ 0:76ð5Þ [Wð2Þ

0 ¼ 0:65ð5Þ] by increasing (decreas-

ing) the control parameter W0 [27]. This implies that in

the interval [Wð2Þ
0 ,Wð1Þ

0 ] the two regimes coexist and that HS

or LS is observable depending on the initial state of the
network.

Mean field synaptic evolution.—In order to gain some
insight into the evolution of the system during uncon-
strained simulations (USs), let us consider a mean field
equation for the synaptic weight evolution. The average
synaptic weight modification �, for each presynaptic spike,
can be written as [19]

�ðtÞ¼pðwM�WÞ
Z 1

0
d�Pð�Þe��=�þ

�dW
Z 0

�1
d�Pð��Þe�=�� ; (3)

where Pð�Þ is the PDF of the time differences � between
postsynaptic and presynaptic firing measured. To test the
predictive value of Eq. (3), we have measured from an US
Pð�Þ at regular intervals�t. By employing this information
we can predict quite well the evolution of the synaptic
weight as Wðtþ �tÞ ¼ WðtÞ þ �ðtÞ [see Fig. 1(c)].
By assuming that the postsynaptic neuron is firing with

period T0, we are able to derive the time difference distri-
bution Pð�Þ for the two limiting cases: fully synchronized
and asynchronous dynamics. In the fully synchronized
(asynchronous) situations, we expect a distribution of
the form PSð�Þ ¼ Dð�Þ þDð�� T0Þ (PAð�Þ ¼ 1=T0)
defined in the interval [0:T0]. Here D denotes a Dirac
delta function. These guesses are essentially confirmed
by direct USs as shown in Fig. 3 in [18]. Therefore, in
these two cases, an analytical estimation of � can be
obtained. Furthermore, in both cases, � vanishes for a finite
value of the average synaptic weight, namely WS (WA) for
the synchronized (asynchronous) situation. Furthermore,
forW <WS (W >WS) the synapses are on average poten-
tiated (depressed). The same occurs in the asynchronous
case for W <WA (W >WA). This implies that WS (WA) is
a stable attractive point for the dynamics of W in the
synchronized (asynchronous) regime [for a definition of
WS and WA see Eq. (S8) and (S10) in [18]].
Sisyphus mechanism.—We are now able to explain the

behavior reported in Fig. 1(c) for RðtÞ and WðtÞ. Let us
suppose that the system is in the HS phase with an
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FIG. 2 (color online). �R versus W0 as measured for increasing
(black filled circles) and decreasing (empty red squares)W0. The
(blue) vertical dashed lines indicate the fixed point values WS

andWA [18]. Results averaged over 8 different initial conditions,
TS ¼ 1000, �W0 ¼ 0:02 (for clarity only one point every two is
shown). (Inset) Conditional free energy profiles FIðRÞ (black
solid line) and FDðRÞ (red dashed line) obtained during USs.
Both curves are vertically shifted to achieve zero as minimal
value. Parameters as in Fig. 1 and N ¼ 200.
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associated low coupling W <Wð1Þ
0 . However, in this situ-

ation, the attractive fixed point WS is above the transition

pointWð1Þ
0 (see Fig. 2). Therefore,W keeps increasing, until

for W >Wð1Þ
0 the system starts to desynchronize and to

approach the LS state. In this phase, the Pð�Þ becomes
almost flat [see Fig. 3(b) in [18]] and the attractive point

for the synaptic evolution will be WA, located below Wð2Þ
0 .

Themotion towardsWA leads to a decrease ofW.Whenever

the average synaptic weight crossesWð2Þ
0 , the neurons begin

to resynchronize. Finally, the system will return to the HS
state from where it started. The cycle will repeat indefi-
nitely and is the essence of the SE.

The above arguments are approximate because the sys-
tem is never exactly fully synchronized or desynchronized,
instead it passes through a continuum of states, each
associated to a different fixed point in W space. The
relevant aspect is that the fixed points associated to the

HS (LS) phase are larger than the transition point Wð1Þ
0

(smaller than Wð2Þ
0 ). As we have verified this is indeed the

case, therefore, the mechanism is still valid. To perform a
direct test of the validity of our analysis, we have measured
the PDF of R conditioned to the fact thatW was increasing
(decreasing) during an US. From these PDFs we derived
the corresponding free energy profile FIðRÞ ðFDðRÞÞ.
As shown in the inset of Fig. 2, FI has a unique minimum
at RH, while FD has an absolute minimum at RL and a
shoulder around R ’ 0:8. These results confirm that the
equilibrium attractive values for W are located opposite
to the transition points, because when the system is in the
HS (LS) regime the synaptic weights increase (decrease)
continuously trying to reach the corresponding fixed
points.

The SE should be active whenever the transition values

Wð1Þ
0 and Wð2Þ

0 are both contained within the interval

½WA;WS�. To verify this statement we have measured

Wð1Þ
0 , Wð2Þ

0 and the fixed points for various dc currents

within the interval 0< a � 2 (data shown in Fig. 3).
We observe that the transition is hysteretic in the interval

a 2 �0; 1:40�, while for larger values, Wð1Þ
0 and Wð2Þ

0 es-

sentially coincide. Furthermore, Wð1Þ
0 becomes larger than

WS at a ’ 1:18, while WA � Wð1Þ
0 , Wð2Þ

0 for a � 1:50.
Thus, we expect that FðRÞ exhibits two coexisting minima,
due to the SE, when 1:18 � a � 1:50. To verify this con-
jecture, we estimate the free energy barrier heights �F
separating the HS and the LS state from the intermediate
saddle for various a values. As shown in the inset of Fig. 3,
the barrier associated to the HS state diverges exponen-
tially when approaching a ’ 1:18. Therefore, the HS
regime is only possible at smaller a values. On the other
hand, the two minima merge and the associated barriers
vanish for a � 1:48 indicating that the LS state is unique
remaining at large a. Furthermore, the distributions of the
W values measured during USs are reported in Fig. 3 as a
shaded area: these values include the transition interval

[Wð1Þ
0 ; Wð2Þ

0 ] for 1:20 � a � 1:48.
In conclusion, the SE should be observable in pulse

coupled neural networks whenever the excitation has a
desynchronizing effect. This is, in general, verified for
any kind of neuronal response (type I or type II) for suffi-
ciently slow synaptic interactions [15,16]. Furthermore,
we have verified that the SE persists by setting p > d, as
suggested by experimental evidences [13].
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[7] J. Sjöström and W. Gerstner, Scholarpedia 5, 1362 (2010).
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