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Abstract. In this paper we show that a dynamical description of the protein folding process provides
an effective representation of equilibrium properties and it allows for a direct investigation of the
mechanisms ruling the approach towards the native configuration. The results reported in this paper
have been obtained for a two-dimensional toy-model of aminoacid sequences, whose native con-
figurations were previously determined by Monte Carlo techniques. The somewhat controversial
scenario emerging from the comparison among different thermodynamical indicators is definitely
better resolved with the help of a truly dynamical description. In particular, we are able to identify
the metastable states visited during the folding process by monitoring the temporal evolution of
the ‘long-range’ potential energy. Moreover, the resulting dynamical scenario is consistent with the
picture arising from a reconstruction of the energy landscape in the vicinity of the global minimum.
This suggests that the introduction of efficient ‘static’ indicators too should properly account for the
complex ‘orography’ of the landscape.
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To Linus Torvalds

What can be thought, can be simulated.

1. Introduction

Proteins are heteropolymer chains made of aminoacids. The aminoacid sequence
(the so-called primary structure) determines the native configuration (tertiary struc-
ture) which, in turn, is responsible for the biological activity of the protein. The
identification of the native structure corresponding to a given aminoacid sequence
and, viceversa, of the sequence yielding a given configuration are called direct
and inverse problem, respectively. In spite of the increasing efforts made by the
researchers working in this area, both problems remain generally unsolved. A few
different strategies have been adopted so far by the scientific community to tackle
the protein-folding problem. The first method that has been developed could be
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called ‘black-box’ approach, since one tries to infer the tertiary structure with no
other knowledge than the configurations corresponding to some specific aminoacid
sequences (e.g., the neural-network approach). Although this method has been
implemented with some success, the lack of information about the physics of the
underlying folding process does not allow going beyond statistical predictions. In
order to overcome such difficulties, simplified Hamiltonians have been introduced
with the goal of identifying the native structure through the implementation of
equilibrium-statistical-mechanics tools (e.g. Monte Carlo techniques). The main
difficulty of this approach arised from the huge number of relative minima, which
makes the search for the absolute minimum rather questionable in realistic cases.

However, it is known that, in spite of the very many accessible configurations,
the protein folding turns out to be rather fast, actually, much faster than a pure
random search (once the appropriate time scales are taken into account) (Creighton,
1993). It is, therefore, rather tempting to tackle the problem from a pure dynamical
point of view, following, e.g., the evolution of ‘coiled’ configurations towards
globular-folded structures. An ‘ab initio’ approach, where all molecular forces
acting among the protein elements and between protein and solvent are taken into
account, should, in principle, reveal all details of the folding dynamics. Unfor-
tunately, even if the degrees of freedom of the solvent are traced out from the
interaction Hamiltonian, the characteristic times associated with the microscopic
dynamics are on the order of O(10−11) seconds, while the folding process is ex-
pected to occur typically on time scales in between O(10−2) and O(1) seconds.
Simulating systems with thousands of degrees of freedom over time scales that
cover ten orders of magnitude is definitely out of reach for the actual computing
facilities and it will remain as such at least in the near future.

On the other hand, it appears reasonable to conjecture that the fine details re-
garding the interaction structure and the degrees of freedom corresponding to the
inner dynamics of the aminoacids do not matter for the folding process. Therefore,
one can employ ‘coarse grained’ potentials, epitomizing only a few relevant inter-
actions. The price payed for such a drastic reduction of the gigantic complexity
of the molecular structure of a protein should be hopefully compensated by the
possibility of obtaining a reliable description of the folding process (provided the
main ingredients ruling such a process have been correctly identified).

In fact, it seems that evolution has selected proteins out of all possible aminoacid
sequences in such a way that their native states are stable and kinetically accessible,
so that only those sequences satisfying both requirements are biologically active.
In fact, a great deal of papers has been devoted to the attempt of identifying ‘bad’
and ‘good’ folder sequences, relying upon their structural or equilibrium proper-
ties (Camacho and Thirumalai, 1993; Klimov and Thirumalai, 1996; Shakhnovic,
1994; Sali, Shakhnovic and Karplus, 1994; Irbäck and Potthast, 1995; Irbäck et al.,
1997).

With reference to a 2D off-lattice model, in this paper we show that strictly
dynamical simulations can provide a full acount of heteropolymer properties. In
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particular, equilibrium simulations allow for an effective identification of the low-
est minima of the energy landscape. Moreover, the comparison between folding
and unfolding simulations shed some light on the glassy transition, while the peak
of the specific heat is clearly resolved to locate the collapse transition. Throughout
the paper we compare the behaviour and the properties of five sequences, suitably
selected to investigate the differences between possible ‘good’ and ‘bad’ folders.

More specifically, in section II we introduce the mesoscopic 2D off-lattice model.
Equilibrium thermodynamic properties of the five selected sequences are discussed
in section III (looking both at standard observables such as the total energy and the
average distance between configurations). The conformation of the native valley
and the associated energy funnel are investigated in section IV, while section V
is devoted to the description of the dynamical evolution. Concluding remarks are
reported in Section VI.

2. The Model

We will consider a slight generalization of the 2-dimensional off-lattice model re-
cently introduced by Stillinger et al. (1993) and similar to that one previously stud-
ied by Iori et al. (1991). Such a model is characterized by L point-like monomers
(mimicking the residues of a heteropolymer) arranged along a one dimensional
chain. The nature of the residues is assumed for simplicity to be of two types
only: hydrophobic (H) or polar (P). Thus, each heteropolymer is unambiguously
identified by a sequence of binary variables {ξi} (with i = 1, . . . , L) along the
backbone, where ξi = 1 if the ith residue is of type H and ξi = −1, otherwise. The
intramolecular potential is composed of three terms for each monomer: a nearest-
neighbour harmonic interaction (V1), a three-body interaction (V2) to simulate the
energy cost of local bending, and a Lennard-Jones – like (LJ) interaction (V3) acting
between pairs (i, j) of non-neighbouring residues. This last term depends on the
nature of the residues, i.e. on both ξi and ξj , in such a way to mimic the interaction
with the solvent.

The Hamiltonian of the system writes as

H =

L∑
i=1

p2
x,i + p2

y,i

2
+

L−1∑
i=1

V1(ri,i+1)+
L−1∑
i=2

V2(θi)+
L−2∑
i=1

L∑
j=i+2

V3(rij , ξi , ξj ) (1)

where the mass of each monomer is assumed to be unitary, (px,i, py,i) = (ẋi , ẏi ),
and ri,j = √

(xi − xj )2 + (yi − yj )2. The first potential term appearing in equa-
tion (1) is

V1(ri,i+1) = α(ri,i+1 − r0)
2 (2)
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with α = 20 and r0 = 1; the second term, favouring the chain alignment, reads

V2(θi) = 1 − cos θi
16

(3)

where

cos θi = (xi − xi−1)(xi+1 − xi)+ (yi − yi−1)(yi+1 − yi)

ri,i−1ri+1,i
(4)

and −π < θi < π . The last, nonlocal, interaction is

V3(ri,j ) = 1

r12
i,j

− ci,j

r6
i,j

(5)

where |i − j | > 1 and

ci,j = 1

8
(1 + ξi + ξj + 5ξiξj ) .

Accordingly, the interaction is attractive if both residues are either hydrophobic or
polar (since ci,j = 1 and 1/2, respectively), while it is repulsive if the residues
belong to different species (cij = −1/2). The only difference with the model
introduced by Stillinger et al. (1993) comes from the nearest-neighbour interaction:
the originally rigid bond is here replaced by the harmonic term V1. We have pre-
ferred this latter choice, because it represents a more realistic nearest neighbours
interaction. Anyhow, the large value of the coupling constant α herein adopted
makes the difference rather irrelevant.

Quite accurate Monte-Carlo (MC) simulations, performed by employing in-
novative schemes, have revealed that, analogously to real proteins, only a few
sequences fold into a native structure (good folders), while the majority of the
possible sequences do not possess a unique folded state (Irbäck and Potthast, 1995;
Irbäck et al., 1997)

The dynamics of the toy model (1) has been investigated by integrating the cor-
responding Hamilton-Jacobi equations in the presence of a heat bath. The thermal
reservoir has been simulated by separately implementing a Nosé-Hoover thermo-
stat for each residue of the chain, while the integration has been performed by
employing a second order Runge-Kutta scheme. The evolution equations read

ẋi = px,i ; ẏi = py,i (6)

ṗx,i = −∂H
∂xi

− ζipx,i ; ṗy,i = −∂H
∂yi

− ζipy,i (7)

ζ̇i = 1

τ 2

(
p2
x,i + p2

y,i

2Tb
− 1

)
(8)

where ζi represents the ‘bath’ variable that acts to keep the temperature of the ith
residue at the constant value Tb, and τ is the ‘reaction’ time of the bath (typically
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set equal to 1 in our simulations). Numerical integrations have been performed
with a time-step δt = 0.025 , after having verified that this value is small enough
to guarantee a good accuracy.

Two different kinds of dynamical simulations have been performed, namely
unfolding (US) and folding (FS) simulations. In the first case, the initial state of
the ‘protein’ is taken equal to the native configuration (NC), that we assume to
coincide with the minimal energy configuration. Thermodynamic quantities have
been thereby determined by averaging fixed-temperature simulations over a time
interval t ∼ 5 · 105. FS’s have instead been performed starting from an initial
configuration generated by setting the residues at a fixed distance ri,j = r0 with
randomly distributed angles θi within the interval [−π/4;π/4]. The system is then
let relax for a time tr that has been fixed depending on the simulation temperature
(from tr ∼ 5 · 105 to tr ∼ 107 in the temperature range considered later on).
After this transient, the various observables have been averaged over a time interval
ranging from 5 · 105 to 1.9 · 106. Additionally, we have averaged over 10 different
initial conditions.

In order to investigate the folding properties of this toy model, we have studied
a homopolymer of length 20 and 4 heteropolymers each composed of 14 H-type
and 6 P-type residues. To be more specific, we have analyzed the dynamical and
thermodynamical properties of the following five sequences :

– [S0] a homopolymer composed of hydrophobic residues (i.e., ξi = −1, i =
1, . . . , L);

– [S1]=[HHHP HHHP HHHP PHHP PHHH] a sequence previously analyzed
in Irbäck et al. (1997), where it was identified by the code number 81 and
recognized as a good folder for the Stillinger model (Stillinger et al., 1993);

– [S2]=[HHHH PHHP HPHP HHHH PHPH] the sequence with the maximal Z-
score (Bowie et al., 1991; Mirny and Shakhnovich, 1996) within an ensemble
of 6,900 sequences each composed of 14 H- and 6 P-type residues �;

� The definition of the Z-score is

Z = (VNC − 〈V 〉)/W

where VNC is the potential energy of the NC, 〈V 〉 is the average potential energy of a suitable set of
alternative configurations and W =

√
〈V 2〉 − 〈V 〉2. In order to select such configurations, we have

first identified 467 distinct inherent minima (see Section 4 for the definition) of the homopolymer.
Each minimum has been then considered as the initial condition for a gradient method to identify the
closest local minimum for each sequence. For the sequence S2,Z = −5.70, while for S1,Z = −2.97
(notice that in both cases the NC does not belong to the set of alternative configurations over which
the average has been performed).

Moreover, for each of the five sequences studied in this paper, the Z-score has been evaluated also
identifying the ‘alternative’ configurations with the inherent minima as determined from simulations
performed at a temperature T = 0.08. In this case, the values are Z = −4.50 [S1], Z = −3.16 [S3],
Z = −3.08 [S4], Z = −2.98 [S2] and Z = −2.20 [S0]. Accordingly, the best folder seems to be
S1, while the worst one is S0.
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– [S3]=[PHPH HHHH HHPH HHHHP HHPP] a sequence identified by the
code number 50 in Irbäck et al. (1997), where it was recognized as a bad
folder;

– [S4]=[PPPH HPHH HHHH HHHP HHPH] a randomly generated sequence
of 14 H- and 6 P-type residues.

3. Equilibrium Properties

3.1. STANDARD THERMODYNAMIC OBSERVABLES

Before investigating the protein-like properties of the heteropolymer dynamics, we
have investigated standard equilibrium-thermodynamics observables. Let us start
defining the temperature as

T = 1

L

〈
L∑
i=1

p2
x,i + p2

y,i

2

〉
, (9)

where the Boltzmann constant has been set equal to one, while 〈·〉 denotes a time
average along the trajectory in the phase space (notice that the thermal baths defined
in the previous section induce a canonical-ensemble measure in the phase space).

In all cases, at sufficiently large temperatures, the averages obtained from US’s
and FS’s do coincide: this indicates that the time span of the simulations is long
enough to guarantee a good equilibration of the measure. At lower temperatures,
the heteropolymer structure can be trapped in local minima of the potential, thus
yielding different results for the finite-time US’s and FS’s . This is illustrated in Fig-
ure 1, where we have reported U(T ) for the sequence S1. Although the difference
between US’s and FS’s depends on the time span used in the averages, the expected
exponential growth of the time needed to visit ergodically the whole phase-space
makes it sensible to introduce a rough definition of ‘glassy’ temperature, TG, as the
temperature below which the relative difference between the values of the internal
energy estimated with the two procedures is larger than some threshold f . The
choice of a specific threshold value as well as that of the averaging time is quite
arbitrary and reflects the unavoidable difficulty due to the dynamical character of
the transition. As we have numerically verified that for times longer than 106 units
the relaxation is practically unobservable (at low temperatures), we have heuristic-
ally chosen an averaging time equal to 106 − 107 units. Furthermore, as for all
sequences considered in this paper, the relative difference between the internal
energies estimated from FS and US is at most ≈ 30% (at zero temperature), we
have decided that f = 10% is a reasonable choice.

The slope of U(T ), i.e. the specific heat CV , exhibits a clear peak at a temper-
ature T ∗

θ ≈ 0.1 . Although one cannot speak of phase-transitions in finite systems,
this behaviour is definitely reminiscent of the θ-transition firstly studied in homo-
polymers (De Gennes, 1979), where a low-temperature phase, characterized by
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Figure 1. The total energy U(T ) in equilibrium simulations for the sequence S1: the solid line
corresponds to US’s, while the symbols refer to FS’s. The dashed lines correspond to (from
left to right), TG, TF , and Tθ (notice that for this sequence, Tθ ≈ T ∗

θ ).

compact configurations, and a high-temperature phase, characterized by random-
coil states, have been identified. In the context of protein-like chains, this translates
into the so-called collapse transition (Camacho and Thirumalai, 1993; Klimov
and Thirumalai, 1996), that is identified as the temperature corresponding to the
maximum of CV . Moreover, this U(T ) dependence is also peculiar of systems with
attractive interactions, where the collapse transition occurs when such interactions
become dominant over the other energy contributions (see, e.g., self-gravitating
systems, atomic and molecular clusters) (Antoni and Ruffo, 1995; Torcini and
Antoni, 1999; Haberland, 1995).

In practice, the specific heat is better estimated by looking at the fluctuations of
the internal energy,

CV = 〈U 2〉 − 〈U 〉2

T 2
. (10)

The numerical results obtained for the sequences S0-S4 are reported in Figure 2.
There we see that all curves start from CV � 40 to exhibit a more or less broad
peak. In fact, at sufficiently low-temperatures, any sequence is practically indistin-
guishable from a (disordered) 2d solid, in which case the specific heat is equal to
2L. At high temperatures, CV seems to converge to some lower value. In a generic
chain with nearest-neighbour interactions in a plane we expect a T /2 contribution
from each one of the kinetic degrees of freedom and only one T /2 contribution
from the components of the potential energy, dominated by the longitudinal inter-
action. Altogether this implies that the specific heat should be CV � 3L/2 = 30.
In practice, we find slightly larger values, as shown in Figure 2. The difference
has to be attributed to the Lennard-Jones potentials that are not yet completely
negligible at temperatures close to 0.4 (the energy contribution of the angular term
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Figure 2. The specific heat CV as a function of T . All data refers to US’s.

turns out to be fairly independent of T ). In fact, the interparticle distance grows
with the temperature and, accordingly, the LJ energy increases as well, converging
to 0 from below.

Moreover, we notice that S1 and S2 exhibit both the largest collapse temper-
atures and the highest CV -peaks. For the other three sequences, T ∗

θ is smaller by
approximately a factor of two, while the peak value of CV is 15 − 20% lower than
those obtained for S1 and S2. This suggests that maximizing the zeta score is a good
strategy at least for optimizing the collapse transition. This can be investigated
more directly by looking at the gyration radius

Rgy =
√√√√〈 1

N

N∑
i=1

|ri − rcm|2
〉

,

where rcm denotes the center of mass of the sequence and the average is performed
over configurations generated by the dynamical evolution of the system. The in-
dication for the collapse transition is usually associated with a rapid decrease of
Rgy(T ) close to a temperature T = Tθ , where its derivative should exhibit a
singularity. However, as already observed in Irbäck et al (1997), the finiteness of
the chains can at most yield a smooth decrease of Rgy(T ), being the singularity
intrinsic to thermodynamic limit properties. In finite systems a generally accepted
estimate of Tθ is the temperature at which ∂Rgy(T )/∂T is maximal.

With this definition, we obtain for Tθ essentially the same value of T ∗
θ for the

sequences S1 and S2, while a Tθ >> T ∗
θ for all the other 3 sequences. Obviously,

the homopolymer turns out to be the most compact sequence at all temperatures,
as all LJ-potentials are attractive. Coherently with the previous analysis, we can
notice a similar behaviour for S1 and S2 which again display a more pronounced
transition-like behaviour. A further observation concerns the relatively larger gyra-
tion radius exhibited by S4 at low temperature: we can imagine that the frustration
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Figure 3. Gyration radius as a function of the temperature for all S0-S4 sequences. The data
refers to US’s.

of its typical random structure prevents the formation of a more compact ‘native’
configuration.

Some of the indicators computed for the S0-S4 sequences are reported in Table I.
Within the framework of the random energy model applied to the protein-folding
problem, it is commonly believed that a good folder is characterized by a large ratio
ρ = TF /TG (Onuchic et al., 1995) (where TF is the folding temperature, defined in
Subsection 4.2). From the data reported in the table, S1 exhibits the largest ‘glassy’
temperature (TG � 0.048) and the smallest ρ-value. As a consequence, in contrast
with Irbäck et al. (1997) where S1 was identified as a good folder, here it should be
classified as the worst one. This apparent contradiction is only partly cured by the
nonnegligible uncertainty of ρ. In fact, the definition adopted for the determination
of TG induces a statistical error on ρ that ranges from 10 to 30%. Accordingly, all ρ
values are practically indistinguishable from each other. Although, at the expense
of definitely increasing the CPU-time, one could improve the accuracy (at least
5000 hours are requested on a single Alpha processor at 500 Mhz to reduce the
error by a factor 3 for a computation at a given temperature), it remains true that
fluctuations of the ρ value among the different sequences are definitely modest and
rule out the possibility to consider it as a good indicator.

3.2. DISTANCE BETWEEN CONFINGURATIONS

In order to study protein-like features of equilibrium simulations, it is important to
look at the shape of the heteropolymer and, in particular, to quantify differences
between shapes. Given any two configurations α and β, identified by the angle
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Table I. For all S0-S4 sequences we report: the glassy temperature TG; the ratio
ρ = TF /TG (the folding temperature TF can be found in Table III); the collapse-transition
temperature as estimated from the gyration radius (Tθ ) and from the specific heat (T ∗

θ );
the maximum value of CV .

S0 S1 S2 S3 S4

TG 0.022 0.048 0.028 0.025 0.025

ρ 1.6 1.4 1.7 1.4 1.8

Tθ 0.16 0.11 0.13 0.13 0.13

T ∗
θ 0.05 0.105 0.12 0.06 0.06

CV (T
∗
θ ) 60 68 72 57 55.5

sequences θ(α)i , θ(β)i (2 < i < L − 1, see equation 4), we introduce the following
angular distance

δ(α, β) := min

{
1

L− 2

L−1∑
i=2

∣∣∣θ(α)i − θ
(β)

i

∣∣∣
}

; (11)

where the minimum is taken over reflections only, since this distance is invariant
with respect to translations and rotations of any single configuration. Tipically, we
are interested in looking at the angular distance between any dynamical configur-
ation of a sequence and its corresponding NC. For the sake of brevity, we indicate
this distance with δ, omitting the explicit dependence on the generic dynamical
configuration. In the following, we will show that δ provides essentially the same
information as the structural overlap function (Camacho and Thirumalai, 1993)

χ := 1 − 2

(L− 1)(L− 2)

L−2∑
i=1

L∑
j=i+2

-(ε − |rij − rNij |)

where rij is the distance between the ith and j th residues of a given configuration,
rNij is the corresponding distance in the NC, -(x) is the Heaviside function and ε
denotes a suitably chosen threshold. In order to compare this indicator with δ we
have adopted a slightly different, but practically equivalent, definition by replacing
-(x) in the above equation with (1 + tanh(κx))/2. It can be readily verified that
1/κ plays the role of ε; in our calculations we have set κ = 1. The average angular
distance 〈δ〉 is reported in Figures 4–5 for all S0-S4 sequences with both FS’s
and US’s. At sufficiently high temperatures (T > TG) the results of FS’s and
US’s concide, as the observables introduced in the previous section do. Typically,
〈δ〉 increases with T and eventually saturates to a sequence-dependent asymptotic
value δa for T > 0.2 . The comparison with the behaviour of the average struc-
tural overlap 〈χ〉 (reported in Figures 4–5 for US’s) indicates that this quantity is
practically equivalent to 〈δ〉, the only difference being an irrelvant scale factor.
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Figure 4. The average distance 〈δ〉 for US’s (solid line) and FS’s (circles) as a function of the
temperature T , reported together with the average value of the structural overlap function 〈χ〉
for US’s (dashed line) in the homopolymer S0.
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Figure 5. The same quantities as in the previous figure for the sequences S1-S4.

The dependence of 〈δ〉 on the temperature T , obtained with the US’s, gives
a first rough idea of the shape of the native valley. The slower growth observed
for S1 suggests that this sequence is characterized by a wider basin of attraction.
Some information about the ‘accessibility’ of the native valley can, instead, be
extracted from the difference between 〈δ〉 obtained with FS’s and US’s. If, during
the folding dynamics, the heteropolymer is unable to enter the native valley in a
broad temperature range (within the employed integration time), this is a strong
indication that the corresponding sequence is a slow folder.

In order to compare the different sequences on a more quantitative level, we
have introduced the ‘foldability’ quality-factor

Q := δa

δm
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Table II. The foldability factor Q, the temperatures T χF and T δF , and the para-
meters σχ , σδ , and σ ∗ for the 5 considered sequences. The values reported
within parentheses for S2 correspond to a second peak shown by the variance
of χ for this sequence.

S0 S1 S2 S3 S4

Q 1.37 2.63 2.44 1.37 1.92

T
χ
F

0.05 0.07 0.05 (0.12) 0.04 0.05

T δ
F

0.04 0.10 0.07 0.06 0.07

σχ 0.09 0.33 0.58 (0.00) 0.33 0.55

σδ 0.27 0.05 0.41 0.00 0.37

σ ∗ 0.78 0.41 0.63 0.71 0.64

where δm is the minimal value reached by 〈δ〉 during the FS’s. A high Q-value
indicates that the protein noticeably approaches the native structure before the
structural arrest sets in below T = TG. Conversely, a relatively small Q-value
suggests that the protein does not even enter the native valley before the dynamics
is dramatically slowed down at the glassy transition. The data reported in Table II
indicate that the largest Q-values are obtained for S1 and S2, indicating that the
only two ‘good’ folders are S1 and S2.

In Camacho and Thirumalai (1993) and Klimov and Thirumalai (1996) it was
suggested that the variance of χ is a meaningful indicator to define the folding tem-
perature. More precisely, it is claimed that, analogously to the collapse transition
identified from the maximum of the fluctuations of the internal energy, the folding
temperature T χF corresponds to the peak of the variance of the structural overlap
χ . The almost equivalence between χ and the angular distance δ suggests that one
could equally look at

3δ = 〈(δ)2〉 − 〈(δ)〉2 (12)

where the average 〈·〉 is taken over all the possible configurations of a heteropoly-
mer (with a given sequence) during a certain time evolution and over different
initial conditions. Accordingly, the temperature corresponding to the peak of the
variance 3δ should identify the folding temperature. As it is not a priori obivous
that this second definition coincides with the former one, we shall denote it by T δF .
The results of US’s for both T δF and T χF are reported in Table II (those referring
to T δF are confirmed by independent FS’s). One can see that they are qualitatively
similar, but not really close to each other. This should be taken as an indication that
the concept of ‘folding transition’ is ill-defined as all transitions in finite systems.

The ‘Camacho-Klimov-Thirumalai criterion’ states that when the parameter

σχ = |T ∗
θ − T

χ

F |
T ∗
θ
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is small (e.g., ≤ 0.4 for off-lattice models), the corresponding sequence is a fast
folder, while slow folders are characterized by σχ > 0.6 (Veitshans et al., 1997;
Klimov and Thirumalai, 1996). In our case we have estimated both σχ(T ) and
σδ(T ) (with an obvious meaning of the notation) and the corresponding values are
reported in Table II. As a first observation, notice that σχ(T ) and σδ(T ) do not give
coherent indications. By looking at the values of σχ we are led to the ‘absurd’ con-
clusion that the only good folder is the homopolymer and that all other sequences
appear as not-so-fast folders. On the other hand, by looking at σδ, one deduces
that the fast folders are S1 and S3, a conclusion that is still partly inconsistent with
(Irbäck et al., 1997), where it was ascertained that S3 is a bad folder. Thus, we can
only conclude that in our case, the Camacho-Klimov-Thirumalai criterion does not
help in properly identifying good folders.

However, if we replace T ∗
θ with Tθ (i.e. if we look at the peak of the fluctuations

of the gyration radius) and define TF as discussed in the next chapter (see Table III),
we obtain the much more meaningful indicator σ ∗ . In fact, from the data reported
in the last row of Table II, one concludes that S1 is the only reasonably good folder.
Clearly, such differences indicate that finite-size corrections are too important to be
neglected in this type of studies. It would be really useful to study a much larger
ensemble of systems to conclude whether σ ∗ is a truly trustful indicator. In any
case, it remains to be understood why σ ∗ is more meaningful than other, apparently
equivalent, indicators.

4. Energy Landscape

4.1. NATIVE CONFIGURATIONS

Assuming that the native configuration of each sequence coincides with the abso-
lute minimum of the energy, we have determined it by first looking for the local
minima ‘visited’ by a sufficiently long trajectory at a fixed, not-too-low, temperat-
ure value (tipically, T = 0.08). More precisely, we act as follows: we sample the
trajectory every 3t time units and consider the configuration (xi(n3t), yi(n3t),
ẋi = 0, ẏi = 0) as the initial condition for the overdamped dynamics

ẋi = − 1

γ

∂H

∂xi
, (13)

where γ is an irrelevant damping constant fixing the time scale (an equivalent
equation holds for ẏi). As a consequence, the phase point evolves towards the
local minimum, the basin attraction of which contains the initial condition. Such a
local minimum is the so-called ‘inherent state’ (Stillinger and Weber, 1984). Upon
repating this procedure over and over, we can construct a large ensemble of inherent
minima: the minimal-energy state is eventually identified with the NC.

By comparing with Irbäck (2000), we have verified that, for the sequences S1
and S3, this method allows for a correct identification not only of the NC but also
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S0

S1 S2

S3 S4

Figure 6. The NCs corresponding to the five examined sequences. Full and open dots denote
polar and hydrophobic residues, respectively.

of the 10 lowest energy configurations (with a few differences due to the contribu-
tion of the harmonic potential V1, replaced by a rigid bond in the original model
(Stillinger et al., 1993)). Considering that our method is rather straightforward in
comparison to the quite elaborate Monte Carlo techniques implemented in Irbäck et
al. (1997), this is a first indication of the advantage of the dynamical approach. To
be more precise, simulations for a time t = 250,000 (with sampling-time 3t = 5
and minimization-time t = 125 - γ = 2.5) typically allow for a correct identifica-
tion of the NC and of the lowest energy minima with an accuracy of 10−5 − 10−6

in energy and 10−2 for what concerns the angular distance δ.
The distribution of polar residues is such that the formation of a stable hydro-

phobic core is possible in S1 and S2, while the concentration of the residues at the
ends in S3 and S4 induces the formation of fairly unstable filaments.

In Table III we report the potential energy VNC of the native state together with
the energy gap Vgap separating the NC from the second lowest energy level. As
expected the lowest energy corresponds to the homopolymer sequence, while the
other native-state energies are quite close to each other. The largest gap is, instead,
found for the sequence S1: it is more than 3 times larger than the Vgap-value for
S0 and S2 and more than 30 times larger than in S3 and S4. According to the
‘Shaknovich criterion’ (Shakhnovic, 1994; Sali, Shakhnovic and Karplus, 1994), a
protein with a large energy gap between the NC and the first non-native (compact)
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Table III. The minimal potential energy VNC (corresponding to the NC) is here reported
together with the energy gap Vgap, the number of nearest neighbours local minima of the
NC, and the folding temperature TF for the 5 considered sequences.

S0 S1 S2 S3 S4

VNC -7.0422 -4.6666 -5.1234 -4.6283 -4.6661

Vgap 0.0255 0.0922 0.0244 0.0025 0.0017

n0 6 38 33 3 28

TF 0.036 0.065 0.048 0.036 0.046

configuration folds rapidly. Therefore, one expects that S1 is a much faster folder,
while S3 and S4 should really be slow folders. On the other hand, it has been
recently shown that the folding dynamics depends on the whole energy landscape
and not only on the energy gap (Pitard and Orland, 2000). In this sense, one
should consider that such criteria may provide useful guidelines for an approximate
identification of good folders.

4.2. FOLDING TEMPERATURE tf

A commonly used definition of the folding temperature TF (i.e. of the temperature
below which the polypeptidic chain is predominantly in the native configuration)
states that TF is the temperature for which the probability to visit the NC is 1/2.
At finite temperatures, in off-lattice simulations, the NC is never exactly met: this
implies that the implementation of the above definition requires defining a ‘visit’
as a ‘close-encounter’ with the ambiguity of this expression. One could simply
state that the NC has been ‘visited’ whenever the phase point enters its basin
of attraction. In practice, we have verified that this is too narrow a criterion to
be utilized for a meaningful definition of TF . Accordingly, we have preferred to
compute the probability P(T ) to visit the basin of attraction of either the NC or
one of its neighbouring metastable states: in what follows we shall refer to this
ensemble of attraction basins as ‘native valley’. The definition of TF is, therefore,
implicitely given by the constraint

P(TF ) = 0.5 .

The metastable states have been identified by following the sequence of min-
ima visited during unfolding-dynamics simulations. In fact, if the temperature T
is neither too small nor too high, a generic trajectory explores the native valley
jumping among all minima around the NC. As a result, we have observed that the
number n0 of minima surrounding the NC is maximal for the sequence S1, while it
reduces dramatically for S0 and S3 (see Table III for more details). This indicates
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Figure 7. The probability P(T ) versus the temperature T in lin-log scales. The measurements
have been performed during US’s of duration t = 250,000, where an overdamped relaxation
scheme has been applied every 3t = 5 to find the underlying local minimum.

that many different pathways can lead to the folded structure in the case of S1, S2
and S4, while a few paths exist for S0 and S3.

The probability P(T ) to be in either the NC or one of its n0 neighbours has
been measured at different temperatures for all the sequences. The data reported
in Figure 7 reveals quite an abrupt decrease of P(T ) for both S0 and S3, while
a smoother behaviour has been found for the three other sequences. The corres-
ponding folding temperatures are reported in Table III. The highest value is found
for S1 (TF = 0.065), while the lowest for S0 (TF = 0.036). In the next section
we will show that TF coincides with the minimal temperature for which the NC is
dynamically accessible within a ‘realistic’ lapse of time.

4.3. ENERGY FUNNEL

The energy landscape associated to three of the five mentioned sequences has been
investigated by examining the distribution of local minima obtained by performing
US’s at various temperatures. For each value of T , we have made a long simulation
of duration tf = 12500, applying the above described overdamped integration
scheme every 3t = 0.05 time units, to identify the inherent minima. As a result,
we have been able to determine the number Nd(t, T ) of distinct minima visited up
to time t at temperature T . For each sequence, we have found that Nf = Nd(tf , T )

decreases noticeably with T (see Figure 8, where we have reported the results for
the sequences S0, S1 and S2). This observation, analogous to what recently found
for a β-heptapeptide in methanol solution (Daura et al., 1999), is quite obvious,
since at low temperatures the trajectory remains trapped into local minima. In par-
ticular, we see that for the sequence S1, 6324 different minima have been identified
at T = 0.09 while only 6 distinct minima have been visited at T = 0.04.
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Figure 8. Number of distinct minima obtained during a US of duration t = 12, 500, with an
overdamped relaxation scheme applied every3t = 0.05 to locate the nearest inherent minima.

A detailed investigation would require considering the hidden dependence of Nd
on the integration time tf . The practical computer-time limitations obliged us to
study one case only. In Figure 8 we observe that the sequence S1 is characterized
by an almost exponential increase of Nf with temperature. This confirms that the
native valley is well connected to many other valleys of the energy landscape for
the S1 sequence, while much fewer connections are found for S2 and S0.

A further interesting quantity to study is the temporal growth of the number of
distinct inherent minima visited. In Figure 9, we have reported Nd(t, T ) at various
temperatures for the sequences S1 and S0. It is evident that the heteropolymer, at
low temperatures, is trapped in the native valley for the simulation duration, while
for T > TF , it starts visiting other valleys.

The nonuniform growth exhibited by Nd (see, for instance, the highest temper-
ature simulations for S1) are suggestive of the existence of different valleys: as
soon as some specific ‘passes’ are overcome, a new landscape appears making new
valleys easily accessible.

In order to give a pictorial description of the energy landscape, we have decided
to define the ‘free energy’

F(U) = −T ln[Q(U, T )] (14)

where Q(U, T ) is the probability that, at temperature T , the heteropolymer is in
one of the inherent minima whose energy lies within the interval [U,U + δU ].
The results for S1 and S0 are reported in Figure 10, where Q(U, T ) has been
determined by fixing δU = 0.1 . It is evident that at sufficiently low temperatures,
the minimum of F(U) is located at the energy U = U0 of the NC, while at higher
temperatures, the minimum shifts to larger values, indicating that the NC is no
longer the favoured thermodynamical state. For the S1 sequence, this occurs for
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Figure 9. Number of distinct inherent minima Nd(t, T ) visited during a US of duration
t = 12500. Panel (a) contains the results for the S1 sequence: from bottom to top the temper-
atures are T = 0.04, 0.05, 0.06, 0.07, 0.08, and 0.09; panel (b) refers to the sequence S0: from
bottom to top the temperatures are T = 0.04, 0.05, 0.06, 0.07, and 0.09.
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Figure 10. Free energy F(U) as a function of U −U0 (where U0 is the energy of the NC) for
various temperatures. Panel (a) refers to the S1 sequence with temperatures T = 0.05, 0.06,
0.07, 0.08, and 0.09 from top to bottom; panel (b) refers to the S0 sequence with temperatures
T = 0.05, 0.06, 0.07, and 0.09, from top to bottom. The origin of the free energy axis is fixed
arbitrarily.

T > 0.07, while for S0, the NC is no longer favoured already for T = 0.05.
These numbers are compatibile with the previously estimated values of the folding
temperature and suggest an alternative definition of TF pointing more directly to
the folding process as to a phase-transition (with all limitations due to the fact we
are referring to finite systems).
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5. Dynamics

In the previous sections we have adopted the widespread attitude of describing
the folding process with concepts and tools borrowed from the language of equi-
librium thermodynamics. This approach proves partially effective in singling out
differences between good and bad folders, although the heuristic criteria proposed
so far reveal some degree of ambiguity. However, the folding process can be viewed
as a transient evolution towards a uniquely selected native state. In this perspect-
ive, a dynamical description of the folding process seems more appropriate than
a purely thermodynamic one. First, by looking at the evolution, one can identify
the accessible pathways towards the native configuration and thereby estimate the
folding time. Furthermore, the relative length of the proteins makes the use of
thermodynamical concepts rather questionable.

A proper observable to look at is the angular distance δ(t), defined in Section 3.
In Figure 11(a), one can notice how, for TG < T < TF , the approach to the native
valley (δ ≈ 0) of S1 is characterized by a series of jumps that correspond to
successive rearrangements of the chain configuration. This process can be better
appreciated by looking at the snapshots taken in the various plateaus (the NC is
reported for the sake of comparison). Notice that although the ‘asymptotic’ average
value δa of the distance is not numerically too small (δa � 0.3), the dynamical con-
figuration looks very similar to the NC (within a left-right symmetry transformation
that in 2D has to be always considered). In other words δa is quite sensitive an
indicator.

In Figure 11(b) one can look at the evolution of the three components of the
potential energy (see equations 2) for the same trajectory as in Figure 11(a). The
harmonic component V1 is, as expected, completely insensitive to the various struc-
ture changes, while the angular energy V2 limits itself to displaying larger fluctu-
ations in the asymptotic regime. The only interesting behaviour is exhibited by the
long-range potential energy V3, which closely reproduces the jumps of δ(t) with
the only exception of the first one.

The time needed for S1 to enter the native valley is tipically on the order of
O(106 − 107) adimensional units. In physical units, this corresponds to O(10−5)

seconds, a much shorter time than that typically observed in real proteins� . It seems
reasonable to conjecture that the two-dimensional character of the space is the
main responsible for the shortness of the time scale. Indeed, the more stringent
geometrical constraints induce a faster folding in 2D than in 3D. Moreover, the

� A rough estimate of the ‘real’ time scale involved in the folding process described by our
model can be derived from the period of small oscillations τLJ ∼

√
mσ 2/ε in the Lennard-Jones

potential, where m is the typical mass of an aminoacid, ε is the depth of the potential well and σ
is the equilibrium distance. In our model, m = 1 , σ ∼ 1 and ε = 1, while for an aminoacid
m ∼ 1 − 3 · 10−22 g., the equilibrium distance is 7 − 9 · 10−8 cm. and the enregy of a hydrophobic
interaction is ∼ 1−2 · 10−13 erg. Therefore, τLJ ∼ 4−6 · 10−12 sec., so that the folding time-scale
for the sequence S1 is O(10−5) secs.
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Figure 11. A typical FS for the sequence S1 at T = 0.06. (a) The distance δ with respect to
the NC is plotted versus time. The three upper insets contain snapshots of the configuration
in each of the three plateaus (the NC is reported in the lower-left inset for comparison). The
three component of the potential energy V2, V1, and V3 are reported in panel (b) (from top to
bottom) for the same FS. The potential energies are arbitrarily shifted along the vertical axis.

relatively small chain length (L = 20) contributes to fastening the folding process,
as well.

Nonetheless, it is instructive to point out that the average time scale of the
folding process is already six orders of magnitude larger than the typical scales
of equilibrium vibrations: this testifies to the meaninfulness of the model itself that
is likely to be strenghtened by extending it to 3D.

The behaviour of the other sequences exhibit both differences and analogies. In
order to observe a convincing convergence to the NC, one has to consider smaller
temperatures. From a biological point of view, the energy scale is very important,
as a meaningful protein has to fold in a specific temperature range. On the other
hand, as the energy scale is somehow arbitrary in our model, one would like to
understand whether the difference between the various sequences reduces to fixing
the temperatures at which specific phenomena are observed.

The data reported in Figures 12 and 13 refer to S0 and S3, respectively. The
evolution of δ and U for T = 0.04 is qualitatively similar to that exhibited by S1
at temperature T = 0.06. Nevertheless, there is an important difference that may
have relevant biological implications: the fluctuations of δ (and, similarly, of the
total energy U ) within what appears to be the native valley are larger for S0 and S3
than for S1 (the standard deviation is approximately equal to 0.14, 0.12, and 0.08,
in the three cases), even though the temperature is comparably smaller than in the
latter case. This points to a more clear configurational stability of the folded state
of S1.
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Figure 12. A typical FS for the sequence S0 at T = 0.04. The distance δ with respect to the
NC and the potential energy U are plotted versus time. The potential energy U is arbitrarly
shifted along the vertical axis.
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Figure 13. Four samples of FSs for the sequence S3 at T = 0.04. The distance δ with respect
to the NC (upper curves) and the overall potential energy U (lower curves) are plotted versus
time. The potential energy U is arbitrarly shifted along the vertical axis.

6. Concluding Remarks

Five different sequences of a 2d toy-model of aminoacid chains have been stud-
ied in detail. Time averages of thermodynamical indicators have been analyzed
in order to check their consistency in discriminating between one specimen of
‘good folder’ (S1) and a set of four very different sequences. These equilibrium
simulations yield controversial conclusions: the various indicators often attribute
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different rankings to the various sequences (in one case, S1 is even located among
the worst candidates for a ‘good folder’).

A clear identification of S1 as a ‘good folder’ is provided by the foldability
factor Q and by the Camacho, Klimov and Thirumalai criterion applied to σ ∗. The
Shaknovich criterion too points in this direction, as S1 exhibits the largest energy
gap Vgap.

In summary, applying a ‘majority rule’ we are led to conclude that S1 is actually
a ‘good folder’. Nonetheless, it would be definitely better to rely upon less ambigu-
ous criteria for achieving such a conclusion. The direct inspection of the dynamics
of the sequences provides a more clear scenario. Simulations performed at tem-
peratures close to TF , reveal that an initial ‘coil’ state evolves towards its native
configuration entering the energy funnel by a sequence of configurational jumps.
In order to obtain a similar scenario for the other sequences, the temperature has
to be significantly lowered and this is not sufficient, since the relative fluctuations
within the native valley are comparably larger.

The analysis of the structure of the energy landscape provides complementary
indications that are consistent with the dynamical description. In particular, the
‘free-energy’ F(U) defined in equation 14 shows that the NC is a minimum of
F(U) only below a temperature close to TF . Above TF , the minimum shifts away,
suggesting that the stable thermodynamical state differs from NC. Moreover we
have discovered that in S1 the ten ineherent minima of lowest energy are dynamic-
ally connected to the NC (i.e. all of them belong to the native valley), while in S0
and S3 only a few are directly connected to the corresponding NC’s. This indicates
that the gap height, although certainly important, does not provide a full account of
the relevant folding properties. Preliminary investigations (Tiberio, 2000) suggest
that such information must be complemented with the ‘connectivity’ between the
NC and the other low-energy minima and with the height and ‘shape’ of the barriers
separating the NC from the inherent minima.

Acknowledgements

We warmly acknowledge the active contribution of Annalisa Tiberio to the present
work and the useful interaction with Anders Irbäck. Part of this work was per-
formed at the Institute of Scientific Interchange in Torino, during the workshops
on ‘ Complexity and Chaos ’, June 1998 and October 1999. We acknowledge
CINECA in Bologna and INFM for providing us access to the parallel computer
CRAY T3E under the grant ‘Iniziativa Calcolo Parallelo’.

References

Antoni, M. and Ruffo, S.: Phys. Rev. E 52 (1995), 2361–2374.
Bowie, J.U., Luthy, R. and Eisenberg, D.: Science 253 (1991), 164–170.
Camacho, C.J. and Thirumalai, D.: Proc. Natl. Acad. Sci. 90 (1993), 6369–6372.



A DYNAMICAL APPROACH TO PROTEIN FOLDING 203

Creighton, T.E.: Proteins: Structures and Molecular Properties, W.H. Freeman & Co., New York,
1993.

Daura, X., van Gunsteren, W.R. and Mark, A.E.: Proteins 34 (1999), 269–280.
De Gennes, P.G.: Scaling Concepts in Polymer Physics Cornell University Press, New York, 1979.
Haberland, H. (ed.): Clusters of atoms and molecules I, Springer Verlag, Berlin, 1995.
Klimov, D. and Thirumalai, D.: Phys. Rev. Lett. 76 (1996), 4070–4073.
Iori, G., Marinari, E. and Parisi, G.: J. Phys. A : Math. Gen. 24 (1991), 5349–5362.
Irbäck, A. and Potthast, F.: J. Chem. Phys. 103 (1995), 10298–10305.
Irbäck, A., Peterson, C. and Potthast, F.: Phys. Rev. E 55 (1997) 860–867.
Irbäck, A.: private communications, 2000.
Mirny, L.A. and Shakhnovich, E.I. : J. Mol. Biol. 264 (1996), 1164–1179.
Onuchic, J.N., Wolynes, P.G., Luthey-Schulten, Z. and Socci, N.D.: Proc. Natl. Acad. Sci. 92 (1996),

3626–3630.
Pitard, E. and Orland, H.: Europhys. Lett. 49 (2000) 169–175.
Sali, A., Shakhnovich, E.I. and Karplus, M.: Nature 369 (1994) 248–251.
Shakhnovich, E.I.: Phys. Rev. Lett. 72 (1994), 3907–3910.
Socci, N.D. and Onuchic, J.N.: J. Chem. Phys. 101 (1994) 1519–1528.
Stillinger, F.H., Gordon, T.H. and Hirshfeld, C.L.: Phys. Rev. E 48 (1993) 1469–1477.
Stillinger, F.H. and Weber, T.A.: Science 228 (1984) 983–989.
Tiberio, A.: Laurea Thesis, Università di Firenze, Firenze, 2000.
Torcini, A. and Antoni, M.: Phys. Rev. E 59 (1999), 2746–2763.
Veitshans, T., Klimov, D. and Thirumalai, D.: Folding & Design 2 (1997), 1–22.




