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The relationship between the Lyapunov spectrum of diffusively coupled one-dimensional maps and the spectrum of the discrete
Schrédinger operator is stressed. As a result, an analytic expression is derived for the Lyapunov spectrum for uniformly expanding
maps. It is also shown that for a coupling strength larger than a critical value, the spectrum extends to —co.

One-dimensional lattices of coupled maps repre-
sent a relatively simple class of models, useful to in-
vestigate spatio—temporal behavior [1]. One of the
most complete indicators of chaotic dynamics is rep-
resented by the thermodynamic limit (i.e. for the
chain length L tending to co) of the spectrum of Lya-
punov exponents (LS). In fact, knowledge of the LS
allows one to determine the Kolmogorov-Sinai en-
tropy from the Pesin formula, as well as the dimen-
sion density from the Kaplan-Yorke conjecture [2].
The application of standard techniques to extract the
characteristic exponents allowed one to test the ex-
istence of the thermodynamic limit in various cases
ranging from simplectic maps to continuous-time,
and continuous-space models [3]. Recently, some
theoretical results have also been obtained, regard-
ing the qualitative shape of the spectrum [4]. How-
ever, a general qualitative theory of LS is still lack-
ing, and there are very few rigorous results even in
simple cases.

The aim of the present Letter is to stress the strict
analogy existing between the computation of the LS
for diffusively coupled one-dimensional maps, and
the more familiar and widely studied estimation of
the spectrum of the discrete Schrodinger operator.
The relationship between the two classes of prob-
lems allows for a partial transfer of well-known tech-
niques to the field of nonlinear systems.

Let us start with the general equation
Xhe1=F(y}), (1)

where the subscript # and superscript i denote time
and space coordinates, F(y) is a map of the unit in-
terval and y? is given by

ya=exi !+ (1—e)x, +iex, (2)

€ measuring the strength of the diffusive coupling.
We recall that € is bounded between 0 (uncoupled
maps) and 1 (odd sublattice decoupled from the even
one), to guarantee that y, and hence F(y), be still
confined to the unit interval. The evolution in the
tangent space is obtained by linearizing eq. (1),

Oxi i =F (i) [1edxi '+ (1 —€)dx, +4edxiF'] .
(3)

In the case of stationary solutions, the explicit time
dependence contained in F' (y%) cancels out and the
eigenvalue problem associated with eq. (3) becomes

mdx‘=F (y*)[1edx~'+ (1 —€)dx'+ Jebx'*]
(4)

where the logarithm of the absolute value of m gives
the Lyapunov exponent. Eq. (4) is formally equiv-
alent to the stationary Schrddinger equation in the
tight-binding approximation,
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pr iyt 4 (0= Vy'=0, (5)

where w is the frequency and V' is the potential. A
comparison between eqs. (4) and (5) shows the
analogy between the two models: the identification

te(w=V)=l—e—m/F (') (6)

‘ suggests that the multiplier m plays the role of the
frequency w in the Schrodinger operator, whereas the
spatial dependence of F' (y') mimicks the variation
of the potential V*, Such an equivalence leads to an
exact correspondence between Anderson localiza-
tion and the properties of a frozen random state. This
confirms a suggestion put forward in ref. [5]. The
more general case of spatio~temporal chaos, instead,
carries a novel difficulty associated with the tem-
poral dependence of the pseudo potential F' (y*). An
analogy with random walks in a random environ-
ment has been used in'ref. [4] for simplectic maps.
However, in so far as we consider the simple pie-
cewise linear map

F(y)=ryMod(1), (7)

we can get rid both of the space and time depen-
dence of F' (y*). In this special case the local mul-
_ tiplier is everywhere equal to r. This model is equiv-
alent to the free particle case in the language of the
Schrodinger operator, where an analytical solution
can be derived. The integrated density of states
N’ (w) of the Schrodinger equation is the well-known
expression (V'=0)

N (w)=1—n""arccos(w/2) . (8)

The spectrum is confined between @y;,=—2 and
Wmax =2, where it exhibits square-root Van Hove sin-
gularities. Despite the simple structure of the model,
some interesting results are already obtained in this
case. In fact, the Lyapunov exponent 1 is, by defi-
nition, the logarithm of the absolute value of m. From
eqs. (6) and (7) we find

m=r{l—e(1+iw)]. €))

The maximum value of the multiplier is reached for
the minimum energy which, independently of the
coupling strength, is M., =r, a value coinciding with
the multiplier of the single isolated map. Therefore,
the maximum Lyapunov exponent coincides with
that of the isolated map Inr. The minimum multi-
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plier is reached at the maximum energy of the as-
sociated Schrédinger equation,

Mpmin="(1—=2¢€) . (10)

For e<1/2, Mg is positive, and its logarithm yields
the minimum Lyapunov exponent. In this range of
e-values, the LS is given by

N()=1—n""arccos(e*/er+1—1/¢) . (11)

A typical behavior is reported in fig. 1 (curve a) for
e=1/3 and r=2. For €>1/2, my;, is negative,
meaning that the spectrum of m-values extends
around 0. As a consequence, the Lyapunov spectrum
which does not discriminate between negative and
positive m’s extends to —oo (for m=0) and is, more
in general, given by

N(A)=N'(e*)=N'(-¢e"). (12)

Therefore, we can distinguish two different ranges of
A-values: I, =[In r+In(2¢—1), In r], not affected by
negative multipliers, where eq. (11) still holds, and
I,=(—o0,In r+In(2¢~1)] where two separate con-
tributions are added. The two regimes are separated
by a square-root type of singularity, deriving from
the above mentioned Van Hove singularity. A typi-
cal plot is shown in fig. 2 for e=2/3, and r=2 (curve

-1.0

N
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Fig. 1. Lyapunov spectra of model (7) with r=2 (a), of the lo-
gistic map at crisis (b), and of the tent map (c), with a coupling
strength €= 1/3. Curve a, resulting from analytic expression (11),
has been shifted down by 0.5 units for clarity reasons. Curves b
and c follow from numerical simulations performed with chains
of length L=100, and 2'" iterations.
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Fig. 2. Same as in fig. 1, for e=2/3. Curves a and b are shifted
down by 1 and 0.5 units, respectively. The last two exponents of
curve b (logistic map) have been discarded because of the inac-
curacy deriving from the strong contraction rate.

.00 .50 . 1.00

Fig. 3. Same as in fig. 1, for e= 1. Curves a and b are shifted down
by 1 and 0.5 units, respectively. The last two exponents of curve
¢ and the last one of curve b have been discarded for the same
reasons as in fig. 2. The steps appearing in curve ¢ are essentially
due to the existence of two uncoupled sub-chains for e=1.

a). Finally, in the limit case €= 1, the interval I, van-
ishes and the intermediate singularity disappears
overlapping with the first one (see curve a in fig. 3).

This problem has been already investigated by Ka-
neko in ref. [5] and Kaspar and Schuster in ref. [6].
They limited the analysis to the onset of chaos (i.e.
r=1+46, =~ 10~3), where only the first Lyapunov
exponents are needed to estimate the fractal dimen-
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sion of the chain. Such exponents have been com-
puted under the hypothesis of a continuous spatial
structure: an approximation valid only around the
maximum exponent.

The origin of the singular behavior in the LS can
be better understood by observing a general property
of the tangent space evolution matrix (3). This can
be written in the following form for a lattice of L sites
with periodic boundary conditions,

JE=dL-J (e), (13)

where the diagonal matrix (®7),,;=F (y})d,; car-
ries all the time (»n) dependence, and J(¢€) is the
Jacobi matrix,

l—€e €/2 0 0 €/2

€/2 1—€ €/2 0 0

JE(€) = O e/:2 l-:—e 0 0
0 0 0 .. l—e ¢€/2
€/2 0 0 .. €2 1l—e¢

(14)

It is a simple but instructive task to compute the ei-
genvalues of J=(¢). First of all one should notice that
the form (14) corresponds to the free particle Schré-
dinger matrix (see eq. (5)). Accordingly, J*(¢€)
commutes with the translation matrix 7 defined on
a generic vector as

vy U2
(%] U3
T : =| ¢ }. (15)
Vp_y UL
vp (]

The eigenvalues ¢, of T are the roots of unity,
tr=exp(2ink/L), O0<k<L-1. (16)

The eigenvectors are of the form (1, ¢, ¢%, ..,
t£~"), i.e. plane waves. By applying J*(€) to vectors
belonging to this base, one obtains all the
eigenvalues #!

JE=1-2¢sin?(nk/L), k=0,..,L—1. (17)

It is straightforward to observe that for any fixed L

#1 One referee pointed out that the same expression was ob-
tained in ref. [7].
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there exists a set of e-values such that the determi-
nant of JZ vanishes,

€ =[2sin?(nk/L)]~". (18)

This result is valid independent of the local dynam-
ics, due to the factorization property (13). The range
of e-values is limited from below by 1/2. Therefore,
the map (1) has no singularities in the range [0,
1/2], for any choice of the local dynamics F(y). This
result confirms and generalizes what was previously
found for map (7): the LS extends to—oco for e>1/
2. It is worth noticing that whenever the determinant
of JE vanishes, the dynamics of the system happens
to be constrained on a suitable sub-manifold of the
phase space. We shall report elsewhere on how this
fact affects the statistical properties of macroscopic
observables.

We conclude by showing some numerical simu-
lations we have performed for the logistic map at cri-
sis (F(y)=4y(1—y)), and the tent map (F(y) =2y,
0<y<1/2,f(y)=2-2y, 1/2<y<1). The results are
reported in figs. 1-3 and correspond to curves b and
¢, respectively. In fig. 1 all the three spectra are
bounded from below (being e=1/3), while in figs.
2, 3, clear-cut evidence of a divergence to —oo is re-
ported. Notice that the intermediate singularity, oc-
curring for map (7), is smoothed out for the other
two maps. We conjecture this to be a consequence of
the random dependence of F'(p‘) on the spatial
variable. In the Schrodinger problem we know that
the square-root singularities occurring at the band
edge of the spectrum for a periodic potential, are re-
placed by the “flat” Lifshitz tails, for a random po-
tential. Something similar may reasonably occur in
the case of spatio-temporal chaos, where the dynam-
ics provides a source of randomness.

We end the Letter by noting that the analysis de-
veloped in eqs. (13)-(18) does not only allow one
to determine the properties of the determinant, and
to recover the results for map (7), but it also allows
one to perform a sort of mean field theory for generic
maps. The first step in this direction is performed by
observing that a homogeneous solution (constant in
space) remains such under time evolution for any
choice of ¢, and its dynamics is obviously equivalent
to that of the single map. In such a case the diagonal
matrix @% reduces to the product of the identity ma-
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trix times the scalar quantity F’ (y,). The evolution
in the tangent space then reduces to the product of
matrices which differ only for a multiplicative fac-
tor. The final effect on the LS is that the Lyapunov
exponents are nothing but the logarithm of the ei-
genvalues J£ plus the Lyapunov exponent of the sin-
gle uncoupled map. As a result, it turns out that eqgs.
(8) and (12) take into account the A dependence for
any homogeneous solution of a generic map, the de-
pendence on the model being confined to a trivial
shift. In particular, it is possible to show that in the
case of short chains (L=2-5), in suitable ranges of
e-values, the homogeneous state is stable. This cor-
responds to the case when only one Lyapunov ex-
ponent is strictly positive. Further steps in the der-
ivation of a mean field theory would require replacing
the invariant measure of the single map with the ac-
tual measure of the system.

We acknowledge useful discussions with G.
Giacomelli, R. Lima and R. Livi.
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