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Plan of the Talk
Summary of Old Results

Chaotic Synchronization in Low Dimensional Systems λT = 0

Chaotic Synchronization in Spatially Extended Systems VF = 0 (Diffusive Coupling)

The transition is analyzed as a a non-equilibrium phase transition

The transition is continuous and its critical properties correspond to
Multiplicative Noise (MN) VF = λT = 0

Directed Percolation (DP) VF = 0 ; λT < 0
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Plan of the Talk
Summary of Old Results

Chaotic Synchronization in Low Dimensional Systems λT = 0

Chaotic Synchronization in Spatially Extended Systems VF = 0 (Diffusive Coupling)

The transition is analyzed as a a non-equilibrium phase transition

The transition is continuous and its critical properties correspond to
Multiplicative Noise (MN) VF = λT = 0

Directed Percolation (DP) VF = 0 ; λT < 0

New Results

Spatially Extended Chaotic Systems with Power-Law Coupling

The synchronization transitions (STs) are continuous

The critical indexes vary continuously with the interaction range

The family of STs correspond to Anomalous Directed Percolation (ADP)

ADP has been found for Lévy-flight spreading of epidemic processes

ADP critical exponents have been measured for stochastic lattice models
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Low Dimensional Chaotic Systems

Chaotic Dynamics

u̇k(t) = ϕk(u(t)) k = 1, 2, 3, . . . maximum Lyapunov exponent λ > 0
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Low Dimensional Chaotic Systems

Chaotic Dynamics

u̇k(t) = ϕk(u(t)) k = 1, 2, 3, . . . maximum Lyapunov exponent λ > 0

Systems Coupled via Stochastic forcing

Two replicas u and w of the same dynamical system:

u̇k(t) = ϕk(u(t)) + γ · η(t) u(0) 6= w(0)

ẇk(t) = ϕk(w(t)) + γ · η(t)

η is a δ-correlated random variable < η(t′)η(t) >= δ(t′ − t).

For a sufficiently large noise amplitude γ > γc the replicas can eventually
synchronize.
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Low Dimensional Chaotic Systems

Chaotic Dynamics

u̇k(t) = ϕk(u(t)) k = 1, 2, 3, . . . maximum Lyapunov exponent λ > 0

Mutually Coupled Systems

Two replicas u and w of the same dynamical system:

u̇k(t) = (1 − γ) · ϕk(u(t)) + γ · ϕk(w(t)) u(0) 6= w(0)

ẇk(t) = (1 − γ) · ϕk(w(t)) + γ · ϕk(u(t))

For a sufficiently strong coupling γ > γc the replicas can eventually
synchronize
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Low Dimensional Chaotic Systems

Chaotic Dynamics

u̇k(t) = ϕk(u(t)) k = 1, 2, 3, . . . maximum Lyapunov exponent λ > 0

Def: Synchronization is achieved if the distance between replicas asymptotically vanishes

lim
t→∞

z(t) = lim
t→∞

|u(t) − w(t)| = 0

In order to observe synchronization in low dimensional systems :

λ⊥ = lim
t→∞

lim
z(0)→0

ln
z(t)

z(0)
< 0

the transverse Lyapunov exponent (TLE) should be negative .

Maritan & Banavar, PRL (1994); Pikovsky, PLA (1992), PRL (1994);
Herzel & Freund, PRE (1995); Lai & Zhou, EPL (1998)
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Spatially Extended Systems

Coupled Map Lattices

ut+1
x = F

ˆ

(1 + ∇2
ε)ut

x

˜

∇2
εux = ε{[ux+1 + ux−1]/2 − ux}

where x and t are discrete, F is a chaotic map, typically one dimensional.
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Spatially Extended Systems

Coupled Map Lattices

ut+1
x = F

ˆ

(1 + ∇2
ε)ut

x

˜

∇2
εux = ε{[ux+1 + ux−1]/2 − ux}

where x and t are discrete, F is a chaotic map, typically one dimensional.

Mutually Coupled

ut+1
x = (1 − γ)F

ˆ

(1 + ∇2
ε)ut

x

˜

+ γ · F
ˆ

(1 + ∇2
ε)wt

x

˜

wt+1
x = (1 − γ)F

ˆ

(1 + ∇2
ε)wt

x

˜

+ γ · F
ˆ

(1 + ∇2
ε)ut

x

˜

Stochastic Forcing

ut+1
x = F

ˆ

(1 + ∇2
ε)ut

x

˜

+ γ · ζt
x

wt+1
x = F

ˆ

(1 + ∇2
ε)wt

x

˜

+ γ · ζt
x

where the noise is δ-correlated in space and time < ζt
xζs

y >∝ δx,yδt,s.

The local difference field is defined as zt
x = |ut

x − wt
x|.

Freie Universität - Berlin, 22/04/08 – p.4/??



Spatially Extended Systems

Coupled Map Lattices

ut+1
x = F

ˆ

(1 + ∇2
ε)ut

x

˜

∇2
εux = ε{[ux+1 + ux−1]/2 − ux}

where x and t are discrete, F is a chaotic map, typically one dimensional.

Synchronization
For sufficiently strong coupling γ the spatially averaged difference field

ρ(t) =< z(t) >=
1

L

L
X

x=1

zt
x

could eventually vanish in the long time limit.

The synchronization transition is no longer fully described in terms of the transverse
Lyapunov exponent (TLE).

An extreme nonlinearity in the local map F can induce transport of Finite Size Disturbances
even for linearly stable states (i.e. Negative TLE).

A new indicator is required to fully characterize the transition for spatially extended systems.
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Spatially Extended Systems

Coupled Map Lattices

ut+1
x = F

ˆ

(1 + ∇2
ε)ut

x

˜

∇2
εux = ε{[ux+1 + ux−1]/2 − ux}

where x and t are discrete, F is a chaotic map, typically one dimensional.

Propagation Velocity of Finite Size Perturbations
A droplet of unsynchronized sites (N(0)) is inserted in a completely synchronized state:

vF = lim
t→∞

N(t) − N(0)

2t
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Universality Classes
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The Synchronization Transition is a Non-Equilibrium
Phase Transition leading from an “active phase” (ρ > 0)
to an “absorbing phase” (ρ ≡ 0).

The transition point ac is located in the thermodynamic limit (L → ∞) by the vanishing of the
order parameter ρ(t) ≡< z(t) >→ 0.

A continuous transition is typically characterized by a critical behavior :

ρ(t) ∝ t−δ ρ(t) = L−zδg(t/Lz) at a ≡ ac

< ρ >t∝ |a − ac|
β

Lc ∝ |a − ac|
−ν‖ Tc ∝ |a − ac|

−ν⊥

only 3 exponents are independent (e.g. δ β and z)
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Universality Classes
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(a) (b)

The Synchronization Transition is a Non-Equilibrium
Phase Transition leading from an “active phase” (ρ > 0)
to an “absorbing phase” (ρ ≡ 0).

Two different types of transitions have been observed:

Multiplicative Noise

vF = λ⊥ = 0

Linear Effects rule the Transition

Directed Percolation

vF = 0 λ⊥ < 0

Strong Nonlinear Effects (|F ′| >> 1)

Baroni, Livi & AT , PRE 63, 036226 (2001); Ahlers & Pikovsky, PRL, 88, 254101 (2002)
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Universality Classes
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MN Tent DP Bernoulli

δ 1.10(5) 1.26(3) 0.159464(6) 0.16

β 1.70(5) 1.50(5) 0.276486(6) 0.28

z 1.53(7) 1.5 1.580745(6) 1.581

Ahlers & Pikovsky, PRL, 88, 254101 (2002); V. Ahlers , PhD Thesis (Berlin, 2001)
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Multiplicative Noise

The corresponding field equation for the coarse-grained variable w(x, t) = z̄ is:

ẇ(x, t) = ∇2w(x, t) + aw(x, t) − bwp(x, t) + w(x, t)η(x, t)

where η is a Gaussian noise δ-correlated in space and time and p ≥ 2. Pikovsky & Kurths
(94) have shown that this model describes the dynamics of CMLs within a linear framework.

This problem can be mapped on that of a depinning of a
KPZ interface from a hard substrate through a Hopf-Cole
Transformation h(x, t) = − ln w(x, t). This leads to a KPZ-
like equation

ḣ(x, t) = ∇2h(x, t)−(∇h(x, t))2−a′−be−(p−1)h(x,t)+η(x, t)

The adsorbing state w = 0 is now mapped into h = ∞

[ M.A. Mu ñoz , cond-mat/0303650 (2003) ]
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Directed Percolation
The corresponding field equation is:

ẇ(x, t) = ∇2w(x, t) + aw(x, t) − bw2(x, t) +
p

w(x, t)η(x, t)

where η is a Gaussian noise δ-correlated in space and time.
This equation is usually associated to Infection Spreading Models: the Domany-Kinzel
cellular automaton:

black sites are infected (active phase), white sites are healthy (absorbing phase).

The infection spreads only by contact

No revival of infection within healthy region: the absorbing state is stable

[ H. Hinrichsen Adv. Phys. 49, 815-958 (2000)]

Experimental measure of DP exponents for a ring of oscillating ferrofluidic spikes at the
transition to spatiotemporal intermittency Rupp, Richter, & Rehberg , PRE (2003)
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Summary of the first part
In spatially extended systems (CMLs) with diffusive coupling two different
synchronization transitions are observed :

if the linear behaviour prevails on nonlinear effects the transition belongs to the
MN universality class;

if nonlinear effects dominate the dynamics DP scaling laws are observed.
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In collaboration with:
Francesco Ginelli (Saclay - Paris)

• V. Ahlers∗ (Germany) • L. Baroni∗ (Italy) * Working in private companies
• R. Livi (Firenze) • D. Mukamel (Rehovot)
• A. Pikovsky (Potsdam) • A. Politi (Firenze)
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Long-Range Interactions

Coupled Map Lattices with Power-Law Coupling

ut+1
x = F

ˆ

(1 + ∇σ
ε )ut

x

˜

∇σ
ε ux = −ǫux +

ǫ

η(σ)

M
X

m=1

ux−jm(q) + ux+jm(q)

(jm(q))σ

where x ∈ [1, L] and t are discrete, F = 2x (mod 1) is the Bernoulli map and periodic
boundary conditions are assumed.

η(σ)=2
M

X

m=1

1

(jm(q))σ
normalization factor

σ → 0 Globally Coupled Maps σ → ∞ Usual CMLs
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Long-Range Interactions

Coupled Map Lattices with Power-Law Coupling

ut+1
x = F

ˆ

(1 + ∇σ
ε )ut

x

˜

∇σ
ε ux = −ǫux +

ǫ

η(σ)

M
X

m=1

ux−jm(q) + ux+jm(q)

(jm(q))σ

where x ∈ [1, L] and t are discrete, F = 2x (mod 1) is the Bernoulli map and periodic
boundary conditions are assumed.

η(σ)=2
M

X

m=1

1

(jm(q))σ
normalization factor

σ → 0 Globally Coupled Maps σ → ∞ Usual CMLs

Coupling Schemes

Fully Coupled: jm(q) = m , M = (L − 1)/2

Reduced Coupling: jm(q) = qm − 1 , M = logq(L/2) with q = 2, 4 and 8

The coupling scheme does not alter the critical properties of the transition, but the reduced
scheme is much faster (O(L logq L) versus O(L2)),
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Chaotic Synchronization

The synchronization transition of two coupled replicas is studied

ut+1
x = (1 − γ)F

ˆ

(1 + ∇σ
ε )ut

x

˜

+ γ · F
ˆ

(1 + ∇σ
ε )wt

x

˜

wt+1
x = (1 − γ)F

ˆ

(1 + ∇σ
ε )wt

x

˜

+ γ · F
ˆ

(1 + ∇σ
ε )ut

x

˜

by examining the synchronization error zt
x = |ut

x − wt
x| for different coupling exponents σ.
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Chaotic Synchronization

The synchronization transition of two coupled replicas is studied

ut+1
x = (1 − γ)F

ˆ

(1 + ∇σ
ε )ut

x

˜

+ γ · F
ˆ

(1 + ∇σ
ε )wt

x

˜

wt+1
x = (1 − γ)F

ˆ

(1 + ∇σ
ε )wt

x

˜

+ γ · F
ˆ

(1 + ∇σ
ε )ut

x

˜

by examining the synchronization error zt
x = |ut

x − wt
x| for different coupling exponents σ.
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The critical exponents
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The critical exponents
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The critical exponents vary continu-
ously, we have a family of universality
classes labelled by the coupling expo-
nent σ.
δDP ∼ 0.16 βDP ∼ 0.27
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Anomalous Directed Percolation
Distribution of human travels
Brockmann et al.Nature (2006)In many realistic spreading processes short-range

interactions do not appropriately describe the trans-
port mechanism of the infection

infectious disease transported by insects;

disease spread triggered by aviation traffic;

spreading agent subjected to a turbulent
flow.

The motion of the agent can be super-diffusive.

Mollison in 1977 proposed a generalization of the usual DP in which the agent can perform
Lévy flights, where the distribution of the spreading distances r is given by

P (r) ∝ 1/rd+σ σ > 0

d being the spatial dimension of the system.

Mollison, J R Stat Soc B 39 (1977) 283; Grassberger, Fractals in physics, (1986)
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Field Theoretic Prediction

The generalization of the usual field equation to anomalous DP reads as:

ẇ(x, t) = (∇2 + ∇α)w(x, t) + aw(x, t) − bw2(x, t) +
p

w(x, t)η(x, t)

where η is a Gaussian noise δ-correlated in space and the anomalous diffusion operator is
defined as

∇σeikx = −kσeikx

The renormalization group calculations indicate that

for σ < 0.5 the mean-field description should become exact;

for σ > 2.0677(2) the usual DP results should be recovered

Mean-field exponents obtained by neglecting correlations are:

βMF = δMF = 1.0 zMF = σ

Jannsen et al. EPJB 7 (1999) 137; Hinrichsen & Howard EPJB 7 (1999) 635.
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Stochastic Lattice Model

si-1s

i-7s i+9s

i+1

(a) Ordinary directed bond percolation:

t

t+1

t

t+1

is

is

2d  -1L 2d   -1R

(b) Anomalous directed bond percolation: 

si = 1 (infected) - si(t) = 0 (healthy)
Only infected sites can propagate the disease.
The control parameter is
the bond probability 0 ≤ p ≤ 1

At the next time t + 1 all the sites are initially healthy;

two distances (dL, dR) are randomly generated from the distribution P (r) ∝ 1/r1+σ ;

the sites located at those distances from a site i (infected at time t) become infected if
by choosing two random numbers (yL, yR) between 0 and 1

si+1−2dL
(t = 1) = 1 if yL < p

si−1+2dR
(t = 1) = 1 if yR < p

The length of the examined system was L = 4 × 1019 , no finite size effects.

Hinrichsen & Howard EPJB 7 (1999) 635.
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Critical Indexes
Extremely accurate estimation of the critical exponents in the whole range 0 < σ < 2.4.
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Conclusions & Perspectives

The synchronization transition (ST) of two replicas of of chaotic discontinuous coupled
maps with long range interactions is characterized by a continuum of universality
classes labeled by the exponent σ.

The critical properties of these STs correspond to Anomalous Directed Percolation,
previously examined in the context of epidemic spreading.

Preliminary results indicate that also for continuous maps the exponents depend on σ,
but they do not belong to the anomalous DP class.

Anomalous Multiplicative Noise has been not yet studied, therefore a completely open
problem is to find to which universality class ST for continuous maps correspond.

C.J. Tessone, M. Cencini & AT , PRL (2006)
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Continuous Maps

0 1 2 3 4 5 6
 σ
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 δ
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Tent  Map with power-law coupling

Ginelli’s estimation MN (δ)

Ginelli’s estimation MN (β)

Kissinger et al. (2005) - Multiplicative noise - numerical estimations
δMN = 1.184(10) and βMN = 1.776(15)

Munoz (2000) – Mean-field results β depends on noise amplitude, it is not universal.
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Random Multipliers Model

A stochastic model is introduced to mimic the dynamics of the difference field zt
x for 2 chains

of mutually coupled CMLs.
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x
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1.0

F(x) a

a

1/∆

zt+1
x =

8

<

:

1, w.p. p = avt
x

avt
x, w.p. 1 − p

, if vt
x > ∆

zt+1
x =

8

<

:

vt
x/∆, w.p. p = a∆

avt
x, w.p. 1 − p

, if vt
x ≤ ∆

where vt
x = (1 + ∇2

ǫ )zt
x and PBC are assumed.

The model is controlled by two parameters a and ∆, for fixed coupling ε = 2/3.
The stochastic nature of the model avoids the emergence of possible long time correlations
as in the original deterministic CMLs.

For small ∆ < ∆c, the nonlinear mechanisms prevail over the linear ones

For ∆ > ∆c, the linear analysis is sufficient to describe the dynamics

Ginelli, Livi, & Politi JPA 35, 499 (2002)
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Phase Diagram
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Unsynchronized  phase  λ > 0,   vF > 0

 λ < 0  , vF > 0
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vF=0

λ=0 MN phase transition

DP   

II

I

Region II: due to the linear instability any perturbation of the synchronized state will
persist forever independently of L

Region I: a finite perturbation can eventually die in a finite chain, but its life time
increases exponentially with L

The critical properties of the model have been studied mainly by analizing ρ(t) (the averaged
density of unsynchronized sites). But the definition of ρ requires to fix a threshold W in order
to distinguish a synchronized site (zt

x < W ) from an unsynchronized one (zt
x > W ).

Ginelli,Livi,Politi, & AT PRE 67, 046217 (2003)
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DP or not DP ?

Microscopic models exhibiting DP critical behaviour are typically defined in terms of
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Microscopic models exhibiting DP critical behaviour are typically defined in terms of
discrete and finite state variables (e.g. cellular automata).

In such cases an absorbed region is stable, it can only be changed from its boundaries
(contact process).

In the present case the condition zt
x = 0 is never exactly fulfilled at every finite time,

even for finite systems.

Therefore, one is obliged to fix an arbitrary threshold W below which trajectories are
assumed to be synchronized.

A priori, one cannot exclude that due to large fluctuations the system will be driven out
of the absorbing state, sooner or later.

The existence of an effective absorbing state will be shown by analyzing the first
passage times.
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First Passage Times

τ(W ) is the (ensemble) average time needed for ρ(t) to become smaller than a certain
threshold for the first time.

By analytical and scaling arguments it can be
shown that:

τ(W ) =
ln W

λ⊥

− Lzg(WLδz , Wc)

the first term accounts for linear stable behaviour,
while the second term for nonlinear effects.
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The linear stable behaviour holds below a certain threshold Wc ∝ L−z(1+δ), that vanishes
in the thermodynamic limit.

In a finite cellular automaton the minimal meaningful density is ρm = 1/L, Wc plays the role
of ρm in continuous systems.
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