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® Schematic description of the VCSEL and experimental setup
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VCSEL in brief

o .

Single laser

°

Semiconductor laser
Wavelength: near IR (~ 800 nm) (optimal coupling with optical fibers)
Single longitudinal mode, multiple transverse modes.

Two linearly polarized emissions (symmetrical cavity).

© o o o

Good beam quality.
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VCSEL in brief

o .

Single laser

® Semiconductor laser

® Wavelength: near IR (~ 800 nm) (optimal coupling with optical fibers)
® Single longitudinal mode, multiple transverse modes.

® Two linearly polarized emissions (symmetrical cavity).

® Good beam quality.
VCSEL with delayed optical feedback

® External cavity ~ 50 cm, round trip time 7 = 3.63 ns

® Polarization selective optical feedback
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Dynamics of the VCSEL

Power (W)

® for I < 6 mA the device emits T

.' smimyla; | | '_ - linearly polarized light in the

+  with feedback

fundamental mode (the
- transverse modes are not
| active);

|® for I < I,;, + feedback

o) Te=276mA ] o the VCSEL is a single
/ | ] mode on the main

) | polarization and its
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dynamics exhibits LFFs ;

M"’"‘ s the secondary
“ polarization is absent.
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VCSEL Phase Diagram
f Single-mode LFF  {wo-modes LFF T
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We will examine the single mode LFF regime, where the dynamical
behaviour is not particularly influenced by the phase delay induced by the
feedback.
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LFF in a nutshell
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°

LFFs are feedback induced instabilities;

® the light is emitted in short pulses ~ 0.1 ns ;

°

the filtered intensity grows to a almost constant value over a cycle of
duration ~ 100 ns then drops to a much lower value;

® the LFF cycles can coexist with stable emission on a high-gain mode.
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Lang-Kobayashi eqs

The dynamics of the VCSEL with delayed optical feedback is described for ¢ = /1, < 1
by the rate egs.:

Nt = 1470 —1) = N@&)(1+|E®)P)

E(t)

(1 ;T;a) (NE) = DBE) + e Bl —7) + 1 75€(0)

where E(t) = p(t) expi¢p(t) is the complex field, V(t) the carrier density, and £(¢) a
Gaussian noise term (spontaneous emission).

The parameters have been experimentally measured: o« = 3.3 £ 0.1, 7, = 0.37 £ 0.02 ns,
T, =12+1ps,n=>5.8,7=3.63ns, Rs, = (2.34+£0.5)-10~% ps—!.

k will be determined by comparison of numerical vs experimenal data.
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Stationary solutions

The deterministic LK eqs admit stationary solutions of the type:

E(t) = poexp (12t) N(t) = Ny = const.

The unstable solutions with a real positive eigenvalue are termed Antimodes, the other
solutions can be stable or unstable depending on the parameters and are termed Modes.

The Modes can be destabilized by different mechanisms: e.g. Modulational or Turing
instabilities.

T T T
a=3.20 ¢,=0.93 6=-0.32
20 a=3.22 c,=0.93 6=-0.08 -

| | |
—8.02 -0.01 0.01 0.02 0.03 0.04

Re A (ns’)
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Stationary solutions

¢,=0.93 0=3.1 k=0.25
0.20 ‘ :

® Modes
® Maximum Gain Mode
® Antimodes

0.15 -

0.00 . . .
0.40 0.45 0.50 0.55 0.60 0.65

® Stable modes are more probable for small o or k -values.
® The maximum gain mode is stable and it coexists with the LFF dynamics.

® Two/three (maximum gain) modes can be stable at the same time.
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Deterministic dynamics

® The LFF dynamics is due to the chaotic itinerancy from one quasi-attractor to another,
where the quasi-atiractors are the ruins of a local chaotic attractor emerged via a
period doubling bifurcations from the corresponding mode.

® On each local quasi-attractor the dynamics is chaotic but transient , the trajectory
jumps from one quasi-attractor to another climbing towards the maximum gain mode .

® When the trajectory collides with an anti-mode the intensity drop and the dynamics
restart again from low gain modes. (Sisyphus Cycles )

This is the deterministic explanation of LFFs ( )
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LFF as a transient phenomenon

o 9 , .
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Below the threshold of the solitary laser (¢, < 1) and for meaningful
values of « = 3 — 5 the LFFs are present only as a transient phenomenon.

The average transient time < 7T's > diverges for increasing ¢y, and « .

Preliminar indications have been reported in
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Lyapunov analysis

Transient Lyapunov Exponent - averaged over 500 i.c.’s
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dynamics increases with ¢g and o .

® The system is not low dimensional.

=

50

Kaplan-Yorke Dimension
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KY

The number of active degrees of freedom (measured by Dy ) involved in the

-

The transient dynamics is chaotic and the maximal Lyapunov increases with ¢ and « .



Stochastic Dynamics I

o .

The presence of additive gaussian noise of variance D in the LK egs. can
destabilize the maximum gain mode leading

® for small noise to an intermittent behaviour ;

® forlarger D values to a non transient LFF dynamics .
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Stochastic Dynamics 11

Residence Times in the Maximum Gain Mode

=33 - 0,=0.97
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The intermittent dynamics can be seen as a stochastic escape process from the MGM

induced by noise fluctuations

Tres o< GW/D

where the barrier height W for o« = 3.3 almost corresponds to the experimental value of the
variance of the noise

Dezp = (2.7£0.6) x 1073

FNOES - Nice, 14.09.05 — p.14/2



For noise variance D > D.., the asymptotic dynamics exhibits a positive maximal

Lyapunov analysis

0.01

0.005

Transient - D=0
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(a)

Lyapunov exponent for any examined «a-values.
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Experiments vs numerics

As a first comparison between experimental and numerical data the average duration of LFF
< Trrpr > is considered in the range 0.9 < ¢g < 1.1 for two sets of experimental data .

*¥rveo

Exp Data

Exp Data

Simulation 0=3.3 + Noise
Simulation a=4.0 + Noise
Simulation o=5.0
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The agreemen is reasonably good for

N
N

high values of a ~ 5 without noise

o ~ 3.3 — 4 with noise (D = Degyp)
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where 3 is the average of T pr and § = STD(Trpp) .

10°

Experimental data - 1,=2.7614 mA

PDFs of the LFF times
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First passage times

A Brownian motion with a drift can be written as

z(t) = p+ o&(t)

with initial condition z(0) = x¢ , £(¢) is a Gaussian noise with zero average.

The average first passage time to reach a fixed threshold ® is 5 = (© — z¢)/p and its
variance is 62 = [(© — xg)o?]/u3 .

The PDF of the first passage times is the so-called inverse Gaussian :

P(T) = — B o~(T=6)%/(24T)

B \/ 2myT3

where v = §2 /3 .
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Comparison with the experiments

o .

The inverse Gaussian describes reasonably well the
experimental distributions
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Concluding Remarks

.

the introduction of additive noise in the LK eqgs leads via intermittency
to sustained LFF;

The deterministic LK eqgs exhibit LFF as a transient chaotic dynamics

°

® the experimentally observed Sisypho Cycles can be interpreted as a
Brownian motion with drift plus a reset mechanism ;

® the role of noise appears to be essential in the modelization of the
phenomenon.
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