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VCSEL in brief

Single laser

Semiconductor laser

Wavelength: near IR ( � �� �

nm) (optimal coupling with optical fibers)

Single longitudinal mode, multiple transverse modes.

Two linearly polarized emissions (symmetrical cavity).

Good beam quality.
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VCSEL in brief

Single laser

Semiconductor laser

Wavelength: near IR ( � �� �

nm) (optimal coupling with optical fibers)

Single longitudinal mode, multiple transverse modes.

Two linearly polarized emissions (symmetrical cavity).

Good beam quality.

VCSEL with delayed optical feedback

External cavity � � �
cm, round trip time � � 	�
 � 	

ns

Polarization selective optical feedback
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Dynamics of the VCSEL
for


 � 6 mA the device emits
linearly polarized light in the
fundamental mode (the
transverse modes are not
active);

for

 � 
�� � + feedback

the VCSEL is a single
mode on the main
polarization and its
dynamics exhibits LFFs ;

the secondary
polarization is absent.
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VCSEL Phase Diagram

We will examine the single mode LFF regime, where the dynamical
behaviour is not particularly influenced by the phase delay induced by the
feedback.
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LFF in a nutshell
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LFFs are feedback induced instabilities;

the light is emitted in short pulses � � 
 �

ns ;

the filtered intensity grows to a almost constant value over a cycle of
duration � � � �

ns then drops to a much lower value;

the LFF cycles can coexist with stable emission on a high-gain mode.
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Lang-Kobayashi eqs

The dynamics of the VCSEL with delayed optical feedback is described for �� � � � ��� � � �

by the rate eqs.:

��� �! "$# % � �& ' "(*) + � % +  " # % " � & ,- " # % , . %

�- "$# % � �& /01�32 "  "$# % + � %- "$# % & 4
�32 5 6 78 9- "$# + � % & :<; 2 1 = " # %

where

> ?@ A � B ?@ A!CD E F G ?@ A

is the complex field,
H ?@ A

the carrier density, and

I ?@ A

a
Gaussian noise term (spontaneous emission).

The parameters have been experimentally measured: J � KML K NO L �

, PRQ � O L K S N O L OT ns ,PVU � �T N �

ps , W � XML Y

, P � KML Z K
ns ,

[]\ U � ?T L K N O L X A_^ �O ` a E b ` c .

d

will be determined by comparison of numerical vs experimenal data.

S. Barland, P. Spinicelli, G. Giacomelli, F. Marin, IEEE J. Quantum Electronics (2005).
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Stationary solutions

The deterministic LK eqs admit stationary solutions of the type:

- " # % � e) 5f g " / h# %  "$# % �  ) � ij k l m 

The unstable solutions with a real positive eigenvalue are termed Antimodes, the other
solutions can be stable or unstable depending on the parameters and are termed Modes.

The Modes can be destabilized by different mechanisms: e.g. Modulational or Turing
instabilities.
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Stationary solutions
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Stable modes are more probable for small J or

d

-values.

The maximum gain mode is stable and it coexists with the LFF dynamics.

Two/three (maximum gain) modes can be stable at the same time.

S. Yanchuk & M. Wolfrum, WIAS preprint n. 962, Berlin (2004)
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Deterministic dynamics

The LFF dynamics is due to the chaotic itinerancy from one quasi-attractor to another,
where the quasi-attractors are the ruins of a local chaotic attractor emerged via a
period doubling bifurcations from the corresponding mode.

On each local quasi-attractor the dynamics is chaotic but transient , the trajectory
jumps from one quasi-attractor to another climbing towards the maximum gain mode .

When the trajectory collides with an anti-mode the intensity drop and the dynamics
restart again from low gain modes. (Sisyphus Cycles )

This is the deterministic explanation of LFFs ( T. Sano, PRA 50 (1994) 2719 )
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LFF as a transient phenomenon
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Below the threshold of the solitary laser (( ) � �

) and for meaningful
values of 0 � 	 + �

the LFFs are present only as a transient phenomenon.

The average transient time � npo q diverges for increasing ( ) and 0 .

Preliminar indications have been reported in T. Heil et al., Optics Let. 24 (1999) 1275
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Lyapunov analysis
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The transient dynamics is chaotic and the maximal Lyapunov increases with �� and J .
The number of active degrees of freedom (measured by

r3s t ) involved in the
dynamics increases with �� and J .
The system is not low dimensional.
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Stochastic Dynamics I

The presence of additive gaussian noise of variance

u

in the LK eqs. can
destabilize the maximum gain mode leading

for small noise to an intermittent behaviour ;

for larger

u

values to a non transient LFF dynamics .
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Stochastic Dynamics II
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The intermittent dynamics can be seen as a stochastic escape process from the MGM
induced by noise fluctuations vxwy \ z{ | }~

where the barrier height

�
for J � KL K

almost corresponds to the experimental value of the
variance of the noise

ry� U � ?T L S N O L Z A�� �O ` �
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Lyapunov analysis
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For noise variance

r� ry� U the asymptotic dynamics exhibits a positive maximal

Lyapunov exponent for any examined J-values.
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Experiments vs numerics

As a first comparison between experimental and numerical data the average duration of LFF� v3�� � � is considered in the range

O L � � �� � � L �

for two sets of experimental data .
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PDFs of the Intensities
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PDFs of the LFF times

� "�� % � � " n��� � %�� � � � n �� � + �
�

where

�

is the average of

n��� � and

� � � n u " n��� � %
.
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First passage times
A Brownian motion with a drift can be written as

��� ?@ A � � ��� I ?@ A

with initial condition � ?O A � � � ,

I ?@ A

is a Gaussian noise with zero average.

The average first passage time to reach a fixed threshold

�
is

� � ? � � � � A � � and its
variance is

�   � ¡ ? � � � � A�  ¢ � � � .
The PDF of the first passage times is the so-called inverse Gaussian :

£ ? v A � �¤T ¥ ¦ v �C ` §¨ ` © ª « } §  �¬ ¨ ª

where ¦ � �   � �

.
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Comparison with the experiments
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The inverse Gaussian describes reasonably well the
experimental distributions
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Concluding Remarks

The deterministic LK eqs exhibit LFF as a transient chaotic dynamics;

the introduction of additive noise in the LK eqs leads via intermittency
to sustained LFF;

the experimentally observed Sisypho Cycles can be interpreted as a
Brownian motion with drift plus a reset mechanism ;

the role of noise appears to be essential in the modelization of the
phenomenon.
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