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Low Dimensional Chaotic Systems

Chaotic Dynamics
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Systems Coupled via Stochastic forcing

Two replicas u and w of the same dynamical system:

���� ��� � � �� ��� ��� � �  ! " # �� � � � � � $ � % � � �

��&� ��� � � �� � % �� � �  ! " # ��� �

# is a

'

-correlated random variable 
 # �� ( � # ��� � 
 � ' ��� ( ) � �

.

For a sufficiently large noise amplitude ! 
 ! * the replicas can eventually
synchronize.
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Mutually Coupled Systems

Two replicas u and w of the same dynamical system:

���� ��� � � � � ) ! � " �� ��� ��� � �  ! " �� � % �� � � � � � � $ � % � � �

��&� ��� � � � � ) ! � " �� � % ��� � �  ! " �� � � �� � �
For a sufficiently strong coupling ! 
 ! * the replicas can eventually
synchronize
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Low Dimensional Chaotic Systems

Chaotic Dynamics

���� ��� � � �� ��� ��� � � � � ��� �� ��� � � maximum Lyapunov exponent

� 
 �

Def: Synchronization is observed when the distance between replicas
asymptotically vanishes

+, -./ 0 1 ��� � � +, -. / 0 2 � �� � ) & �� � 2 � �

Condition to observe synchronization in low dimensional systems :

the transverse Lyapunov exponent should be negative��3 � +, -. / 0 +, -4 56 7 / 6 +98 1 ��� �
1 � � � 
 �

[Maritan & Banavar, PRL 72, 1451 (1994); Pikovsky, PLA 165, 33

(1992), PRL 73, 2931 (1994); Herzel & Freund, PRE 52, 3238 (1995);

Lai & Zhou, EPL 43, 376 (1998)]
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Spatially Extended Systems

Coupled Map Lattices

:; < =?> @ A BCD E F GIH J :; >K F GIH : > @ L MN : >< = E : >O = PQR S : >T
where U and

V

are discrete,

A

is a chaotic map, typically one dimensional.
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Coupled Map Lattices

:; < =?> @ A BCD E F GIH J :; >K F GIH : > @ L MN : >< = E : >O = PQR S : >T
where U and

V

are discrete,

A

is a chaotic map, typically one dimensional.

Mutually Coupled

:; < =?> @ C D S W J A BCD E F GIH J :; >K E WX A BC D E F GIH J9Y ; >KY ; < => @ CD S W J A B CD E F GIH J Y ; >K E WX A BC D E F GIH J :; >K

Stochastic Forcing

:; < =Z> @ A BC D E F G[H J :; >K E W X \ ; >Y ; < => @ A BCD E F G[H J9Y ; >K E WX \ ; >

where the noise is

]

-correlated in space and time ^ \ ; >\_a` bc ] >ed` ] ; d_ .

The local difference field is defined as f ; > @ g :; > S Y ; >g .
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Spatially Extended Systems

Coupled Map Lattices

:; < =?> @ A BCD E F GIH J :; >K F GIH : > @ L MN : >< = E : >O = PQR S : >T
where U and

V

are discrete,

A

is a chaotic map, typically one dimensional.

Synchronization
For sufficiently strong coupling W the spatially averaged difference field

h C V J @ ^ f C V J b @ Di
j

>k = f
; >

could eventually vanish in the long time limit.

The synchronization transition is no longer fully described in terms of the transverse
Lyapunov exponent (TLE).

An extreme nonlinearity in the local map

A
can induce transport of Finite Size Disturbances

even for linearly stable states (i.e. Negative TLE).

A new indicator is required to fully characterize the transition for spatially extended systems.
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Spatially Extended Systems

Coupled Map Lattices

:; < =?> @ A BCD E F GIH J :; >K F GIH : > @ L MN : >< = E : >O = PQR S : >T
where U and

V

are discrete,

A

is a chaotic map, typically one dimensional.

Propagation Velocity of Finite Size Perturbations
A droplet of unsynchronized sites (

l Cm J

) is inserted in a completely synchronized state:

no @ pqsr;t u
l C V J S l Cm JR V

1.0 1.5 2.0 2.5 3.0
 σ

−0.2

0.0

0.2

0.4

0.6
VF

Λ

1.0 1.5 2.0 2.5
 σ

−0.4

−0.2

0.0

0.2

0.4
VF

Λ

Complex Nonlinear Processes - Berlin, 11/09/2003 – p.4/12



Universality Classes

The Synchronization Transition is a Non-Equilibrium Phase Transition
leading from an “active phase” ( v 
 �

) to an “absorbing phase” ( v w �

).

The transition point � * is located in the thermodynamic limit (

x y z) by
the vanishing of the order parameter v �� � w 
 1 �� � 
 y �

.

A continuous transition is typically characterized by a critical behavior :

v �� � { �| } 
 v 
 . { 2 � ) � * 2 ~

v �� � � x| 4 }� �� � x 4 �

x * { 2 � ) � * 2| �� � * { 2 � ) � * 2| ��

only 3 exponents are independent.
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Universality Classes

The Synchronization Transition is a Non-Equilibrium Phase Transition
leading from an “active phase” ( v 
 �

) to an “absorbing phase” ( v w �

).

Two different types of transitions have been observed:

Multiplicative Noise

� � � ��3 � �

Linear Effects rule the Transition

Directed Percolation

� � � � ��3 
 �
Strong Nonlinear Effects (

2� ( 2 
 
 �

)

[Baroni, Livi & AT , PRE 63, 036226 (2001); Ahlers & Pikovsky, PRL, 88, 254101 (2002)]
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Multiplicative Noise

The corresponding mean-field equation is:

�Y C U9� V J @ F G Y C U9� V J E�� Y C U9� V J S �Y � C U9� V J E Y C U9� V J � C U � V J
where � is a Gaussian noise

]

-correlated in space and time and � �R
. Pikovsky & Kurths

(PRE, 49, 898 (1994)) have shown that this model describes the synchronization transition
within a linear framework.

This problem can be mapped on that of a depinning of a
KPZ interface from a hard substrate through a Hopf-Cole
Transformation

� C U � V J @ S p�� Y C U � V J

. This leads to a KPZ-
like equation

� � C U9� V J @ F G � C U9� V J S C F � C U � V J J G S� � S ��� O � � O = �� � >ed; � E� C U9� V J

The adsorbing state Y @m is now mapped into

� @ �

[M.A. Muñoz, cond-mat/0303650 (2003) ]
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Directed Percolation

The corresponding field equation is:

�Y C U � V J @ F G Y C U9� V J E � Y C U9� V J S �Y G C U9� V J E �Y C U � V J � C U9� V J
where � is a Gaussian noise

]

-correlated in space and time.
This equation is usually associated to Infection Spreading Models: the Domany-Kinzel
cellular automaton:

black sites are infected (active phase), white sites are healthy (absorbing phase).

The infection spreads only by contact

No revival of infection within healthy region: the absorbing state is stable

[H. Hinrichsen Adv. Phys. 49, 815-958 (2000)]

An experiment on ferrofluids has measured for the first time some of the DP critical
exponents [Rupp, Richter, & Rehberg, PRE 67, 036209 (2003)]
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Random Multipliers Model

A stochastic model is introduced to mimic the dynamics of the difference field f ; >for 2 chains
of mutually coupled CMLs.

0.0 0.5 1.0
x

0.0
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1.0

F(x) a

a

1/∆

f ; < => @
���

�
D � w.p. � @ � n ; >� n ; >� w.p.

D S � � if n ; > b �

f ; < => @
� �

�
n ; >Q � � w.p. � @ � �

� n ; >� w.p.
D S � � if n ; > ¡ �

where n ; > @ C D E F G£¢ J f ; >and PBC are assumed.

The model is controlled by two parameters� and

�
, for fixed coupling L @R Q¤

.
The stochastic nature of the model avoids the emergence of possible long time correlations
as in the original deterministic CMLs.

For small

� ^ �¦¥ , the nonlinear mechanisms prevail over the linear ones

For

� b �¦¥ , the linear analysis is sufficient to describe the dynamics

Ginelli, Livi, & Politi JPA 35, 499 (2002)
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Phase Diagram
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DP   
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Region II: due to the linear instability any perturbation of the synchronized state will
persist forever independently of

i
Region I: a finite perturbation can eventually die in a finite chain, but its life time
increases exponentially with

i
The critical properties of the model have been studied mainly by analizing h C V J

(the averaged
density of unsynchronized sites). But the definition of h requires to fix a threshold

§

in order
to distinguish a synchronized site ( f ; > ^ §

) from an unsynchronized one ( f ; > b §

).

Ginelli,Livi,Politi, & AT PRE 67, 046217 (2003)
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DP or not DP ?

Microscopic models exhibiting DP critical behaviour are typically defined in terms of
discrete and finite state variables (e.g. cellular automata).

In such cases an absorbed region is stable, it can only be changed from its boundaries
(contact process).

In the present case the condition is never exactly fulfilled at every finite time,
even for finite systems.

Therefore, one is obliged to fix an arbitrary threshold below which trajectories are
assumed to be synchronized.

A priori, one cannot exclude that due to large fluctuations the system will be driven out
of the absorbing state, sooner or later.

The existence of an effective absorbing state will be shown by analyzing the first
passage times.
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First Passage Times

¨ C § J

is the (ensemble) average time needed for h C V J

to become smaller than a certain
threshold for the first time.

By analytical and scaling arguments it can be
shown that:

¨ C § J @ p�� §©«ª Si ¬®­ C §i ¯ ¬ � §¥ J

the first term accounts for linear stable behaviour,
while the second term for nonlinear effects.

0 10 20 30
-ln W

0

2×10
4

4×10
4

τ (W)

0 10 20 30
-ln W

-0.4

-0.2

0

Λ(W)

a) b)

∆ = 0.01

∆ = 0

The linear stable behaviour holds below a certain threshold

§¥ c i O ¬ � = < ¯ � , that vanishes
in the thermodynamic limit.

In a finite cellular automaton the minimal meaningful density is he° @D Q i

,

§¥ plays the role
of h±° in continuous systems.
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Conclusions
In spatially extended systems (CMLs) two different synchronization transitions are
observed : if the linear behaviour prevails on nonlinear effects the transition belongs to
the MN universality class, if nonlinear effects dominate DP scaling laws are observed.

A stochastic model able to reproduce both the transitions is introduced and studied;

The analysis of the first passage times has shown that the synchronization transition
may indeed belong to the DP universality class for discontinous (

� @m ) and
continuous (

� bm ) cases.

Ginelli,Livi,Politi, & AT PRE 67, 046217 (2003)
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Ginelli,Livi,Politi, & AT PRE 67, 046217 (2003)
Last Developments

A microscopic model, introduced to study the depinning transition of an interface from
an attractive wall, exhibits the same transition scenario;
[Ginelli,Ahlers,Livi,Mukamel,Pikovsky,Politi, & AT, cond-mat/0302588];

Complete synchronization has been analytically studied for CMLs with power law
coupling, the results found are only partially correct since nonlinear effects are
neglected. [C. Anteneodo et al., nlin.CD/0308014] - [L. Biven & AT, work in progress]
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