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VCSEL in brief
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Single laser

°

Semiconductor laser
Wavelength: near IR (~ 800 nm) (optimal coupling with optical fibers)
Single longitudinal mode, multiple transverse modes.

Two linearly polarized emissions (symmetrical cavity).
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Good beam quality.
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VCSEL in brief

o N

Single laser

® Semiconductor laser

® Wavelength: near IR (~ 800 nm) (optimal coupling with optical fibers)
® Single longitudinal mode, multiple transverse modes.

® Two linearly polarized emissions (symmetrical cavity).

® Good beam quality.
VCSEL with delayed optical feedback

® External cavity ~ 50 cm, round trip time 7 = 3.63 ns

® Polarization selective optical feedback
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Dynamics of the VCSEL

Power (W)

® for I < 6 mA the device emits T

.' smimyla; | | '_ - linearly polarized light in the

+  with feedback

fundamental mode (the
- transverse modes are not
| active);

|® for I < I,;, + feedback

o) Te=276mA ] o the VCSEL is a single
/ | ] mode on the main

) | polarization and its
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dynamics exhibits LFFs ;

M"’"‘ s the secondary
“ polarization is absent.
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VCSEL Phase Diagram
f Single-mode LFF  {wo-modes LFF —‘
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We will examine the single mode LFF regime, where the dynamical
behaviour is not particularly influenced by the phase delay induced by the
feedback.
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LFF in a nutshell
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°

LFFs are feedback induced instabilities;

® the light is emitted in short pulses ~ 0.1 ns ;

°

the filtered intensity grows to a almost constant value over a cycle of
duration ~ 100 ns then drops to a much lower value;

® the LFF cycles can coexist with stable emission on a high-gain mode.
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Lang-Kobayashi eqs

The dynamics of the VCSEL with delayed optical feedback is described for ¢ = /1, < 1
by the rate egs.:

Nt = 1470 —1) = N@&)(1+|E®)P)

E(t)

(1 ;T;a) (NE) = DBE) + e Bl —7) + 1 75€(0)

where E(t) = p(t) expi¢p(t) is the complex field, V(t) the carrier density, and £(¢) a
Gaussian noise term (spontaneous emission).

The parameters have been experimentally measured: o« = 3.3 £ 0.1, 7, = 0.37 £ 0.02 ns,
T, =12+1ps,n=>5.8,7=3.63ns, Rs, = (2.34+£0.5)-10~% ps—!.

k will be determined by comparison of numerical vs experimenal data.
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Deterministic dynamics

The deterministic LK eqs admit stationary solutions of the type:
E(t) = poexp (i92t) N(t) = No = const.

The unstable solutions with real positive eigenvalues are termed Antimodes, the other
solutions can be stable or unstable depending on the parameters and are termed Modes.

The Modes can be destabilized by different mechanisms: via Hopf bifurcations or via

modulational instabilities.

| ® The stable modes are more probable for
small « or k -values.

0.20

® The maximum gain mode is stable and it
coexists with the LFF dynamics.

2
P oo}

» Two maximum gain modes can coexist and
be stable.
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Deterministic dynamics

The LFF dynamics is due to the chaotic itinerancy from one quasi-attractor to another,
where the quasi-atiractors are the ruins of a local chaotic attractor emerged via a
period doubling bifurcations from the corresponding mode.

® On each local quasi-attractor the dynamics is chaotic but transient , the trajectory
jumps from one quasi-attractor to another climbing towards the maximum gain mode .

® When the trajectory collides with an anti-mode the intensity drop and the dynamics
restart again from low gain modes. (Sisyphus Cycles )

This is the deterministic explanation of LFFs ( )
05 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.2 T T T T T T T
a=4.0 Co=0'95 k=0.25 | e O o
°
04 _] 2 [ ]
Pg g
°
03 - d
5 °
P 01 ® 0-32¢,=0.93 I
0.2 _
°
° °
0.1 - o
- ] °
0 13‘05 ‘ 135‘ 05 14‘05 ‘ 145‘ 5 15‘05 b L L ! ! ! ?
3eH 35e+ Ae+ A45e+ Se+ ()
. -0.6 -04 -0.2 0 0.2 0.4 0.6
Time (ns) 0
v

i=n



LFF as a transient phenomenon
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Below the threshold of the solitary laser (¢, < 1) and for meaningful
values of « = 3 — 5 the LFFs are present only as a transient phenomenon.

The average transient time < 7T's > diverges for increasing ¢y, and « .

Preliminar indications have been reported in
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Lyapunov analysis

Transient Lyapunov Exponent - averaged over 500 i.c.’s
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dynamics increases with ¢g and o .

® The system is not low dimensional.
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Kaplan-Yorke Dimension
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KY

The number of active degrees of freedom (measured by Dy ) involved in the
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The transient dynamics is chaotic and the maximal Lyapunov increases with ¢ and « .



Stochastic Dynamics I

o |

The presence of additive gaussian noise of variance D in the LK egs. can
destabilize the maximum gain mode leading

® for small noise to an intermittent behaviour ;

® forlarger D values to a non transient LFF dynamics .
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Stochastic Dynamics 11

Residence Times in the Maximum Gain Mode
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The intermittent dynamics can be seen as a stochastic escape process
from the MGM induced by noise fluctuations

where the barrier height W for o« = 3.3 almost corresponds to the exper-
Limental value of the variance of the noise (D.., = (2.7 £ 0.6) x 1073 ). J
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Experiments vs numerics

As a first comparison between experimental and numerical data the average duration of LFF
< Trrpr > is considered in the range 0.9 < ¢g < 1.1 for two sets of experimental data .
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Exp Data

Exp Data
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The agreemen is reasonably good for

N
N

high values of a ~ 5 without noise

o ~ 3.3 — 4 with noise (D = Degyp)
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where 3 is the average of T pr and § = STD(Trpp) .

10°

Experimental data - 1,=2.7614 mA

PDFs of the LFF times
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First passage times

A Brownian motion with a drift can be written as

z(t) = p+ o&(t)

with initial condition z(0) = x¢ , £(¢) is a Gaussian noise with zero average.

The average first passage time to reach a fixed threshold ® is 5 = (© — z¢)/p and its
variance is 62 = [(© — xg)o?]/u3 .

The PDF of the first passage times is the so-called inverse Gaussian :

P(T) = — B o~(T=6)%/(24T)

B \/ 2myT3

where v = §2 /3 .
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Comparison with the experiments
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The inverse Gaussian describes reasonably well the
experimental distributions
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Concluding Remarks

-

the introduction of additive noise in the LK eqgs leads via intermittency
to sustained LFF;

The deterministic LK eqgs exhibit LFF as a transient dynamics;

the experimentally observed Sisypho Cycles can be interpreted as a
Brownian motion with drift plus a reset mechanism ;

the role of noise appears to be essential in the modelization of the
phenomenon.
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