WS 2006/07

Georg-August-Universität Göttingen Institut für Theoretische Physik

A. Honecker

Aufgabe 1

Wir betrachten ein System von Elektronen mit Zweiteilchen-Wechselwirkung:

$$H = \int d1 \, \psi^{\dagger}(1) \, H_0(1) \, \psi(1) + H_s \,,$$

mit $H_0(1) = H_0(\vec{x}) \, \delta(\tau)$.

(a) Drücken Sie mit Hilfe des Wickschen Theorems die in der Vorlesung hergeleiteten Formeln erster Ordnung in ${\cal V}$ für

$$\frac{Z}{Z_0} \qquad \text{und} \qquad \frac{G(1,2)}{Z_0/Z}$$

durch $\mathcal{V}(i,j;\tau)$ und $G_0(i,j)$ aus!

- (b) Skizzieren Sie für alle Summanden aus (a) die zugehörigen Feynman-Diagramme!
- (c) Entwickeln Sie das Ergebnis für G(1,2) bis zur ersten Ordnung in $\mathcal V$ und zeigen Sie, dass es in Feynman-Diagrammen wie folgt geschrieben werden kann:

$$G(1,2) = \begin{array}{c} 1 & 2 \\ & 2 \\ & \end{array}$$

$$+ \begin{array}{c} 1 & 2 \\ & \end{array}$$

$$- \begin{array}{c} 1 & 2 \\ & \end{array}$$

$$+ \begin{array}{c} 2 \\ & \end{array}$$

$$+ \begin{array}{c} 2 \\ & \end{array}$$