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Solitary excitations in one-dimensional spin chains
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We study the real-time evolution of solitary excitations in 1-d quantum spin chains using ex-
act diagonalization (ED) and the density-matrix renormalization group (DMRG). The underlying
question of this work is the correspondence between classical solitons and solitons in quantum me-
chanics. While classical solitons as eigensolutions of non-linear wave equations are localized and
have a sharp momentum, this is not possible in the corresponding quantum case due to the linearity
of the Schrödinger equation or seen in a more pictorial way, because of the uncertainty relation.
For the case of the XXZ model it is shown that the real-time evolution of quantum wave packets
accompanied by spreading is in qualitative accordance with the one predicted by classical solitons.

PACS numbers: 75.10.Pq, 75.40.Mg, 47.35.Fg

I. INTRODUCTION

Solitons, first mentioned by John Scott Russel in 1844,
are outstanding objects in the field of nonlinear physics.1

Their description as solution of nonlinear wave equations
needs to take into account the full nonlinearity of the
problem. Based on the numerical findings by Kruskal
and Zabusky,2 the inverse scattering transform (IST)3

was the first major framework to systematically research
the solutions and spectra of integrable4 classical nonlin-
ear wave equations like the sine-Gordon equation or the
nonlinear Schrödinger equation. These soliton solutions
are usually characterized by a constant shape and veloc-
ity which is due to cancellation of dispersion and nonlin-
earity.

The extension of the term “soliton” to the quantum
regime is not straightforward. On the one hand there
are technical problems of quantizing a classical nonlinear
wave equation to a quantum field theory. For classical
models amenable to the IST a direct canonical quantiza-
tion is possible5 because the IST can be seen as a non-
linear canonical mapping to action angle variables which
can be directly quantized. Quasiclassical quantization6

has also been used for identifying classical and quantum
system. But still an obvious problem seems to exists in
the quantum case. This is the interpretation of a quan-
tum soliton. Because a quantum soliton should not have
a constant shape and velocity (due to the uncertainty
relation) as is the case for a classical soliton. Another
point of view on this problem is that classical solitons
are eigensolutions of nonlinear wave equations. These
eigensolutions are localized by means of some observable
like density or magnetization in space even if the system
is translationally invariant. In the quantum case this is
not possible,7 because the eigensolutions are completely
delocalized. Still the construction of localized wave pack-
ets, consisting of eigensolutions peaked around a specific
momentum, is possible. These wave packets will spread

due to the in general nonlinear dispersion relation. No-
tice that now as opposed to the classical wave equation
there is no nonlinearity (the Schrödinger equation is lin-
ear) that could cancel the effect of dispersion. Thus in
accordance with the uncertainty relation, the initial wave
packet will spread. As is the case for the free particle in
quantum mechanics, the transition to classical mechanics
means that the spreading is going to zero.

Recent work8–14 on the quantum dynamical aspects of
solitons pursues the path of comparing mean-field ap-
proximations with the quantum model. The mean-field
approach basically leads to a classical nonlinear equation
of motion for some operator expectation value restricted
to a subset of carefully chosen states (mainly product
states). This classical nonlinear equation for an operator
expectation value, e.g., 〈â〉 for the condensate density in
a Bose-Einstein condensate, might exhibit soliton solu-
tions. Its time evolution is then compared for both the
mean-field approximation as well for the quantum evo-
lution on the full Hilbert space. One intrinsic problem
of this approach is that it has to be justified that the
mean-field approximation is still valid for the time evolu-
tion and not just for its initial state. We take a different
route in that we identify directly a classical nonlinear
model with a quantum model using the direct canonical
quantization. Therefore we will get a one-to-one corre-
spondence between classical soliton solutions and their
quantum mechanical counterparts or vice versa. Thus,
in our description, both the classical and the quantum
model exhibit the same soliton solutions and there is no
intrinsic quantum soliton that does not exist in the clas-
sical theory or the other way round. In that sense we de-
fine the term of a quantum soliton as a state that would
correspond up to the uncertainty relation to a classical
soliton state. It is an interesting question if there exist
models that exhibit intrinsic quantum solitons which do
not occur in the corresponding classical theory. But be-
fore answering this question, a scheme for describing or
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defining an intrinsic quantum soliton must be found.
The simulation of real time dynamics in quantum sys-

tems is a numerically hard problem due to the exponen-
tial increase of the Hilbert space with system size. The
development of the DMRG15,16 algorithm and its real
time variant t-DMRG16–18 has opened up new perspec-
tives in simulating 1-d systems, whose size is far beyond
of those that are reachable by ED (see for example Refs.
8, 14, 19–21). Both methods allow us to create wave
packets for larger systems.

In the following we will show that quantum wave pack-
ets can be constructed, whose time-evolution is in agree-
ment (despite the quantum mechanical spreading) with
their classical soliton counterparts.

II. THE MODEL

To investigate the correspondence between classical
and quantum mechanical solitons, we use a 1-d spin
chain as our model. For the ferromagnetic easy axis spin
chain, as described in the following paragraphs, exact so-
lutions for the energy spectra of the low-lying solutions
exist. Both models are integrable, the classical in the
sense of the inverse scattering transform3 and the s = 1/2
quantum model in the sense of the Bethe Ansatz.22 Fur-
thermore, a clear mapping between both models exists,
and thus facilitate the comparison between classical and
quantum eigensolutions and their spectra.

A. Quantum model

The quantum model is described by the anisotropic
Heisenberg Hamiltonian:

Ĥ = −J
∑
i

[
1

2

(
Ŝ+
i Ŝ

−
i+1 + Ŝ+

i+1Ŝ
−
i

)
+ ∆Ŝzi Ŝ

z
i+1

]
. (1)

We assume a ferromagnetic coupling J > 0, easy axis
anisotropy 1 < ∆ = 1 + ∆z = cosh Φ. Our reason
for taking easy axis anisotropy (1 < ∆) is that in this
case the analytical treatment of both the quantum and
the classical model is simplest.23,24 The ground state of
this model is twofold degenerate (all spins pointing up or
down). In the following we will take the state |↓↓ .. ↓↓〉
as the reference ground state. Note that the s = 1/2 ver-
sion of Eq. (1) is equivalent to a hard-core Bose-Hubbard
model.25 Consequently, each flipped spin with respect to
the references state can be interpreted as occupation by
one boson.

The energy for the lowest lying excitations with mo-
mentum −π ≤ k ≤ π and magnetization m (number of
flipped spins) for s = 1/2 is given by23

Em(k) = J · (coshmΦ− cos k)
sinh Φ

sinhmΦ
(2)

in the thermodynamical limit. These excitations are also
called m-magnon bound states and are completely delo-
calized over the whole system. To get localized excita-
tions (i.e., where the magnetization is distributed over a
region of a few sites), which could correspond to local-
ized classical solitons, it is necessary to construct wave
packets. These wave packets will consist of m-magnon
bound states with different momenta. If this momentum
distribution is peaked around k, we would expect a group
velocity given by the derivative of (2):

vG (m, k) = J sin k
sinh Φ

sinhmΦ
. (3)

The maximum velocity of these wave packets is hence
given by:

vmax(m) = vG

(
m,±π

2

)
= ±J sinh Φ

sinhmΦ
. (4)

B. Classical model

The classical model is described by the Landau-Lifshitz
equation (LLE).26 It can be derived from (1) by two ap-
proximations.

1. Ŝ → S = s (sin θ cosϕ, sin θ sinϕ, cos θ)
t
, the clas-

sical treatment of spins which leads to an error of
order 1/s.

2. Si → S(xi), the continuum treatment via the long
wavelength approximation with an error of order
∆2
z for low lying excitations.

The classical Hamiltonian is then given by

H = J

∫
dx

[
1

2

(
∂S

∂x

)2

+ ∆z

(
s2 − S2

z

)]
. (5)

For the low-energy excitations of this Hamiltonian (1-
soliton solutions), the quasi-classical quantization27 gives
an energy dispersion6

E(m, k) = 4s2J
√

2∆z

(
coshm

√
2∆z/2s− cos k

sinhm
√

2∆z/2s

)
. (6)

It can be seen that for s = 1/2 (6) is exactly the same
as (2) to first order in ∆z. Hence, even for the “most”
quantum-like case (s = 1/2), the energy spectra of the
low-energy excitations are identical for both the quan-
tum and the classical model. This leads naturally to an
identification between classical and quantum solutions.
But it is anyway an oddity that the classical spin profile
S(x) is localized in space and the quantum profile 〈Ŝi〉
is completely delocalized. So in order to get a classical
profile coming from the quantum model, it seems natural
to build wave packets as in the well known problem of a
free particle.
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FIG. 1. (Color online) Time evolution of Fock state | ↓↓
.. ↓↑↑↑↓ .. ↓↓〉 for s = 1/2, ∆ = 1.05 (left) and ∆ = 2 (right).
Lines show the expected movement with maximum group ve-
locity vmax (see (4)).

III. NUMERICAL INVESTIGATIONS

In the following simulations we assume J = 1 and
s = 1/2. The DMRG and t-DMRG algorithms were used
for Figs. 1 and 5 using open boundary conditions (OBC)
and a discarded weight of 10−9 for the time evolutions.28

Exact diagonalization for calculating the time evolution
was used in Figs. 2, 3 and 4. Here, periodic bound-
ary conditions (PBC) were used in order to calculate
the weights in Eq. (8) below in the basis of momentum
eigenstates. For both methods a second order Trotter
decomposition29 with ∆t = 0.01 was used for time evo-
lution.

A. Single spin flips

A very crude way to create wave packets is by flip-
ping single spins from the ground state. This will lead to
a very broad distribution in momentum space, meaning
that excitations with different momenta and magnetiza-
tion will be created. This can be seen clearly in Fig. 1.
Three spins are flipped in the middle of the chain. The
lines correspond to excitations with maximum group ve-
locity vmax according to (4) for different m (= 3, 2, 1 from
left to right) and ∆. Thus, it can be seen that also 1-
magnon (spin waves) and 2-magnon bound states are ex-
cited by a simple 3-spin flip. This is consistent, because
for m = 3 there exist higher excitations consisting of
m = 2 bound states plus one m = 1 scattering state as
well as 3 times m = 1 scattering states. From the point of
view of classic integrability, meaning excitations will go
through each other without interaction, this dissection of
the spectra is also necessary. If, for example, our initial
state consists of 2 × 3-magnon wave packets, these will
not disperse into 3 × 2-magnon wave packets during a
collision because the time evolution will always stay in
the initial 2 × 3-magnon bound-state sector.
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FIG. 2. (Color online) (left): Schematic profile of the mag-
netic fields for localizing the excitation and for shifting its
momentum distribution. (right): Time evolution of a local-
ized excitation (m = 1, ∆ = 1.05) and its momentum distri-

bution before applying the Ĥphase. Its initial width is bigger
than in Fig. 1 but spreads only slightly because of the sharp
momentum distribution around k = 0.

B. Constructing wave packets

The following way to create specific excitations is based
on the ideas of Ref. 30 to create dark solitons in Bose-
Einstein condensates. Our scheme is very similar and
consists of three main steps:

1. Instead of flipping m spins in the middle of the
chain, a more delocalized (in real space) wave packet will
be created by adding a magnetic field Bloc to the Hamil-
tonian (1) which shall attract the flipped spins to the
middle. Whence, numerical methods will yield a ground
state where the flipped spins (whose number can be set
by the initial magnetization) rest at the center.

2. Because of the symmetry, in momentum space the
wave packet will be localized around k = 0. In order
to kick this wave packet an additional time evolution is
done just with a specific magnetic field Bphase.

3. After this initial preparation of the wave packet,
its free time evolution under the Hamiltonian (1) can be
investigated.

Previous numerical work using this method has been
done in Refs. 8–10.

1. Localizing the wave packet

Because a simple spin flip creates a completely local-
ized excitation, the momentum distribution will be com-
pletely smeared out and the localized excitation will dis-
locate very quickly. To get an initial state, which is also
localized in momentum space, it is thus necessary to have
some delocalization in real space. To create such a state,
we add a magnetic field for localization (see Fig. 2) to
the Hamiltonian (1) of the following form:

Ĥloc =
∑
i

1

s
Bloc[i] · Ŝzi , (7)
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with Bloc[i] = − BLocA

cosh
(
x0−i
BLocW

) .
Fixing the magnetization m (i.e., the number of flipped
spins) and calculating the ground state will result in a
magnetization profile as can be seen in the right part of
Fig. 2. The term Ĥloc is only used for the initial state.
Time evolution is done just with (1). The parameters
BLocA and BLocW control the depth and width of the
magnetic field and therefore the localization of the wave
packet.

Using exact diagonalization in momentum space, the
projection of the initial state to the momentum eigen-
states of (1) can be calculated as well as their weight

weight (k, α) = |〈ψexcited|kα〉| . (8)

The index α runs through the number of eigenstates with
momentum k. For m = 1, there is just one such eigen-
state for each k. This weight distribution is shown below
the time evolutions in Fig. 2 and 3. The peaked mo-
mentum distribution around k = 0 in Fig. 2 clarifies the
stability of the magnetization profile.

2. Kicking the wave packet
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FIG. 3. (Color online) Time evolution for m = 1, ∆ = 1.05

using different Ĥloc and Ĥphase (see Table I) and its momen-
tum distribution. White lines show the expected movement
with group velocity vg(kP ), where kP is the momentum with
maximum weight.

To get the localized wave packet into movement it is
necessary to shift the momentum distribution to a k 6= 0.
Changing the phase of each Fock state in real space that
the initial state consists of will not change the magnetiza-
tion profile but the momentum distribution. This phase
change can be implemented by a time evolution of the
initial state with the following Hamiltonian:

Ĥphase =
∑
i

1

s
Bphase[i] · Ŝzi , (9)
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FIG. 4. (Color online) (left): Time evolution for m = 2,

∆ = 1.05 using Ĥloc and Ĥphase as specified for case d) in
Table I. A faster ray right to the main m = 2 moving bound
excitation can be seen, which is attributed to the weight in
the m = 1+1 scattering sector of the momentum distribution.
(right): By projecting out the states with the weight in the
m = 1 + 1 scattering sector, the faster ray disappears.

Case BLocA BLocW BPhA BPhW

a) 0.0075 20 5 60
b) 0.02 7 22.5 30
c) 0.15 50 85.5 60
d) 0.05 10 15 40

TABLE I. Parameters for Ĥloc and Ĥphase to generate the
excitations shown in Figs. 3–4.

with Bphase[i] = BPhA tanh

(
x0 − i
BPhW

)
.

The magnetic field Bphase[i] (sketched in Fig. 2) would
also suggest, that the wave packet would slide down to
the right corresponding to a momentum shift to k > 0.
This is indeed the case as can be seen in Fig. 3. BPhA

and BPhW modify the amplitude and width of the phase
imprinting magnetic field. Concerning the length tphase
of the time evolution with Ĥphase it should be noted that
the phase imprinted state depends only on the product
tphase · BPhA. That is why we fixed tphase = 1 and var-
ied BPhA. Fig. 3 shows thus that the picture of moving
wave packets with specific group velocity (defined by the
peak in their momentum distribution) is consistent. The

parameters for Ĥloc and Ĥphase were found31 by trial &
error and are given in Table I.

Using this scheme for creating wave packets with m >
1 will of course result also in other higher excitations.
This is shown in Fig. 4 for m = 2. The slower moving
excitation in the left part corresponds to a 2-bound wave
packet, while the faster light one corresponds to a spin
wave. The distribution in momentum space also shows
this. By using exact diagonalization in momentum space
it is possible to project out these spin wave excitations
from the 2 times m = 1 sector of the excitation spectra.
The result of this projection (the disappearance of the
faster spin wave excitation) is seen in the right part of
Fig. 4.
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FIG. 5. (Color online) (top): Time evolution of different
combined excitations (∆ = 1.05, for other parameters see
Table II). a) spin wave packet (m = 1) running through a
large static magnon complex consisting of two bound domain
walls (m = 20) and shifting it by 1 site to the right. b)
2 spin wave packets (m = 1) running through each other.
c) 2 magnon packets (m = 2) running through each other.
(bottom): corresponding initial magnetization profile

Case BLocA BLocW BPhA BPhW

a) left: NM = 20, x0 = 60 0.05 5 0 25
right: NM = 1, x0 = 120 0.02 5 −20 25

b) left: NM = 1, x0 = 30 0.02 5 20 25
right: NM = 1, x0 = 70 0.02 5 −20 25

c) left: NM = 2, x0 = 30 0.05 10 15 40
right: NM = 2, x0 = 90 0.05 10 −15 40

TABLE II. Parameters for Ĥloc and Ĥphase to generate the
excitations shown in Fig. 5.

3. Colliding wave packets

Using the methods described before it is also possible
to create two wave packets on a chain.32 Various sce-
narios can be obtained this way. Fig. 5 shows 3 types of
collisions. The first (a) shows the passing of a m = 1 spin
wave through a resting m = 20 bound state (which can
be considered as two bound domain walls). The move-

ment of the domain wall by exactly one site (correspond-
ing to one unit of magnetization m = 1) was predicted
earlier in Ref. 33 and can be seen here. The other two
settings (b) and (c) show the collision of two m = 1 and
m = 2 wave packets, propagating in opposite directions.
As known from classical integrability, these excitations
should just go through each other, because their charac-
teristics (i.e., momentum and magnetization) represent
integrals of motion. The parameters used for these cal-
culations are given in Table II.

IV. CONCLUSION

Based on the analytical findings of Ref. 24, we inves-
tigated the real-time evolution of quantum wave packets
in the ferromagnetic easy-axis Heisenberg model. They
were constructed in a way close to their classical soliton
counterparts by using additional magnetic fields to lo-
calize them and to give them a momentum kick. The
time evolution is consistent with the classical picture of
the integrable LLE and in the case of the setting shown
in Fig. 5(a) explicitly shows the analytical predictions of
Ref. 33.

This method of constructing localized wave packets
might also be used for non-integrable quantum systems,
where colliding wave packets might excite each other or
slow down and create new excitations from the back-
ground. Furthermore it might be used for examining
transport properties in spin system.
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33 A. V. Mikhăılov and A. I. Yaremchuk, Pis’ma Zh. Eksp.
Teor. Fiz. 39, 296 (1984) [JETP Lett. 39, 354 (1984)].

34 V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin,
Quantum inverse scattering method and correlation func-
tions (Cambridge University Press, 1997).

35 O. Derzhko, J. Richter, A. Honecker, and H.-J. Schmidt,
Low Temp. Phys. 33, 745 (2007) [Fizika Nizkikh Temper-
atur 33, 982 (2007)].

36 S. D. Huber and E. Altman, Phys. Rev. B 82, 184502
(2010).

http://dx.doi.org/10.1016/j.matcom.2009.08.025
http://dx.doi.org/ 10.1103/PhysRevA.85.053617
http://dx.doi.org/ 10.1103/PhysRevA.85.053617
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevE.71.036102
http://dx.doi.org/10.1103/PhysRevB.79.155104
http://dx.doi.org/ 10.1103/PhysRevA.80.041603
http://dx.doi.org/ 10.1103/PhysRevA.80.041603
http://dx.doi.org/10.1007/BF01341708
http://www.jetpletters.ac.ru/ps/809/article_12463.shtml
http://www.jetpletters.ac.ru/ps/809/article_12463.shtml
http://www.jetpletters.ac.ru/ps/1644/article_25093.shtml
http://dx.doi.org/ 10.1103/PhysRevA.63.051601
http://dx.doi.org/ 10.1103/PhysRevA.63.051601
http://www.jetpletters.ac.ru/ps/88/article_1550.shtml
http://www.jetpletters.ac.ru/ps/88/article_1550.shtml
http://www.jetpletters.ac.ru/ps/1299/article_19617.shtml
http://dx.doi.org/10.1063/1.2780166
http://dx.doi.org/10.1103/PhysRevB.82.184502
http://dx.doi.org/10.1103/PhysRevB.82.184502

	Solitary excitations in one-dimensional spin chains
	Abstract
	Introduction
	The model
	Quantum model
	Classical model

	Numerical Investigations
	Single spin flips
	Constructing wave packets
	Localizing the wave packet
	Kicking the wave packet
	Colliding wave packets


	Conclusion
	Acknowledgments
	References


