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The thermodynamic properties of the Shastry-Sutherland model have posed one of the longest-
lasting conundrums in frustrated quantum magnetism. Over a wide range on both sides of the
quantum phase transition (QPT) from the dimer-product to the plaquette-based ground state, nei-
ther analytical nor any available numerical methods have come close to reproducing the physics of
the excited states and thermal response. We solve this problem in the dimer-product phase by intro-
ducing two qualitative advances in computational physics. One is the use of thermal pure quantum
(TPQ) states to augment dramatically the size of clusters amenable to exact diagonalization. The
second is the use of tensor-network methods, in the form of infinite projected entangled pair states
(iPEPS), for the calculation of finite-temperature quantities. We demonstrate convergence as a
function of system size in TPQ calculations and of bond dimension in our iPEPS results, with com-
plete mutual agreement even extremely close to the QPT. Our methods reveal a remarkably sharp
and low-lying feature in the magnetic specific heat, whose origin appears to lie in a proliferation of
excitations composed of two-triplon bound states. The surprisingly low energy scale and apparently
extended spatial nature of these states explain the failure of less refined numerical approaches to
capture their physics. Both of our methods will have broad and immediate application in addressing
the thermodynamic response of a wide range of highly frustrated magnetic models and materials.

I. INTRODUCTION

Frustrated quantum spin systems, particularly those
forbidding magnetically ordered ground states, provide
one of the most important avenues in condensed mat-
ter physics for the realization and investigation of phe-
nomena ranging from fractionalization to many-particle
bound states, from massive degeneracy to topological or-
der, and from quantum entanglement to quantum criti-
cality [1]. Significant progress has been made in describ-
ing the ground states of many such quantum magnets in
two and three dimensions (2D and 3D), including differ-
ent types of valence-bond crystal and both gapped and
gapless quantum spin liquids [2]. However, a full under-
standing of the excitation spectrum and thermodynamic
response of frustrated quantum spin models, which is the
key to experimental interpretation, has remained elusive
in all but a small number of special cases. This is be-
cause no unbiased analytical or numerical methods exist
by which to study these properties for general systems at
low but finite temperatures and on lattices whose sizes
approximate the thermodynamic limit.

A case in point is the Shastry-Sutherland model [3],
which was constructed explicitly to have as its ground
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state a product state of dimer singlets. Also referred to
as the orthogonal dimer model [4], it is defined by the
Hamiltonian

H = JD
∑
〈i,j〉

~Si · ~Sj + J
∑
〈〈i,j〉〉

~Si · ~Sj , (1)

which is represented schematically in Fig. 1. JD is an
intra-dimer coupling (denoted by 〈ij〉) and J a mu-
tually frustrating inter-dimer coupling (denoted 〈〈ij〉〉).
The ground state is clearly a dimer-product phase at
small J/JD and a square-lattice antiferromagnet (AF) at
large coupling ratios. As intimated above, the ground-
state phase diagram is in fact quite well known, with
the most quantitatively accurate results provided by the
ansatz of infinite projected entangled-pair states (iPEPS,
which we will extend here to finite temperatures) [5].
As shown in Fig. 1, the singlet dimer-product state is
found up to J/JD = 0.675(2) and the AF state beyond
J/JD = 0.765(15), with a gapped, plaquette-based state
occurring in the intermediate regime. The lower quan-
tum phase transition (QPT) is of first order; the upper
one has also been found numerically to be first-order, but
only weakly so [5], and this has also been questioned [6].
Any finite temperature will destroy the magnetic order of
the AF phase in this 2D system. By contrast, in the pla-
quette phase one expects an Ising transition to occur at
finite temperatures as the plaquette order, which breaks
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FIG. 1. Geometry and coupling constants, JD and J (center
panel), of the Shastry-Sutherland model [Eq. (1)]. The three
panels show schematic representations of the singlet dimer-
product state, which is exact, the plaquette state, and the
Néel phase. Shaded ellipses and squares denote respectively
dimer- and plaquette-singlet states. Phase boundaries are
taken from Ref. [5].

the lattice symmetry, is lost. In the dimer-product state,
no such physics is expected.

Somewhat remarkably, the Shastry-Sutherland model
has a faithful realization in the material SrCu2(BO3)2,
which has exactly the right geometry and only weak non-
Heisenberg (primarily Dzyaloshinskii-Moriya) interac-
tions. Discovered in 1991 [7] and first studied for its mag-
netic properties 20 years ago this year [8], SrCu2(BO3)2
lies in the dimer-product phase [9] and shows a very flat
band of elementary triplet (“triplon”) excitations [10, 11].
Excellent magnetic susceptibility [8, 12] and specific-heat
[13] measurements made at this time were used to esti-
mate the coupling ratio as J/JD ' 0.635, thereby placing
SrCu2(BO3)2 rather close to the dimer-plaquette QPT.
Detailed experiments performed in the intervening two
decades have revealed a spectacular series of magnetiza-
tion plateaus [8, 14–21], as well as a curious redistribu-
tion of spectral weight at temperatures very low on the
scale of the triplon gap [11, 22]. Of most interest to our
current study is the result [23] that an applied pressure
makes it possible to increase the ratio J/JD to the extent
that, at approximately 1.9 GPa, the material is pushed
through the QPT into a plaquette phase. Data for the
specific heat under pressure have only appeared [24] con-
currently with the present study, and indicate that the
low-temperature peak moves to a lower temperature at
1.1 GPa before evidence of an ordered phase appears at
1.8 GPa.

In contrast to the ground state, the excited states
and thermodynamics of the Shastry-Sutherland model
are not at all well known around the QPT, despite the
attention focused on this regime due to SrCu2(BO3)2.
Full exact diagonalization (ED) has been limited to sys-
tems of up to 20 sites and, as we will demonstrate in
detail here, suffer from significant finite-size limitations
at J/JD > 0.6. Quantum Monte Carlo (QMC) methods
suffer from extreme sign problems, and despite a recent
study by some of us [25] that expands the boundaries of
what is possible by QMC, the low-temperature behavior
in the regime J/JD > 0.6 remains entirely inaccessible.
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FIG. 2. (a) Magnetic specific heat, C(T ), and (b) magnetic
susceptibility, χ(T ), of the Shastry-Sutherland model in the
regime of coupling ratios 0.60 ≤ J/JD ≤ 0.66. The number
of sites in the TPQ calculations is N = 36 and the shaded
regions show the standard error of the TPQ method for the
respective coupling ratios (Sec. IV). The iPEPS bond dimen-
sion is D = 18.

iPEPS methods work in the thermodynamic limit and are
immune to frustration problems, but to date have been
limited to ground-state properties. As a consequence,
two decades after their measurement, the best interpre-
tation of the thermodynamic properties of SrCu2(BO3)2
[12, 13], and the origin of the estimate J/JD = 0.635,
remain based on ED of 16- and 20-site clusters [4, 26].

Here we introduce two qualitative technical advances in
numerical methods for computing thermodynamic prop-
erties and benchmark them by application to the Shastry-
Sutherland model in the dimer-product phase up to the
QPT. For a quantum many-body system, a thermal equi-
librium state can be represented by a typical pure state,
which is known as a thermal pure quantum (TPQ) state
[27, 28]. This result can be understood as a consequence
of a more general phenomenon, known as quantum typ-
icality [29, 30]. All statistical-mechanical quantities can
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be obtained from averaging over a few TPQ states. For
practical purposes, obtaining TPQ states by ED allows
access to thermodynamic quantities without having to
perform a full diagonalization, and hence admits a quali-
tative increase in accessible system sizes [31, 32]. We will
exploit TPQ methods to reach system sizes of N = 40 in
the Shastry-Sutherland problem.

iPEPS are a tensor-network ansatz to represent a quan-
tum state on an infinite lattice [33–35], here in 2D, whose
accuracy is controlled by the bond dimension, D, of the
tensor. In fact this ansatz provides not only a com-
pact representation for the ground states of gapped lo-
cal Hamiltonians, but also for representing a purification
of the thermal density operator, and hence the thermal
states of local Hamiltonians. Here we exploit newly de-
veloped algorithms [36] allowing the efficient calculation
of imaginary-time evolution processes, which in general
require additional truncation to retain the value of D at
each time step, to generate thermal states of the Shastry-
Sutherland Hamiltonian and hence to compute its ther-
modynamic properties.

Our TPQ and finite-T iPEPS methods enable us to
capture the physics of the Shastry-Sutherland model,
and thus of SrCu2(BO3)2, in a way not hitherto possi-
ble near the QPT. To illustrate this clearly, in Fig. 2 we
show sample results from both methods for the magnetic
specific heats and susceptibilities of Shastry-Sutherland
models with coupling ratios J/JD = 0.60, 0.63, 0.65, and
0.66. Over this small range of couplings near the QPT,
the specific heat develops a pronounced two-peak form,
with a broad higher peak lying just beyond the range
of Fig. 2(a). The narrow lower peak, presumably also
characteristic of finite-energy excitations in the magnet-
ically disordered dimer-product phase, becomes surpris-
ingly sharp and moves to a remarkably low energy as the
QPT is approached. The corresponding susceptibilities
rise increasingly abruptly before an increasingly “square”
turnover at their maximum. We draw attention to the
fact that the results from both our methods are in excel-
lent quantitative agreement, apart from the specific-heat
peak heights extremely close to the QPT. These charac-
teristic shapes, and their systematic evolution, have not
been obtained before and shed new light both on the ther-
modynamic quantities themselves and on the underlying
excitation spectrum responsible for their form.

The manuscript is organized as follows. In Sec. II we
introduce TPQ states and their application to the calcu-
lation of thermodynamic quantities. In Sec. III we pro-
vide a brief introduction to iPEPS and discuss the gen-
eration of thermal states by their imaginary-time evolu-
tion. Section IV presents our complete results from both
methods for the magnetic specific heat and susceptibility
of the Shastry-Sutherland model over the coupling range
0.60 ≤ J/JD ≤ 0.66, which are summarized in Fig. 2
and which it has not been possible to obtain with any
reliability in previous studies. In Sec. V we discuss the
physics of the sharp features we observe in the specific
heat near the QPT, the limits of our numerical methods

in the context of the Shastry-Sutherland model, and the
application of our results to the material SrCu2(BO3)2.
Section VI contains a brief summary and perspective con-
cerning the impact of our results in frustrated quantum
magnetism.

II. THERMODYNAMICS FROM THERMAL
PURE QUANTUM STATES

To evaluate the thermal average of a quantum mechan-
ical observable, A, in the canonical ensemble, one com-
putes

〈A〉 = Tr(e−βHA)/Z, (2)

where H denotes the Hamiltonian, β = 1/(kBT ) the
inverse temperature, kB the Boltzmann constant, and
Z = Tr(e−βH) the canonical partition function. Ther-
mal pure quantum (TPQ) states provide an alternative
approach to the evaluation of thermodynamic proper-
ties [27, 28]. The trace of any operator, A, can be evalu-
ated by taking the average of its expectation values over
a set of random vectors,

Tr(A) = d 〈r|A|r〉, (3)

where |r〉 denotes a normalized vector with random
normal-distributed components and d denotes the dimen-
sion of the Hilbert space. Hence, any thermal average can
be estimated by evaluating

〈A〉 =
〈β|A|β〉
〈β|β〉

, (4)

where

|β〉 ≡ e−
β
2H |r〉 (5)

denotes the “canonical TPQ” state [28] and . . . denotes
the average over the random vectors |r〉. Importantly,
the TPQ state, |β〉, is still random. The variance of the

estimate in Eq. (4) decreases as 1/
√
d, where d = 2N for

a S = 1/2 lattice model on N sites, and hence becomes
exponentially small as a function of the system size under
only mild assumptions about the form of the operator H;
a precise statement may be found in Ref. [28]. For larger
system sizes, it is therefore necessary to generate only rel-
atively few random TPQ states, |β〉, in order to achieve
small statistical errors. Because the samples in the de-
nominator and the numerator of Eq. (4) are correlated
when evaluated from the same set of random vectors, |r〉,
we perform a jackknife analysis [37] to estimate the error
bars.

The key advantage of using TPQ states, when com-
pared with evaluating statistical averages using the stan-
dard formalism of Eq. (2), is that the state |β〉 can be
approximated numerically to arbitrary precision with-
out resort to a full diagonalization of the Hamiltonian,
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H. Variants of the TPQ method have been employed
in several numerical studies of static and dynamical ob-
servables [31, 32, 38–42]. Whereas Ref. [28] proposed a
Taylor-expansion technique, here we improve the speed of
convergence by using the Lanczos basis [43] of the Krylov
space of H to evaluate the states |β〉.

The nth orthonormal basis vector in the Lanczos basis,
|vn〉, is given recursively [44] by

|vn〉 = |v̂n〉 /bn, with (6)

|v̂n〉 = H |vn−1〉 − an−1 |vn−1〉 − bn−1 |vn−2〉 , (7)

where |v1〉 = |r〉, b1 = 0, and

an = 〈vn|H|vn〉 , bn = ‖v̂n‖ . (8)

By defining the matrix of Lanczos vectors

Vn = (v1| . . . |vn) , (9)

the nth Lanczos approximation of H can be written as

H ≈ VnTnV †n , (10)

where Tn is a tridiagonal matrix given by

Tn =



a1 b2 0 · · · 0

b2 a2 b3 0
...

0 b3
. . .

. . . 0
...

. . . an−1 bn
0 · · · 0 bn an


. (11)

We use this approximation to evaluate

〈β|A|β〉 = 〈r|e−
β
2HAe−

β
2H |r〉

≈ 〈r|Vne−
β
2 TnV †nAVne−

β
2 TnV †n |r〉

= e1e−
β
2 TnV †nAVne−

β
2 Tne1,

(12)

where e1 = (1, 0, . . . , 0)T. In the case that A is a power
of the Hamiltonian, A = Hk, we have

V †nH
kVn = T kn . (13)

We stress that the only quantities to be computed are
the sequences an and bn. Further, results at all temper-
atures can be obtained from a single evaluation of the
Lanczos basis. The exponentiated tridiagonal matrices,

e−
β
2 Tn , are computed by the eigendecomposition of the

matrices Tn and exponentiation of the diagonal matrix of
eigenvalues. The eigendecomposition of Tn is computed
using an implicit QR method [45–47] by calling the LA-
PACK routine dsteqr [48, 49]. The dimension, n, of the
Krylov space is increased until the desired precision is
achieved. The computations in this manuscript required
a dimension n < 150 to achieve a precision superior to
the statistical errors.

In our computations we use a block-diagonal form of
the Hamiltonian,

H =
⊕
ρ

Hρ, (14)

where the blocks Hρ correspond to the Hamiltonian in
different lattice-symmetry and total-Sz sectors. Statisti-
cal averages are evaluated in each individual block and
then summed,

Tr
(
e−βHA

)
=
∑
ρ

Tr
(
e−βHρAρ

)
. (15)

We employ the techniques proposed in Ref. [50] to per-
form the computations in the individual symmetry sec-
tors.

It has recently become possible to compute Lanczos
approximations in particular symmetry sectors for sys-
tems of up to N = 50 S = 1/2 sites for the Heisenberg
model on the square lattice and N = 48 S = 1/2 on
the kagome lattice [50]. It is worth noting here that the
latter geometry and model are particularly favorable for
TPQ [28] because the density of states is high at very low
energies [51]. However, deriving thermodynamic quan-
tities from the TPQ method requires that these Lanc-
zos approximations be computed multiple times in each
symmetry sector for a number, R, of random “seeds”,
i.e. independent random realizations of the vector |r〉 in
Eq. (5), and it is R that determines the statistical error.
Thus restrictions on CPU time currently limit the practi-
cal application of the TPQ approach to an upper limit of
40–42 S = 1/2 spins. More specifically, the calculations
in this manuscript were performed with R = 80 seeds for
all coupling ratios J/JD on clusters of N = 32 spins and
R = 20 for the N = 36 cluster, except at J/JD = 0.63,
where R = 40 seeds were evaluated. For the N = 40 clus-
ter we used R = 5. In total, the TPQ calculations in this
manuscript required approximately 5.5M CPU hours.

We comment that our implementation of the TPQ
method is reminiscent of the finite-temperature Lanczos
method [52], which has also recently been pushed to a
cluster of N = 42 S = 1/2 spins for the kagome lattice
[53]. Although the precise relation between these two
different methods remains to be understood, currently
we believe that the TPQ approach has a more system-
atic theoretical foundation and as a consequence that the
errors within this approach are better controlled.

For system sizes N ≤ 20, full diagonalization of the
Hamiltonian yields numerically exact results with no sta-
tistical errors. An intermediate method is to compute
a large number of low-lying eigenstates, for example by
using the variant of the Lanczos method outlined in
Ref. [54], and to approximate the low-temperature ther-
modynamics using these. Despite the significant advan-
tage of also providing results that are entirely free of sta-
tistical errors, this method remains restricted by the fact
that the required numbers of eigenvalues are large even
at the surprisingly low temperatures where the dominant
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FIG. 3. (a) Magnetic specific heat, C(T ), and (b) suscepti-
bility, χ(T ), per dimer at coupling ratio J/JD = 0.63, com-
paring results obtained from ED and TPQ calculations for
system sizes from N = 16 to 40 sites

physical processes occur in the present case (Sec. IV).
Thus we present benchmarking Lanczos ED results for
cluster sizes up to N = 28, although we comment that
N = 32 would be accessible were we to invest CPU times
comparable to those used in our TPQ calculations.

As an illustration of the manner in which TPQ system
sizes allow access to the thermodynamic properties of
the Shastry-Sutherland model, in Fig. 3(a) we show the
specific heat per dimer,

C(T ) ≡ 2

N

∂E

∂T
=

2

N
β2
[
〈H2〉 − 〈H〉2

]
, (16)

where E ≡ 〈H〉 is the energy, obtained from our TPQ
calculations for coupling ratio J/JD = 0.63 with N =
32, 36, and 40. Figure 3(b) shows the corresponding
magnetic susceptibility per dimer,

χ(T ) ≡ 2

N

∂m

∂h

∣∣∣∣
h=0

=
2

N
β
[
〈M2〉 − 〈M〉2

]
, (17)

where h is a magnetic field applied along the z-axis and
m ≡ 〈M〉, with

M =

N∑
i=1

Szi , (18)

denotes the total magnetization. In both panels of Fig. 3,
we compare these TPQ results with ED calculations for
systems of sizes N = 16 and 20, and at low tempera-
tures N = 24 and 28. The details and context of these
results will be discussed in full in Secs. IV and V; for
the purposes of this introduction, we stress that both
C(T ) and χ(T ) have sharp physical features, namely the
low-temperature peak in the former and shoulder in the
latter, whose shape is manifestly not well reproduced at
small N but becomes very much clearer as N is increased.
From Fig. 2, this type of access to larger N values be-
comes increasingly important as the QPT is approached.

III. THERMODYNAMICS FROM IPEPS

An infinite projected entangled-pair state (iPEPS), as
a tensor-network ansatz representing a 2D quantum state
in the thermodynamic limit [33–35], can be seen as a
natural generalization of infinite matrix-product states
(MPS) to two, or indeed higher, dimensions. While the
rank of the tensors used in the representation is deter-
mined by the physical problem, the amount of informa-
tion they contain is determined by their bond dimension,
D, which is used to control the accuracy of the ansatz.
Although iPEPS were introduced originally for represent-
ing the ground states of local Hamiltonians, more re-
cently several iPEPS methods have been developed for
the representation of thermal states [36, 55–65]. Here
we focus on the approaches discussed in Ref. [36], where
an iPEPS is used to represent a purification of the 2D
thermal density operator. However, we note that an al-
ternative route to the calculation of finite-temperature
properties would be by a direct contraction of the associ-
ated (2+1)D tensor network using (higher-order) tensor
renormalization-group methods [66]. We comment that
MPS-based methods have also been applied recently [67–
70] to compute the thermal response of finite 2D systems
in cylindrical geometries; these approaches provide accu-
rate results for cylinders up to a circumference W , which
is limited by an exponential increase of the required bond
dimension with W .

An iPEPS consists of a unit cell of tensors which is
repeated periodically on an infinite lattice. For a ground
state (pure state), each tensor has one physical index, p,
describing the local Hilbert space of the dimer and four
auxiliary indices, r, t, l, and b [Fig. 4(a)], each with bond
dimension D, which connect the tensor to its four nearest
neighbors on a square lattice. For the Shastry-Sutherland
model [Fig. 1] we require one tensor per dimer, arranged
in a unit cell with two tensors, A and B, in a checkerboard
pattern, as shown in Fig. 4(b).



6

b
<latexit sha1_base64="nK3dium9cO0vNvcmNDJyr31p80E=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUDAalsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxXvulJt1sr1Wh5HAc7hAq7Agxuowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4AwfmM3A==</latexit> p

<latexit sha1_base64="TQ6SpB9YKWeCJGb5mUhHbb62RcU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUTAalsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxXvulJt1sr1Wh5HAc7hAq7Agxuowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4A1zGM6g==</latexit>

r
<latexit sha1_base64="RM7OGpXSXSKZ4ES3Ar0o0F6Pow0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUVINS2a24C5B14uWkDDkag9JXfxizNEJpmKBa9zw3MX5GleFM4KzYTzUmlE3oCHuWShqh9rPFoTNyaZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTXjrZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTdGG4K2+vE7a1Yp3Xak2a+V6LY+jAOdwAVfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9YNJ585gz9wPn8A2jmM7A==</latexit>

l
<latexit sha1_base64="Ph8ushdne6mb+7Iboo+VdEYESQw=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUFINS2a24C5B14uWkDDkag9JXfxizNEJpmKBa9zw3MX5GleFM4KzYTzUmlE3oCHuWShqh9rPFoTNyaZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTXjrZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTdGG4K2+vE7a1Yp3Xak2a+V6LY+jAOdwAVfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9YNJ585gz9wPn8A0SGM5g==</latexit>

p
<latexit sha1_base64="TQ6SpB9YKWeCJGb5mUhHbb62RcU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUTAalsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxXvulJt1sr1Wh5HAc7hAq7Agxuowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4A1zGM6g==</latexit>

r
<latexit sha1_base64="RM7OGpXSXSKZ4ES3Ar0o0F6Pow0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUVINS2a24C5B14uWkDDkag9JXfxizNEJpmKBa9zw3MX5GleFM4KzYTzUmlE3oCHuWShqh9rPFoTNyaZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTXjrZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTdGG4K2+vE7a1Yp3Xak2a+V6LY+jAOdwAVfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9YNJ585gz9wPn8A2jmM7A==</latexit>

l
<latexit sha1_base64="Ph8ushdne6mb+7Iboo+VdEYESQw=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUFINS2a24C5B14uWkDDkag9JXfxizNEJpmKBa9zw3MX5GleFM4KzYTzUmlE3oCHuWShqh9rPFoTNyaZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTXjrZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTdGG4K2+vE7a1Yp3Xak2a+V6LY+jAOdwAVfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9YNJ585gz9wPn8A0SGM5g==</latexit>

a
<latexit sha1_base64="CnSZxB6B9ZvYt1F4bfD6IAF9lcQ=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUpINS2a24C5B14uWkDDkag9JXfxizNEJpmKBa9zw3MX5GleFM4KzYTzUmlE3oCHuWShqh9rPFoTNyaZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTXjrZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTdGG4K2+vE7a1Yp3Xak2a+V6LY+jAOdwAVfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9YNJ585gz9wPn8AwHWM2w==</latexit>

B

BA

A

B

BA

A

(a) (b)

(c) (d)

(e)

t
<latexit sha1_base64="RwvgBW097nXttmUg7xzJJZKjMnQ=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LHgxWML9gPaUDbbTbt2swm7E6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsbm1vbObmGvuH9weHRcOjltmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmd3O/88S1EbF6wGnC/YiOlAgFo2ilJg5KZbfiLkDWiZeTMuRoDEpf/WHM0ogrZJIa0/PcBP2MahRM8lmxnxqeUDahI96zVNGIGz9bHDojl1YZkjDWthSShfp7IqORMdMosJ0RxbFZ9ebif14vxfDWz4RKUuSKLReFqSQYk/nXZCg0ZyinllCmhb2VsDHVlKHNpmhD8FZfXiftasW7rlSbtXK9lsdRgHO4gCvw4AbqcA8NaAEDDs/wCm/Oo/PivDsfy9YNJ585gz9wPn8A3UGM7g==</latexit>

b
<latexit sha1_base64="nK3dium9cO0vNvcmNDJyr31p80E=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUDAalsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxXvulJt1sr1Wh5HAc7hAq7Agxuowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4AwfmM3A==</latexit>

t
<latexit sha1_base64="RwvgBW097nXttmUg7xzJJZKjMnQ=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LHgxWML9gPaUDbbTbt2swm7E6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsbm1vbObmGvuH9weHRcOjltmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmd3O/88S1EbF6wGnC/YiOlAgFo2ilJg5KZbfiLkDWiZeTMuRoDEpf/WHM0ogrZJIa0/PcBP2MahRM8lmxnxqeUDahI96zVNGIGz9bHDojl1YZkjDWthSShfp7IqORMdMosJ0RxbFZ9ebif14vxfDWz4RKUuSKLReFqSQYk/nXZCg0ZyinllCmhb2VsDHVlKHNpmhD8FZfXiftasW7rlSbtXK9lsdRgHO4gCvw4AbqcA8NaAEDDs/wCm/Oo/PivDsfy9YNJ585gz9wPn8A3UGM7g==</latexit>

FIG. 4. (a) Graphical representation of an iPEPS tensor,
Artlbp , in which each leg corresponds to an index of the tensor.
The physical index, p (green leg), represents the local Hilbert
space of a lattice site (here a dimer) and the other four, r, t,
l, and b are auxiliary indices, each with bond dimension D,
which connect neighboring tensors. (b) A standard iPEPS
representing a pure state, shown here for a unit cell containing
two different tensors, A and B, arranged in a checkerboard
pattern on the infinite lattice. A connection between two
tensors implies taking the sum over the corresponding index.
(c) iPEPS tensor with an extra index, a (blue leg), represent-
ing the local Hilbert space of an ancilla site. (d) iPEPS ansatz
for the purification, |Ψ(β)〉, of the thermal density operator,
ρ(β). (e) Representation of ρ(β) = Tra |Ψ(β)〉 〈Ψ(β)|, where
the trace is taken over all ancilla degrees of freedom (shown
by the connected blue lines).

We represent a thermal density operator, ρ(β) = e−βĤ ,
at inverse temperature β by its “purification,” |Ψ(β)〉,
which is a pure state in an enlarged Hilbert space where
each physical site, j (here a dimer with local dimen-
sion d = 4), is accompanied by an ancilla site with
the same local dimension, described by a local basis
|p, a〉j , where p and a denote respectively the local phys-
ical and ancilla basis states. The representation of the
thermal state is through its thermal density operator,
ρ(β) = Tra |Ψ(β)〉〈Ψ(β)|, where the trace is taken over
all ancilla degrees of freedom, a. Physically, the ancilla
states act as a perfect heat bath, and taking the trace
gives exact thermodynamic averages. In tensor-network
notation, each ancilla site is incorporated through the
additional index a [blue lines in Fig. 4(c)], leading to the
diagrammatic representation of |Ψ(β)〉 shown in Fig. 4(d)
and of ρ(β) in Fig. 4(e) [71].

At infinite temperature (β = 0), |Ψ(0)〉 can be repre-

sented by the product state, |Ψ(0)〉 =
∏
j

∑d
k=1 |k, k〉j

(with bond dimension D = 1), which for ρ(0) yields
the identity operator. The purified state at any given
β can be obtained as |Ψ(β)〉 = Û(β/2) |Ψ(0)〉, where the

imaginary-time evolution operator Û(β) = e−βĤ acts on
the physical degrees of freedom of |Ψ(0)〉. In practice

we use a Trotter-Suzuki decomposition of Û(β), mean-
ing it is split into M imaginary-time steps, τ = β/M ,
and approximate the operator for a single time step by
a product of nearest-neighbor time-evolution operators,

Û(τ) =
∏
〈i,j〉 Ûij(τ), with Ûij(τ) = e−τĤij , where 〈i, j〉

denotes all nearest-neighbor site pairs in the unit cell [72].

Each application of Ûij increases the bond dimension
between the tensors on sites i and j to a larger value,
D′ > D, which for reasons of efficiency must be trun-
cated back to D at every step. As in the imaginary-time
evolution of ground states, there exist several approaches
for the truncation of a bond index, the two most common
being the simple- [73] and full-update methods [34, 74].
In the simple-update approach, the truncation is per-
formed using a local approximation of the state, which
is computationally cheap but does not yield the optimal
truncation. In the full-update approach, a bond is trun-
cated in a manner optimal under the method by which
the entire state is taken into account; however, this is con-
siderably more computationally expensive and in general
it is not possible to reach bond dimensions as large as
by the simple-update technique. Below we compare re-
sults obtained by these two approaches. Further details
concerning the iPEPS ansatz and algorithms for thermal
states may be found in Ref. [36].

For contraction of the thermal-state tensor network,
which is required to compute all physical expectation val-
ues, we use a variant [75] of the corner-transfer-matrix
(CTM) renormalization-group method [76, 77] in which
the accuracy is controlled by the boundary bond dimen-
sion, χ̃. To improve the efficiency of the calculations we
exploit the global U(1) symmetry [78, 79] of the model of
Eq. (1). Further details of the iPEPS methods we employ
here may be found in Refs. [5, 74, 80].

Turning to the evaluation of the thermodynamic prop-
erties of the Shastry-Sutherland model with iPEPS, we
obtain the magnetic specific heat [Eq. (16)] from the
numerical derivative of the energy as a function of the
temperature and the magnetic susceptibility [Eq. (17)]
from the numerical derivative of the magnetization with
respect to a small external magnetic field, h. To il-
lustrate the dependence of our results on the parame-
ters τ , D, and χ̃ intrinsic to the iPEPS procedure, in
Figs. 5 and 6 we show example data for the coupling
ratio J/JD = 0.63.

Our primary results are obtained using a second-order
Trotter-Suzuki decomposition with a time step τ = 0.04.
To demonstrate that this value is sufficiently small,
meaning that the Trotter discretization error is negligi-
ble compared to the finite-D errors (below), in Fig. 5 we
show the comparison with results obtained using a time
step τ = 0.005. Further, it is easy to show that a rela-
tively small boundary bond dimension, such as χ̃ = 50
for D = 14, is large enough for the accurate computation
of expectation values. As both panels of Fig. 5 make
clear, results obtained using χ̃ = 80 are almost identical
to χ̃ = 50. To compute the magnetic susceptibility we
use a field h/JD = 0.01, which is sufficiently small that
the discretization error is not significant; a comparison
with h/JD = 0.005 is shown in Fig. 5(b).

As noted above, the key figure of merit in iPEPS cal-
culations of physical quantities is D. Because the “ap-
propriate” value of D to capture the physics of a sys-
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FIG. 5. Comparison of D = 14 iPEPS data for (a) the mag-
netic specific heat and (b) the magnetic susceptibility for the
Shastry-Sutherland model with J/JD = 0.63. The reference
line corresponds to a D = 14 simple-update calculation with
time step τ = 0.04, boundary bond dimension χ̃ = 50, and
in panel (b) a field h/JD = 0.01. For each of the other lines,
one parameter has been varied in the calculation with respect
to the reference line, as indicated in the legend. The insets
magnify the maxima and the minimum.

tem varies widely with the problem at hand, we will fo-
cus throughout our analysis of the Shastry-Sutherland
model on benchmarking our results by comparing D val-
ues. To begin the investigation of D-dependence, and
finite-D convergence, in Fig. 6 we present iPEPS data
for J/JD = 0.63, obtained by the simple-update method
for a range of different bond dimensions. We find in
Fig. 6(a) that the position of the specific-heat peak shifts
slightly (4%) downwards in temperature with increasing
D, while its height is also reduced (2%). However, these
changes take place largely from D = 12 to D = 16,
whereas changes between the D = 16 and D = 18 data
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FIG. 6. iPEPS results for (a) the magnetic specific heat
and (b) the magnetic susceptibility of the Shastry-Sutherland
model with J/JD = 0.63, obtained by the simple-update
method for different values of the bond dimension, D. The
insets magnify the maxima and the minimum.

are scarcely discernible on the scale of the figure. In the
susceptibility [Fig. 6(b)], finite-D effects are clearly very
small for T/JD > 0.2; for 0.05 < T/JD < 0.2 a small
increase can be observed with increasing D.

Finally, to investigate the difference between results by
using the simple- and full-update approaches, we return
to Fig. 5. At fixed D = 14, this difference is relatively
small in the specific heat, amounting to changes of less
than 2% in the position and height of the peak [inset,
Fig. 5(a)]. For the susceptibility, differences between the
two approaches are minimal [Fig. 5(b)]. Because this
difference is small in comparison with the finite-D effects
shown in Fig. 6, we focus henceforth on the simple-update
approach, which allows us to reach bond dimensions as
large as D = 20 in the present problem, rather than
the full-update approach, where D = 14 represents a
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FIG. 7. (a) Magnetic specific heat of the Shastry-Sutherland
model at J/JD = 0.50, computed by TPQ with N = 32 and
36 and by iPEPS with D = 16 and 18. Shown for comparison
are ED results with N = 20 and QMC results with N = 32
and 200. (b) Corresponding magnetic susceptibility.

practical upper limit.

IV. THERMODYNAMICS OF THE
SHASTRY-SUTHERLAND MODEL WITH

0.60 ≤ J/JD ≤ 0.66

We begin the systematic presentation and comparison
of our thermodynamic results by making contact with
the previous state of the art, as shown in Ref. [25]. The
analysis of these authors, which included ED, QMC, and
high-temperature series expansions (HTSEs), terminated
at the coupling ratio J/JD = 0.60, where all three meth-
ods were beyond their limits. However, it was shown that
QMC remains a highly accurate technique, with only
minimal sign problems and thus applicable with large
system sizes, for J/JD < 0.526. Thus we first show, in
Fig. 7, the magnetic specific heat and susceptibility for

J/JD = 0.50 computed by TPQ for system sizes N = 32
and 36 and by iPEPS with D = 16 and 18. By compar-
ison with the large-system QMC benchmark (N = 200
sites), we observe that our iPEPS data, arguably a prod-
uct of the newest and least well-characterized technique,
agree precisely for both bond dimensions shown.

For ED-based methods, it was known already [25] that
clusters of size N = 20 give an adequate account of the
thermodynamics at this coupling ratio, with the excep-
tion of the very peak in C(T ) [Fig. 7(a)]. Nevertheless,
our TPQ results contain two surprises, in the form of the
rather large errors and the significant difference between
results for the two cluster sizes. Regarding how accu-
rately TPQ reproduces both C(T ) and χ(T ) at temper-
atures around the C(T ) peak, we note that our N = 32
results do indeed lie close to the QMC benchmark for this
system size, with the discrepancy being well within the
error tube. Quite generally, the origin of these somewhat
large errors lies in the very low density of low-lying states
in the spectrum, as pointed out in Ref. [28], and this is
certainly the case in the Shastry-Sutherland model when
the gap is as large as its value at J/JD = 0.5 (more de-
tails may be found in Sec. VA). We will show that our
TPQ results become progressively more accurate as the
system approaches the QPT, which reduces the gap, until
coupling ratios very close to the transition. With regard
to the effects of the shape or geometry of the cluster,
regrettably the method allows little control beyond the
absolute value of N .

In Fig. 8 we move into the previously intractable pa-
rameter regime by showing the specific heat and suscepti-
bility at J/JD = 0.60 computed by TPQ for system sizes
N = 32 and 36 and by iPEPS with D = 14, 16, and 18.
Focusing first on the specific heat [Fig. 8(a)], we still ob-
serve a single peak at low temperatures (T/JD ' 0.12),
but followed by a very flat plateau extending to T/JD '
0.45. It is clear that our TPQ results, augmented by
an ED calculation with N = 28 reaching temperatures
just above the peak, exhibit finite-size effects in this re-
gion. Both the position and the sharpness of the peak
show a significant evolution as the system size is aug-
mented, although from N = 32 to 36 the difference is
within the error bars of the method. As expected from
Sec. III, the three iPEPS bond dimensions show good
convergence, in fact to a peak shape exactly between the
two TPQ estimates. Outside the peak region, all meth-
ods and sizes agree extremely well, and also converge at
high temperatures to the values obtained by QMC, which
returns results of acceptably low statistical uncertainty at
T/JD & 0.25 for this coupling ratio [25].

The corresponding susceptibility [Fig. 8(b)] is less sen-
sitive to differences in either system size or bond dimen-
sion. Indeed, only an ED calculation with N = 20 is
not capable of capturing the maximum of χ(T ) for this
coupling ratio. However, the two TPQ results do differ
concerning the exact location in temperature of the rapid
rise in χ(T ), and the fully convergent iPEPS results ap-
pear to offer the benchmark. All of our calculations agree



9

0.0 0.1 0.2 0.3 0.4 0.5
T/JD

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
C

(a) J/JD = 0.60

ED N = 20

ED N = 28

TPQ N = 32, R = 80

TPQ N = 36, R = 20

iPEPS D = 14

iPEPS D = 16

iPEPS D = 18

QMC N = 32

0.0 0.1 0.2 0.3 0.4 0.5
T/JD

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

χ
J
D
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FIG. 8. (a) Magnetic specific heat of the Shastry-Sutherland
model at J/JD = 0.60, computed by TPQ with N = 32
and 36 and by iPEPS with D = 14, 16, and 18. Shown for
comparison are ED results with N = 20 and with N = 28 at
temperatures T/JD ≤ 0.14, as well as QMC results with N =
32 from Ref. [25]. (b) Corresponding magnetic susceptibility.

closely on the location of the broad maximum. We com-
ment that the characteristic temperature of χ(T ) need
not match that of C(T ), given that the former has contri-
butions only from magnetic states but the latter includes
the contributions of singlets. However, at this coupling
ratio, where the one-triplon excitations of the system lie
below all two-triplon bound states [25], the peak in C(T )
and the rise of χ(T ) do indeed coincide. We discuss the
excitation spectrum of the model in detail in Sec. VA.

As noted in Sec. I, the coupling ratio J/JD = 0.63
has special significance in the Shastry-Sutherland model
because of its proposed connection to the material
SrCu2(BO3)2, and for this reason we have already used
it for benchmarking purposes in Secs. II and III. In Fig. 9
we compare our TPQ and iPEPS results for C(T ) and
χ(T ). Independent of either method, we observe that the
specific-heat peak has become sharper, although not any
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(b) J/JD = 0.63
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FIG. 9. (a) Magnetic specific heat of the Shastry-Sutherland
model at J/JD = 0.63, computed by TPQ with N = 32, 36,
and 40 and by iPEPS with D = 14, 16, and 18. Shown for
comparison are ED results with N = 20 and with N = 28
at temperatures T/JD ≤ 0.125, as well as QMC results with
N = 32. (b) Corresponding magnetic susceptibility.

taller, and that the drop on its high-T side has turned
into a true minimum, before C(T ) recovers to a broad
maximum around T/JD = 0.45. The position of the
sharp peak has moved down to T/JD ' 0.10, which is a
remarkably large shift for such a small change in coupling
ratio. Although the corresponding features are far less
pronounced in χ(T ), it it clear that onset is considerably
steeper than at J/JD = 0.60 and that the temperature
scales both for it and for the flat maximum are lower.

Focusing on the details of C(T ) [Fig. 9(a)], once again
our TPQ results for N = 32 and 36, particularly in
combination with N = 28 ED, show nontrivial changes
around the peak, both in its position and its height. How-
ever, the N = 40 data appear to offer a systematic inter-
polation of both quantities. In our iPEPS results, D = 14
no longer appears representative of the large-D limit at
this coupling ratio, but finite-D effects seem to become
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FIG. 10. (a) Magnetic specific heat of the Shastry-Sutherland
model at J/JD = 0.65, computed by TPQ with N = 32
and 36 and by iPEPS with D = 14, 16, and 18. Shown for
comparison are ED results with N = 20 and with N = 28
at temperatures T/JD ≤ 0.11, as well as QMC results with
N = 32. (b) Corresponding magnetic susceptibility.

very small at higher D. Qualitatively, our optimal iPEPS
peak appears to be very close to the form at which one
might expect the TPQ results to converge with system
size, and we will quantify this statement below. In χ(T )
[Fig. 9(b)], the two methods achieve full convergence for
all N and D, despite the lowering effective temperature
scales, and we draw attention to the fact that previous
ED and QMC studies at this coupling ratio could not
capture this low-temperature behavior with any accu-
racy; we revisit this point in the context of SrCu2(BO3)2
in Sec. VC.

Proceeding yet closer to the QPT, Fig. 10 shows the
specific heat and susceptibility at the coupling ratio
J/JD = 0.65. Clearly the “peak-dip-hump” shape of
C(T ) has become significantly more pronounced in all
respects than at J/JD = 0.63; the peak is sharper, the
dip is deeper, and the separation of the peak and the
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FIG. 11. (a) Magnetic specific heat of the Shastry-Sutherland
model at J/JD = 0.66, computed by TPQ with N = 32
and 36 and by iPEPS with D = 14, 16, and 18. Shown for
comparison are ED results with N = 20 and with N = 28
at temperatures T/JD ≤ 0.10. (b) Corresponding magnetic
susceptibility.

broad hump has increased, with the peak moving below
T/JD = 0.09 and the high-T maximum centered around
T/JD = 0.5. Once again the progression from our ED
data at N = 28 to TPQ with N = 32 and then 36 shows
an increasing ability to capture the tip of the peak, but
it cannot be said that convergence has been reached [in-
set, Fig. 10(a)]. As at J/JD = 0.63, our iPEPS data for
D = 16 and 18 are in essence indistinguishable and do
suggest the peak to which the TPQ results are converg-
ing. At all other parts of the C(T ) curve, convergence is
complete by all methods. In the corresponding suscepti-
bility, again the ED and TPQ size sequence provides a
systematic convergence towards the “squareness” of the
turnover from rapid rise to broad maximum, while the
higher iPEPS bond dimensions have converged to the
shape of this feature.

We take the coupling ratio J/JD = 0.66, shown in
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Fig. 11, as the upper limit to the validity of comparing
our methods. Physically, it is obvious that the peak-dip-
hump shape of C(T ) becomes yet more pronounced, that
the dip is deeper, and that the peak is even lower-lying
and sharper than at J/JD = 0.65 [Fig. 11(a)]. Numeri-
cally, it appears that both our methods show slower con-
vergence, not only around the peak but also in the dip.
In more detail, our N = 32 and 36 TPQ results, and our
D = 16 and 18 iPEPS results, do both offer internally
consistent peak shapes. However, it is no longer clear
that TPQ and iPEPS might extrapolate to the same
limit, although this could be because the effective lo-
cation of the QPT differs for the two methods due to
finite-D and -N corrections, implying closer proximity
to a competing phase in one than in the other. On the
overall shape of C(T ), we comment that the hump can
be understood as the energy scale of local spin-flipping
processes on the scale of JD, while the low-T peak is
the focus of our discussions in Sec. VA. Concluding with
the susceptibility at J/JD = 0.66 [Fig. 11(b)], again our
iPEPS results offer a consistent picture of the very steep
onset and square maximum, while our TPQ results sug-
gest better agreement with iPEPS at N = 32 than at
N = 36.

The results in Figs. 8 to 11 capture the thermodynamic
properties of the Shastry-Sutherland model with a degree
of precision that was entirely unattainable by all previ-
ous techniques. It is safe to say that no prior numerical
studies had even identified the peak-dip-hump form of
the purely magnetic specific heat with any reliability, let
alone given an indication of how narrow the low-T peak
becomes in the regime near the QPT. While the square
shape of χ(T ) has been known since the early measure-
ments on SrCu2(BO3)2 [8, 12], again no numerical ap-
proaches had reproduced this form. We discuss both the
physics underlying these features and the experimental
comparison in Sec. V.

The thermodynamic properties of the Shastry-
Sutherland model nevertheless set an extremely challeng-
ing problem in the regime close to the QPT, even in the
dimer-product phase where the ground state is exact and
no finite-temperature transition is expected. It is clear
in Figs. 8 to 11 that neither our TPQ nor our iPEPS
calculations can be judged to be fully convergent, and
thus accurate, as J/JD approaches the presumed critical
value of 0.675. Because both are limited by their control
parameters, N for TPQ and D for iPEPS, an optimal
reproduction of the exact thermodynamics would be ob-
tained by extrapolating both sets of results to infinite N
or D.

By inspection of the full peak shape in C(T ), our TPQ
results can only be said to have reached convergence at
N ≤ 40 for J/JD ≤ 0.63. Similarly, it is not clear that
our iPEPS results for the largest available D values (we
have performed calculations with D = 18 at all temper-
atures and with D = 20 for temperatures around the
peak) can be said to have converged to the shape of the
peak at J/JD = 0.66. For extrapolation purposes, we
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FIG. 12. Characteristic position and height of the low-T peak
in the magnetic specific heat of the Shastry-Sutherland model,
shown for our ED and TPQ results as functions of 1/N and
for our iPEPS results as functions of 1/D. (a,b) J/JD = 0.60.
(c,d) J/JD = 0.63. (e,f) J/JD = 0.65. (g,h) J/JD = 0.66.

first extract the primary characteristic features of this
low-T peak, namely its position and height. In Fig. 12
we show the convergence of both quantities as functions
respectively of 1/N in our ED and TPQ calculations and
of 1/D in our iPEPS calculations, for each of the coupling
ratios J/JD = 0.60, 0.63, 0.65, and 0.66.

Focusing first on our iPEPS results, it is evident that
the values we have obtained for both the position and
the height of the C(T ) peak show an excellent linear con-
vergence with 1/D for all coupling ratios. Both quanti-
ties decrease with increasing D and in fact their slopes
are remarkably insensitive to J/JD. Thus we estimate
the putative infinite-D limit of the peak characteristics
(shown by a filled triangle) by linear extrapolation in 1/D
and we take the difference of this limit from the result
at the largest computed D value as an estimate of the
(one-sided) error bar. While all of the iPEPS estimates
decrease monotonically with increasing D, in the large-D
limit one does anticipate exponential convergence in D
rather than linear convergence in 1/D. Thus we expect
the true D =∞ limit to lie within the interval indicated
by the error bar.

Turning to the ED and TPQ results in Fig. 12, the
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peak heights at all coupling ratios show a quite system-
atic convergence, from below and with changing slopes,
towards values fully consistent with our iPEPS estimates.
By contrast, the finite-size evolution of the peak positions
is less clear, but it is true to state for every coupling ra-
tio that their values for all system sizes are either clus-
tered closely around the extrapolated iPEPS values or
are trending towards these.

Thus we may conclude that our TPQ and iPEPS re-
sults are consistent and convergent for even the most
challenging features of the most challenging region of the
Shastry-Sutherland phase diagram. As such they may be
used as a reliable statement of the excitation spectrum
as a function of the coupling ratio, which is the topic of
Sec. VA. We discuss the implications of the convergence
details in Fig. 12 for future numerical development in
Sec. VB.

V. DISCUSSION

A. Spectrum of the Shastry-Sutherland Model

In Fig. 2(a) we showed our collected results for the
specific heat of the Shastry-Sutherland model across the
range of coupling ratios 0.60 ≤ J/JD ≤ 0.66. As the sys-
tem approaches the QPT from the dimer-product to the
plaquette state, one observes the systematic emergence
of a narrow low-energy peak, followed at higher tempera-
tures by a deepening dip before a second broad maximum
on the scale of JD/2. The energy scale of the concen-
tration of low-lying states contributing to the peak falls
steeply as the QPT is approached. From the correspond-
ing susceptibilities, shown in Fig. 2(b), it is clear that the
decreasing energy scale is largely similar for triplet (and
higher spinful) excitations, and hence at minimum that
it is not a special property of singlets; the physics of the
approach to the QPT seems to affect all excitations in
the same general manner.

Before discussing the nature of the low-lying spectrum,
we characterize the height and temperature scale of the
specific-heat peak, and the temperature scale of the sus-
ceptibility onset, as the coupling ratio approaches the
QPT. The peak position, TCmax, shown in Fig. 13(a),
clearly falls faster than linearly in J/JD, but does not ap-
proach zero at the QPT. Based on the expectation that
the peak position as a function of J/JD should follow
the gap, ∆m, of the system, in Fig. 13(a) we show this
quantity based on ED data from the N = 36 cluster [25],
and with a multiplicative prefactor of 0.28. The fact that
these falling energy scales do not vanish at the QPT is
consistent with the first-order nature of this transition [5].
The behavior of the peak height [Fig. 13(b)] is less evi-
dent, in that it falls on approach to the QPT in our TPQ
calculations but increases in our iPEPS ones, the rate of
change accelerating with J/JD in both cases. Given the
strong finite-size effects visible in our ED and TPQ cal-
culations for J/JD > 0.63 [Fig. 12], here it appears that
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FIG. 13. (a) Position, TCmax, and (b) height, Cmax, of the peak
in the specific heat of the Shastry-Sutherland model in the
regime of coupling ratios 0.50 ≤ J/JD ≤ 0.66, as determined
from our ED, TPQ, and iPEPS calculations. Also shown
in panel (a) is the half-height, TC1/2, on the low side of the
peak, from which one may deduce an effective peak width
(shaded grey region). iPEPS error-bar conventions are as
in Fig. 12. At J/JD = 0.50 we compare in addition with
the large-N QMC result. Shown for reference in panel (a)
is the function c∆m(J/JD), where ∆m = min[∆S ,∆T ], with
∆S and ∆T respectively the gaps of the lowest singlet and
triplet excitations obtained for a system of size N = 36, is the
minimal gap in the system; the constant of proportionality is
c = 0.28. (c) Positions of the peak, Tχmax, and of the half-
height, Tχ1/2, in the susceptibility of the Shastry-Sutherland

model in the same range of coupling ratios. Again the shaded
region may be considered as an effective width. Shown for
reference is the function d∆T , again obtained for N = 36,
with constant of proportionality d = 0.22.
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FIG. 14. Low-lying energy spectrum of the Shastry-
Sutherland model in the S = 0 and S = 1 sectors, computed
by ED using clusters of sizes N = 28 (to Ẽ = 2.6JD), N = 24
(to 3.75JD), and N = 20 (to 4.2JD) and shown over the full
range of coupling ratios, J/JD, in the dimer-product phase.

The excitation energy is denoted by Ẽ = E − EGS, where
EGS is the energy of the ground state. The shading represents
regions with discrete but dense singlet (blue) and triplet ex-
citations (pink). The lowest pink line shows the one-triplon
sector, whose lower edge is ∆T (J/JD); the yellow line shows
the two-triplon scattering threshold, 2∆T (J/JD). The lower
edge of the lower blue sector, which consists of singlet bound
states of two triplons, is ∆S(J/JD). We draw attention to
how few states in the three-triplon sector fall below the green
line (∆S + ∆T ) and in the four-triplon sector below the black
line (2∆S).

our iPEPS results are more representative of the large-N
limit. The final piece of information one may wish to
extract about the peak is its width, for which we show in
addition the temperature TC1/2, at which the specific heat

attains half its peak height [Fig. 13(a)]; because of the
dip and hump on the high-T side, we focus only on the
low-T side. We obtain a characteristic width from the
quantity TCmax − TC1/2, shown as the shaded grey region.

We observe that the half-height and full-height positions,
and hence the width, scale to a good approximation in
the same way with J/JD, separated only by constant fac-
tors, and conclude that all the peak shapes are actually
self-similar on the low-temperature side, with only one
characteristic J/JD-dependent energy scale.

Because the maximum of χ(T ) is broad and flat, for

an accurate characterization of the susceptibility we fo-
cus not on its position (Tχmax) but on the temperature,
Tχ1/2 [81], at which χ(T ) reaches half its maximum value

during its rapid onset. Both quantities are shown in
Fig. 13(c), which indeed confirms significantly larger un-
certainties in Tχmax than in Tχ1/2. Tχ1/2 tracks both TCmax

and TC1/2 rather closely throughout the range of Fig. 13,

albeit with a slightly slower decline very near the QPT.
In this sense it functions as a comparable diagnostic of
the falling energy scale in the system. Following the ex-
pectation that χ(T ) depends on the gap to spinful excita-
tions, in Fig. 13(c) we compare this scale with the triplet
gap, ∆T (J/JD), finding a constant of proportionality of
approximately 0.22.

Figure 13 is a very specific diagnostic for the nature of
the spectrum of low-lying energy levels, reflecting in par-
ticular a large number of states that become more nearly
degenerate and are characterized by an ever-smaller (but
always finite) gap as the system approaches the QPT. In
Ref. [25] we showed a schematic illustration of the energy
spectrum of the Shastry-Sutherland model as a function
of the coupling ratio J/JD, based on Lanczos ED cal-
culations to obtain the lowest levels of a cluster of size
N = 36 sites. For more specific insight into the nature
of the states revealed by the Lanczos procedure, here
we have computed a much larger number of low-energy
states, but for smaller clusters (of sizes up to N = 28).
In Fig. 14 we gather these results to show the low-lying
spectrum of the system in the S = 0 and S = 1 sectors
over the full range of coupling ratios. We stress that,
given the large number of states in these calculations, it
is not easy to observe the discrete structure of the spec-
trum even in its lowest-lying regions, and as in Ref. [25]
we use shading to indicate the support of these excita-
tions.

In Fig. 14, the thin red line at the bottom of the
triplet spectrum is the elementary “triplon” excitation,
which has energy Ẽ = JD at J = 0 and remains ex-
tremely narrow (non-dispersive) throughout the dimer-
product phase due to the perfect frustration (Fig. 1). It
is clear that significant numbers of two- and other multi-
triplon states, in both the spin sectors shown, move to
very low energies as the system approaches the QPT. Be-
cause the lowest states in the singlet sector must be of
two-triplon origin, and these cross below the one-triplon
energy around J/JD = 0.60 (the exact value depends on
N), it is equally clear that the physics of the Shastry-
Sutherland model in the regime near the QPT is dom-
inated by states one may classify as “strongly bound.”
To specify the meaning of this term, the yellow line
shows the quantity 2∆T (J/JD), i.e. twice the single-
particle gap, which corresponds to the two-triplon scat-
tering threshold, and near the QPT many states lie signif-
icantly below this energy. We comment that the separate
“families” of excitations that can be traced back to inde-
pendent two-triplon states at energy Ẽ = 2JD at J = 0,
and similarly for higher triplon numbers [Fig. 14], exhibit
a much larger dispersion across the Brillouin zone than



14

0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66

J / J
D

0

20

40

60

80

100

120

140

#
 b

o
u
n
d
 s

ta
te

s

S = 0

S = 1

FIG. 15. Numbers of low-lying singlet and triplet states on
an N = 28 lattice, shown as functions of J/JD in the dimer-
product phase. Symbols show ED data while connecting lines
are guides to the eye. The horizontal green line shows the
number of independent two-triplon scattering states.

do the one-triplon states, due to the smaller effects of
geometric frustration on the propagation of bound states
[4, 82, 83]. Although some authors have performed per-
turbative studies of the lowest-lying bound states of the
Shastry-Sutherland model [82], we are not aware of pre-
vious attempts to count them systematically for compar-
ison with thermodynamic properties, as we do next.

Beyond illustrating significant binding-energy effects
in the two- and higher-triplon sectors, Fig. 14 does not
provide further information about the structure of the
spectrum. As a step in this direction, Fig. 15 shows
the numbers of singlet and triplet states lying below the
threshold given by the yellow line in Fig. 14. The num-
ber of triplet states excludes the N/2 states of the one-
triplon band. For comparison, the expected number of
two-triplon scattering states, 1

4N( 1
2N − 1), is shown by

the green line. Clearly the numbers of “bound” states
in both sectors are significant fractions of the number
of scattering states throughout the region J/JD . 0.55.
Further, the number of S = 1 states is comparable to
that in the S = 0 sector, despite the fact that the energy
gain is greater in the latter. As the QPT is approached,
specifically once J/JD > 0.62 for N = 28 [Fig. 15], the
numbers of low-lying states in both sectors increase well
beyond the number of independent two-triplon states.

Before discussing the nature of these states, for fur-
ther information about the low-lying spectra we show in
Fig. 16 the total numbers of singlet (blue) and of triplet

states (red) lying below a given energy, Ẽ, in ED calcula-
tions performed with four different system sizes for three
fixed values of J/JD in the interval near the QPT. Here
the N/2 one-triplon excitations are included in the triplet
count, appearing as the plateau region in all the red lines
directly above their onset. We note that all excitations
with higher spin, S ≥ 2, lie above the two-triplon scat-
tering threshold for all J/JD values shown; while binding
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FIG. 16. Total number of excited states lying below the en-
ergy Ẽ at coupling ratios (a) J/JD = 0.60, (b) J/JD = 0.63,
and (c) J/JD = 0.66. Blue lines indicate S = 0 excitations,
red lines S = 1. Increasing line widths indicate increasing
system sizes, N , on which ED calculations were performed.
Vertical green lines denote the two-triplon scattering thresh-
olds for the corresponding system sizes.

effects have also been observed in the S = 2 sector [84],
these are extremely small and are not detectable in clus-
ters up to N = 28 due to finite-size effects.

The evolution of this spectrum as a function of the
coupling ratio contains two new messages beyond the
ever-increasing number of very low-lying states shown in
Fig. 15. First, the steadily decreasing gap in the one-
triplon sector can be expected to control the response to
∆S 6= 0 processes over most of regime 0.60 ≤ J/JD ≤
0.66, but very near the QPT it is overwhelmed by the
high density of other triplet states that finally fall to
this gap. Second, the dominant feature of the spectrum
in this regime is the large number of low-lying singlet
states, which are governed by an energy scale that in
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turn falls significantly more quickly with J/JD than the
triplet gap.

To discuss the nature of these states, and hence the
consequences of our calculated spectra for the thermo-
dynamic response functions computed in Sec. IV, it is
helpful to compare and contrast the Shastry-Sutherland
model with the fully frustrated two-leg spin ladder. In
this 1D model, some of us [81, 85] also found a strik-
ing thermodynamic response at low temperatures, which
could be traced to a proliferation of low-energy multi-
magnon bound states upon approaching a first-order
QPT. While it is clear that the proliferation of low-lying
states is the origin of the low-temperature properties of
the Shastry-Sutherland model, there are some important
differences between the 1D and 2D systems, most notably
concerning the mechanism behind the formation of these
states.

First, in the fully frustrated two-leg ladder, it was clear
that these states were truly bound, meaning that they
were intrinsic combinations of n contributing triplons,
with n ≥ 2 becoming very large near the QPT. By con-
trast, in the Shastry-Sutherland system one may identify
essentially all of the additional low-lying states, whose
origin clearly lies in n ≥ 3 triplons, with the expected
scattering states of two singlet two-triplon bound states
or of a singlet bound state and an elementary triplon. It
is self-evident that when the energy of a singlet bound
state of two triplons falls beyond the one-triplon gap, the
lowest-lying scattering states of a pair of singlet bound
states must fall below the two-triplon scattering thresh-
old in the S = 0 sector, shown by the black line in Fig. 14,
and so does the scattering state of a singlet bound state
and an elementary triplon in the S = 1 sector, shown by
the green line in the same figure. Thus the proliferation
of low-lying excitations in the regime J/JD > 0.6 can,
due to the differences in state-counting in 2D, be driven
(almost) completely by the strength of the two-triplon
binding effect in the singlet sector. It is for this reason
that we do not refer to all of the low-lying states we ob-
serve here as “bound states.” Concerning the possibility
of true multi-triplon binding effects, as noted above we
may comment only that, if present, these are sufficiently
weak that we are unable to detect them.

Second, at the QPT in the fully frustrated ladder, the
bound states cluster strongly at a single energy value of
approximately 85% of the one-triplon gap [81, 85], but in
the Shastry-Sutherland model we observe no such sharp
structures in the density of states. Specifically, although
we find for J/JD = 0.66 that low-lying singlet states

far outnumber the triplets at any energy Ẽ < 0.5JD
[Fig. 16(c)], there is no sign of a discrete set of degen-
erate levels, at any energy, that could be related directly
to the specific-heat peak. Instead the number of excited
states continues to rise with Ẽ, in fact at an increasing
rate, such that some very high densities of states may
be found at energies of order 0.5JD above the lowest
ones in each panel of Fig. 16. The distinguishing feature
of these broadly distributed states, at least in the sin-

glet sector, is that their binding effects are energetically
stronger than in the 1D system. Although finite-size ef-
fects prevent us from reaching the QPT (J/JD = 0.675),
at J/JD = 0.66 the singlet two-triplon bound states have
already descended to only 54% of the one-triplon gap (on
the N = 28 cluster). Thus the low-temperature peak in
C(T ) observed in Sec. IV emerges at a relatively lower
energy scale than in the fully frustrated ladder. Certainly
the possibility of ascribing our results to only one energy
scale is consistent with our discovery in Fig. 13(a) that
the peak shapes are identical. In this regard, the strik-
ingly narrow specific-heat peaks near the QPT are not in
fact anomalous, in that their relative width is constant
and their appearance is a consequence of this one de-
creasing energy scale. Regarding the susceptibility, the
decrease of the one-triplon energy scale in Fig. 16 ap-
pears to provide a reasonable account of the decrease in
the “onset” temperature indicator Tχ1/2 [Fig. 13(c)] over

the entire range of J/JD, while the steep fall in energy
of the other low-lying triplet states may be responsible
for the increasingly abrupt (“square”) turnover at the
maximum in χ(T ).

In summary, our detailed ED investigation of the low-
energy spectrum [Figs. 14, 15, and 16] reveals the rapid
descent in energy of a multitude of singlet and triplet
states as the QPT is approached. Despite the narrow
nature of the C(T ) peak, these states do not converge to
a single characteristic energy in either sector. In contrast
to the n-triplon bound states of the fully frustrated lad-
der near its QPT, the energetics of the low-lying states
of the Shastry-Sutherland model are dominated by the
binding energy of two triplons into a net singlet. Because
this local bound state involves two neighboring orthog-
onal dimers [82, 83], it has little or no relation with the
plaquette singlets that control the physics on the other
side of the QPT (Fig. 1), and hence one may conclude
that the first-order transition involves a complete rear-
rangement of spin correlations in the system.

B. Numerical Methods

We comment only briefly on the limitations and
prospects for improvement of our numerical techniques.
In a sense the Shastry-Sutherland model near the QPT
presents an ideal test-bed for any method, in that the
low-T peak in the specific heat becomes progressively
narrower, and thus more challenging to reproduce, as
the QPT is approached. In our ED and TPQ calcula-
tions, it is both clear and completely unsurprising that
larger cluster sizes improve the ability of both methods to
capture this peak (and the corresponding susceptibility
shoulder). Whereas the thermodynamic response at cou-
pling ratio J/JD = 0.60 could not be reproduced with
complete accuracy by N = 20 ED, or indeed N = 28
Lanczos ED (Fig. 8), we may assert that J/JD = 0.63
can be treated accurately by TPQ with N ≤ 40 (Fig. 9).

However, the limits to TPQ appear to be reached at
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J/JD > 0.65, where our calculations are no longer able to
capture the anomalously narrow C(T ) peak that forms in
this regime (Fig. 11). With reference to our discussion of
Sec. VA, one may only speculate that the physics of this
peak resides in scattering states of the singlet two-triplon
bound states whose fully developed real-space extent be-
gins to exceed this cluster size very close to the QPT.
As noted in Sec. II, reaching larger cluster sizes with
acceptable statistical errors is not possible with present
computing power. Similarly TPQ, like ED, is not lim-
ited by algorithmic complexity, and indeed our present
calculations already exploit all available spin and spa-
tial (cluster) symmetries, implying that more complex
Hamiltonians would be subject to stricter limits on N .

By contrast, our iPEPS calculations have relatively
modest CPU and memory requirements. To date they
have been run only on a single node, and thus larger-scale
computations would certainly become feasible through
the future development of a highly parallelized code.
In comparison with more mature numerical methods,
tensor-network calculations remain in their relative in-
fancy, and as a result retain significant scope for algo-
rithmic improvement. In current implementations, both
CPU and memory requirements increase as high powers
of the bond dimension, D; although most developments
focus on reducing these exponents, it is not proven be-
yond doubt that large D is the only route to an accurate
tensor-network description. As one example, we com-
ment that higher accuracies can be achieved for the same
D value within our present calculations by the use of dis-
entangling gates acting on the ancillas [36, 86].

Nevertheless, as demonstrated in Sec. III, the influence
of the other variables in the iPEPS method (Trotter step,
CTM boundary bond dimension, type of update) is small
in comparison with the effects of D. Physically, there is
at present no known means of relating D as a figure of
merit in finite-T (i.e. thermal-state purification) iPEPS
implementations with D in a ground-state iPEPS calcu-
lation. As with the problem of which absolute value of D
is able to capture the physics of any given Hamiltonian
(Sec. III), the most reliable approach to date is the empir-
ical one of increasing D and monitoring changes and con-
vergence. As we have shown in Secs. III and IV (Fig. 12),
for the present problem we have indeed reached a well-
defined limiting regime of D, even at J/JD = 0.66. Thus
one may conclude that the Shastry-Sutherland model
does not present a physical system where calculations
are limited by the ability to capture long-ranged entan-
glement, as may perhaps be expected when the ground
state is a product state, all the excitations are gapped,
and the nearby QPT is first-order.

C. Experiment

In the light of the data and insight obtained from ap-
plying our two advanced numerical methods to the ther-
modynamics of the Shastry-Sutherland model, we revisit

the experimental situation in SrCu2(BO3)2. We note
that low-lying singlet excitations in SrCu2(BO3)2 were
documented by Raman scattering soon after the discov-
ery of the material [87], and later that the same method
was used to study the low-lying spectrum in an applied
magnetic field [88]. The triplet excitations were studied
at first by electron spin resonance (ESR) [89] and inelas-
tic neutron scattering [10]. Subsequent high-field ESR
measurements were used to demonstrate the presence of
two-triplon bound states [90], while a recent application
of modern neutron spectroscopy instrumentation stud-
ied the lowest bound triplet mode, and its response in
a magnetic field, in unprecedented detail [91]. The evo-
lution of the triplet spectrum has been studied under
pressure [23], which as noted in Sec. I acts to increase
the ratio J/JD through the first-order QPT out of the
dimer-product phase. Although an analogous study of
the thermodynamic properties has appeared in parallel
with the completion of the present study [24], only one
dataset for C(T )/T is shown at a pressure between am-
bient and the QPT; the low-T peak moves down by ap-
proximately 25% at this pressure and undergoes a definite
increase in sharpness. Around the QPT, extremely sharp
C(T )/T peaks are found in some, but not all, samples.
We observe that the numerical modeling that accompa-
nies these measurements does not advance the state of
the art beyond that of Ref. [26].

We comment first that a rather accurate understand-
ing of the high-temperature, and indeed high-field, prop-
erties of SrCu2(BO3)2 can be obtained using the Shastry-
Sutherland model with a coupling ratio close to J/JD =
0.63, and it is the remaining mystery surrounding the
low-T response that we address here. We use our D = 18
iPEPS results as a consistent indicator of the evolution
of the specific heat and susceptibility with the coupling
ratio, and in Fig. 17 we show both quantities for all
J/JD = 0.60, 0.61, . . . , 0.66. For the specific heat
[Fig. 17(a)] we compare our results with the data of
Ref. [13] for SrCu2(BO3)2, from which we have sub-
tracted a phonon contribution Cph = γ T 3 with γ = 0.5
mJ/(mol K4). For the susceptibility [Fig. 17(b)] we com-
pare our results with the data of Ref. [12], using a g-factor
of gc = 2.28 [89]. The optimal values of JD required to
reproduce the position and shape of the low-T peak in
C(T ) and to reproduce the rapid upturn and maximum
height of χ(T ) are determined separately; in both cases
they turn out to be strong functions of the coupling ra-
tio, and hence can be used for accurate estimation of this
energy scale.

In Fig. 17(a) it is safe to say that the best account of
the low-T peak in C(T ) is given by J/JD = 0.62, with
JD = 77 K. Somewhat surprisingly, it is not necessary to
exploit to its limits our abilities to resolve a very narrow
peak in C(T ), as would be the case at higher coupling
ratios. Because JD is constrained by many other aspects
of the experimental data for SrCu2(BO3)2, its strong de-
pendence on J/JD serves as a strict constraint on the
coupling ratio. Turning to Fig. 17(b), the best account
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FIG. 17. D = 18 iPEPS calculations of the magnetic specific
heat (a) and susceptibility (b) performed for coupling ratios
0.60, 0.61, . . . , 0.66 and for JD values dictated by experiment.
Specific-heat data in panel (a) were taken from Ref. [13] and
a phonon contribution of 0.5T 3 mJ/(mol K4) was subtracted.
Susceptibility data in panel (b) were taken from Ref. [12] and
a g-factor of 2.28 was used.

of χ(T ) is given by J/JD = 0.64, with JD = 91 K. Here
it is safe to say that the fits in both panels of Fig. 17
are difficult to reconcile, certainly at the experimentally
determined value of gc, and as a result we can conclude
that we have found the limits of the Shastry-Sutherland
model when applied to the SrCu2(BO3)2 problem. It
is known that the appropriate spin Hamiltonian for this
material contains additional terms, most notably an in-
terlayer coupling, whose magnitude has been estimated
at 9% of JD [4], and Dzyaloshinskii-Moriya interactions
both within and normal to the plane of the system, whose
magnitudes have been estimated [90] for both compo-
nents at 3% of JD. Because it is not the purpose of
our present analysis to address these details, for further
comparison in the present context we restrict our atten-
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FIG. 18. Comparison of experimental measurements of the
magnetic specific heat, taken from Ref. [13] and with a phonon
contribution 0.5T 3 mJ/(mol K4) subtracted, to numerical cal-
culations performed by ED, TPQ, and D = 18 iPEPS for
J/JD = 0.63 with JD = 87 K.

tion to establishing the optimal Shastry-Sutherland fit
for SrCu2(BO3)2, to which end we adopt the compromise
coupling ratio J/JD = 0.63 and find that the correspond-
ing optimal JD is 87 K.

In Fig. 18 we show a quantitative comparison between
the results of Sec. IV, specifically Fig. 9, and the C(T )
data of Ref. [13]. We observe that our best TPQ re-
sults (N = 40) and our iPEPS results separately provide
quantitatively excellent fits to the measured data. Our
conclusion that such a fit is optimized with the coupling
ratio J/JD = 0.63 is in accordance with the suggestion,
made on the basis of small-system ED calculations, of
Ref. [26]. Further, our determination of the coupling
constant, JD = 87 K, from the precisely known position,
TCmax [Fig. 17(a)], of the C(T ) peak, is also close to the
parameters deduced 20 years ago. As noted above, while
these constants may also be constrained from high-T and
magnetization information, our results demonstrate fi-
nally that they are consistent with the hitherto mysteri-
ous low-T behavior.

We stress that, despite reaching the previously
unattainable goal of reproducing the true shape of the
low-T peak in C(T ), indeed for coupling ratios even
higher than J/JD = 0.63, we do not find that a sharper
peak is required to explain experiment (our results at
J/JD ≥ 0.64 tend to exceed the experimental peak
height). Thus we deduce that, to the extent that the
Shastry-Sutherland model offers an acceptable account
of the physics of SrCu2(BO3)2 (i.e. to the extent that
3D and Dzyaloshinskii-Moriya interactions may be ne-
glected), the coupling ratio is J/JD = 0.63 ± 0.01. We
have based this estimate on reproducing the shape of
the low-T peak in C(T ); if we consider the dip region
at higher temperatures, Fig. 18 shows a significant dis-
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FIG. 19. (a) Comparison of experimental measurements of
the magnetic susceptibility, taken from Ref. [12], to numerical
calculations performed by ED, TPQ, and D = 18 iPEPS for
J/JD = 0.63. We use g = 2.28 and JD = 87 K. (b) Detail of
the comparison at low temperatures.

crepancy between experiment and our best peak fits, but
because the question of subtracting the phonon contribu-
tion becomes more important here it is difficult to ascribe
the same quantitative reliability to our fits.

In Fig. 19, we perform the same exercise by showing
a quantitative comparison between our results (Sec. IV)
and the data of Ref. [12] for the magnetic susceptibility of
SrCu2(BO3)2. Again we use the value JD = 87 K along
with the g-factor gc = 2.28 noted above. We show the
entire temperature range in Fig. 19(a), which emphasizes
the very abrupt peak and the reliability of our model at
all high temperatures. In Fig. 19(b) we focus on the low-
temperature regime, where again the half-height, Tχ1/2,

admits only a rather narrow range of coupling ratios.
Thus our improved computational methods confirm both
the extent to which SrCu2(BO3)2 can be approximated

by a pure Shastry-Sutherland model and the efficacy of
the parameter estimates made two decades ago on the
basis of significantly inferior numerical technology.

VI. SUMMARY AND PERSPECTIVES

We have introduced two advanced numerical tech-
niques, the methods of typical pure quantum (TPQ)
states and infinite projected entangled-pair states
(iPEPS), for computing the thermodynamic properties
of quantum magnets. Both approaches are unaffected by
frustration and we apply them to compute the magnetic
specific heat and susceptibility of the Shastry-Sutherland
model in its dimer-product phase near the first-order
quantum phase transition (QPT) to a plaquette phase.
This challenging region of coupling ratios has remained
entirely impervious to meaningful analysis by any pre-
vious numerical techniques, and now we are able to re-
veal why. The specific heat develops an increasingly nar-
row low-temperature peak, which is separated from the
broad hump due to local processes by an emerging dip.
This peak is caused by a proliferation of low-lying en-
ergy levels whose origin lies in scattering states of multi-
ple two-triplon bound states, and its anomalously low
energy scale moves ever lower (albeit not to zero) as
the QPT is approached. The analogous feature in the
magnetic susceptibility is an increasingly rapid rise at
an ever-lower temperature, followed by an abrupt maxi-
mum. This physics is a consequence of both high frustra-
tion and the proximity to a QPT, and its manifestations
have been discussed previously in highly frustrated 1D
systems, but now we have captured its realization in 2D.

Our methods and benchmarks offer very wide scope
for immediate application. The list of open problems in
frustrated quantum magnetism is long, and we await with
interest definitive results, meaning for extended or spa-
tially infinite systems, for the thermodynamic response
of the triangular, kagome, and J1-J2 square lattices. The
ability to fingerprint the energy spectrum at the level of
thermodynamic properties will provide a new dimension
of physical understanding, and in some cases may even
yield new insight into the ground state. Away from the
classic problems of geometrical frustration in Heisenberg
models, there is a pressing need for thermodynamic in-
formation to characterize many other types of frustrated
system, including spin-ice materials, candidate Kitaev
materials, coupled anisotropic (Ising and XY) chain and
planar materials, candidate chiral spin liquids, materi-
als with Dzyaloshinskii-Moriya interactions, topological
magnets, and certain skyrmion systems.

Technically, neither of our methods presents any bar-
rier to the application of a magnetic field, which could
be used to control the relative singlet and triplet gaps
and create qualitative changes in the thermodynamic re-
sponse in many of the above types of system. For the
SrCu2(BO3)2 problem, the next step enabled by the ca-
pabilities developed here is clearly to follow the evolu-
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tion of the system to and through the pressure-induced
QPT into the plaquette phase [23, 24]. This process
presents a clear need for the investigation of thermo-
dynamic properties, even if the physics of the material
beyond the dimer-product phase is critically dependent
on additional Hamiltonian terms beyond the Shastry-
Sutherland model.
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Ruiz, A. Schneidewind, E. Pomjakushina, M. Stin-
gaciu, K. Conder, and H. M. Rønnow, “4-spin pla-
quette singlet state in the Shastry-Sutherland compound
SrCu2(BO3)2,” Nature Phys. 13, 962 (2017).

[24] J. Guo, G. Sun, B. Zhao, L. Wang, W. Hong, V. A.
Sidorov, N. Ma, Q. Wu, S. Li, Z. Y. Meng, A. W. Sand-
vik, and L. Sun, “Quantum phases of SrCu2(BO3)2 from
high-pressure thermodynamics,” arXiv:1904.09927.

[25] S. Wessel, I. Niesen, J. Stapmanns, B. Normand, F. Mila,
P. Corboz, and A. Honecker, “Thermodynamic prop-
erties of the Shastry-Sutherland model from quantum
Monte Carlo simulations,” Phys. Rev. B 98, 174432
(2018).

[26] S. Miyahara and K. Ueda, “Thermodynamic proper-
ties of three-dimensional orthogonal dimer model for
SrCu2(BO3)2,” J. Phys. Soc. Jpn. (Suppl.) B 69, 72
(2000).

[27] S. Sugiura and A. Shimizu, “Thermal pure quantum
states at finite temperature,” Phys. Rev. Lett. 108,
240401 (2012).

[28] S. Sugiura and A. Shimizu, “Canonical thermal pure
quantum state,” Phys. Rev. Lett. 111, 010401 (2013).

[29] A. Hams and H. De Raedt, “Fast algorithm for finding
the eigenvalue distribution of very large matrices,” Phys.
Rev. E 62, 4365 (2000).

[30] S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zangh̀ı,
“Canonical typicality,” Phys. Rev. Lett. 96, 050403
(2006).

[31] Y. Yamaji, Y. Nomura, M. Kurita, Ryotaro Arita, and
M. Imada, “First-principles study of the honeycomb-
lattice iridates Na2IrO3 in the presence of strong spin-
orbit interaction and electron correlations,” Phys. Rev.
Lett. 113, 107201 (2014).

[32] Y. Yamaji, T. Suzuki, T. Yamada, S.-i. Suga,
N. Kawashima, and M. Imada, “Clues and criteria for de-
signing a Kitaev spin liquid revealed by thermal and spin
excitations of the honeycomb iridate Na2IrO3,” Phys.
Rev. B 93, 174425 (2016).

[33] F. Verstraete and J. I. Cirac, “Renormalization algo-
rithms for quantum-many body systems in two and
higher dimensions,” arXiv:cond-mat/0407066 .
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