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The antiferromagnetic spin-one chain is considerably one of the most fundamental quantum many-
body systems, with symmetry protected topological order in the ground state. Here, we present
results for its dynamical spin structure factor at finite temperatures, based on a combination of exact
numerical diagonalization, matrix-product-state calculations and quantum Monte Carlo simulations.
Open finite chains exhibit a sub-gap band in the thermal spectral functions, indicative of localized
edge-states. Moreover, we observe the thermal activation of a distinct low-energy continuum con-
tribution to the spin spectral function with an enhanced spectral weight at low momenta and its
upper threshold. This emerging thermal spectral feature of the Haldane spin-one chain is shown
to result from intra-band magnon scattering due to the thermal population of the single-magnon
branch, which features a large bandwidth-to-gap ratio. These findings are discussed with respect to
possible future studies on spin-one chain compounds based on inelastic neutron scattering.

PACS numbers: 75.10.Jm, 75.40.Cx, 75.40.Mg

One-dimensional quantum spin models constitute ba-
sic condensed matter many-body systems that despite
their simplicity exhibit a rich variety of emergent phe-
nomena [1]. These include the formation of collective
excitations and non-classical ground states with charac-
teristic patterns in the quantum entanglement. From this
perspective, Haldane’s conjecture [2–4] on a fundamen-
tal difference in the low-energy physics of integer-valued
spin chains with respect to the spin-half Heisenberg chain
has established the spin-one chain model as a fundamen-
tal spin system, which furthermore finds realizations in
various, mainly Ni2+-based compounds [5–17]. Its prop-
erties have been intensively explored in both theoretical
and numerical, as well as experimental studies in recent
years, mainly with a focus toward the peculiar properties
of the gapped ground state [18, 19], which is now under-
stood as a most basic instance of symmetry protected
topological (SPT) order [20, 21]. This leads, e.g., to the
formation of a pair of entangled spin-half low-energy edge
states for open finite chains [22].

Dynamical probes of quantum magnetism in spin-
one chain compounds, performed using inelastic neu-
tron scattering, have confirmed the gapped magnetic
excitation spectrum [6, 15, 23–27]. At low tempera-
tures, the corresponding dynamical spin structure factor
is dominated by the gapped single-magnon branch, with
additional contributions from multi-magnon continuum
states, leading to the termination of the single-magnon
branch due to decay and scattering with the two-magnon
continuum states [28–46], cf. Fig. 1 for an illustration.
The effects of thermal fluctuations on the dynamical spin
structure factor at elevated temperatures [15, 47, 48] have
been less intensively investigated theoretically, in partic-
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FIG. 1. Sketch of the low-energy excitations of the Hal-
dane spin-one chain. The black line shows the gapped single-
magnon dispersion, and the upper shaded regions denote the
two- and three-magnon continua. The lower shaded region en-
closes the intra-band-magnon-scattering contribution to the
dynamical spin structure factor that emerges from the ther-
mal population of the single-magnon branch. For open chains,
an additional sub-gap edge-state mode extends from q = π to-
wards smaller momenta, indicated by the dashed line.

ular in the region of intermediate energy scales, where
theoretical approaches require one to account for both
quantum and thermal fluctuations. Previous theoretical
works mainly focused on the temperature-induced shift
in the single-magnon dispersion as well as its thermal
broadening in the low-temperature regime [49–54].

In this Rapid Communication, we discuss the emer-
gence of a distinct, thermal contribution to the finite-
temperature dynamical spin structure factor that we find
to result from intra-band magnon scattering (IBMS), cf.
Fig. 1. The IBMS continuum exhibits an enhanced spec-
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tral weight near its upper edge, resulting from the van-
Hove singularity in the density of states near the ex-
trema of the single-magnon band. This enhanced spec-
tral weight appears close to the single-magnon branch
due to the large bandwidth of the latter. Our results fur-
thermore indicate that this thermal IBMS may feasibly
be detected upon performing neutron scattering experi-
ments in a temperature regime of the order of the spin
gap. In addition, we find a signature of an edge-state
mode for open chains, which is visible over an extended
temperature region.

Before presenting our results for the dynamical spin
structure factor, we first introduce the model and the
employed numerical methods. The Hamiltonian for
the SU(2)-symmetric antiferromagnetic spin-one chain
of length L reads H = J

∑
〈i,j〉 Si · Sj , with J > 0,

where in the following we employ both open chains
(OBC) and closed chains with periodic boundary con-
ditions (PBC). The dynamical spin structure fac-
tor is given in the Heisenberg picture as S(q, ω) =∫

dt e−iωt 〈Sq(t) · S−q(0)〉 , where Sq = 1√
L

∑
j e−iqjSj ,

with q = 2πν/L, ν = 1, 2, ..., L for PBC. Using numer-
ical exact diagonalization (ED), we were able to obtain
numerically exact results for S(q, ω) on finite chains with
PBC up to L = 20 [55–60]. In order to access larger
system sizes, we used both density-matrix renormaliza-
tion group (DMRG) [34, 35, 61] and quantum Monte
Carlo (QMC) [62] approaches to calculate S(q, ω). For
the DMRG-based analysis we used a recently developed
finite-temperature approach [63], formulated within ma-
trix product states (MPS) [64], which works directly in
the frequency domain. As is the case for other finite-
temperature time-dependent DMRG algorithms [65–67],
this method is based on the purification of the thermal
density operator obtained via imaginary time evolution.
However, the underlying thermofield formalism [68] in
combination with Liouville-space dynamics [69] allows
us to naturally work in the frequency domain and thus
apply a moment expansion in terms of Chebyshev poly-
nomials to the spectral function itself [70–72]. Work-
ing with OBC in the DMRG calculations for efficiency
reasons, the momentum-space spin-operators are related

to those in real space via Sq =
√

2
L+1

∑L
j=1 sin (qj)Sj ,

where q = πν/(L + 1), ν = 1, 2, ..., L [73]. We typically
consider a chain length of L = 32 and an MPS trunca-
tion at bond dimension m = 250 which yields compres-
sion errors O(10−2). The iterative Chebyshev expansion
is truncated at order 2000, which results in an estimated
broadening σω, weakly frequency dependent, of the order
of 0.1J . For the QMC calculations we used the stochas-
tic series expansion (SSE) algorithm with a generalized
directed loop update [74, 75], and both OBC and PBC
can be considered equally well. In order to access the
spin dynamics, correlation functions in Matsubara fre-

quency space, C(q, iωn) =
∫ β
0

dτ eiωnτ 〈Sq(τ) · S−q(0)〉 ,
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FIG. 2. Dynamical spin structure factor S(q, ω) for the Hal-
dane spin-one chain from DMRG with OBC (left panels), and
QMC with PBC (right panels) for various temperatures T .

with ωn = 2πn/β, n ∈ N0 are measured, utilizing a
mapping of the SSE configuration-space to continuous
imaginary time [76, 77]. Here, β = 1/T , and we typ-
ically require up to the 200 lowest Matsubara frequen-
cies. Real-frequency spectra are then obtained by per-
forming an analytic continuation to invert the relation

C(q, iωn) =
∫∞
0

dω ω
π

1−e−βω
ω2
n+ω

2 S(q, ω). To this end, we em-

ploy a stochastic analytic continuation algorithm [78]
which yields Monte Carlo averages over ensembles of pro-
posed spectral functions.

An overview of our main findings, the spectral func-
tion S(q, ω) of the spin-one chain at different tempera-
tures, is provided in Fig. 2, where the left (right) col-
umn shows DMRG (QMC) results for a chain with OBC
(PBC). A comparison of the DMRG spectral functions
at a set of fixed momenta and for different temperatures
is also available [56]. The data obtained by our finite-
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temperature schemes at T/J = 1/24 (panels (a) and
(b)) effectively represents ground state results. The most
prominent contribution to S(q, ω) is the single-magnon
branch, with a lowest excitation gap of ∆ ≈ 0.41J at
the antiferromagnetic wave vector, q = π [28, 36, 38].
Near q = π/4, the magnon branch merges into the two-
magnon continuum, leading to the decay of elementary
magnon excitations [36, 44, 45]. Correspondingly, in the
low-q region, we observe a loss of spectral weight. For
a finite system with OBC (cf. Fig. 2 (a)), a distinct ad-
ditional contribution to the spin dynamics results from
the low-energy edge states located at the two ends of
an open spin-one chain [22]. Due to the local character
of the edge-state contribution, this low-energy spectral
weight vanishes proportional to 1/L upon increasing the
system size. This is confirmed by a finite-size analysis of
the total spectral weight in the sub-gap region [56]. In
calculations with PBC, this sub-gap feature is absent (cf.
Fig. 2 (b)), while for chains with OBC we also obtain it
from QMC [56]. The DMRG spectral function in Fig. 2
(a) shows a tiny fraction of the spectral weight which is
spread both below and above the single-magnon branch.
This results mainly from the truncation of the Cheby-
shev expansion and the comparatively small MPS bond
dimension, and is not observed in the QMC simulations.
The QMC spectrum in Fig. 2 (b) thus allows us to also
resolve the well-separated three-magnon continuum near
q = π, where its intensity is sufficiently large [56].

We next consider the thermal effects on the dynamical
spin structure factor, cf. Fig. 2 (c)–(h), as well as Fig. 3.
The thermal broadening of the single-magnon branch as
well as the thermal band narrowing has been examined
previously [49, 50, 52], cf. also Ref. [56]. The OBC spec-
tra furthermore show that the open finite-system’s edge-
state contribution to the dynamical spin structure factor
remains a distinct sub-gap feature also at finite tempera-
tures, which thus provides a convenient fingerprint of the
SPT nature of the ground state.

A qualitative change seen only in the finite-T spectral
function is the emergence of additional spectral weight
below the single-magnon branch for T & ∆/2 ≈ 0.2J ,
which is well separated from the single-magnon branch
for q . π/2. At T = 0.4J , cf. Fig. 2 (e), this temperature-
induced spectral weight still appears to resemble a dis-
persing mode, softening at q = 0, where the spectral
weight is further enhanced. While the DMRG approach
allows us to distinguish this temperature-induced spec-
tral weight from the single-magnon branch, the spectral
function obtained from the analytically continued QMC
data (cf. Fig. 2 (f)) is affected by a difficulty of the an-
alytic continuation to separate such closely spaced spec-
tral weight contributions at finite temperatures. The
QMC data nevertheless exhibit the presence of the ther-
mal spectral weight contribution at low energies, close to
q = 0. Upon further increasing the temperature, a re-
distribution of the spectral weight can be seen in Fig. 2,
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FIG. 3. Comparison of the DMRG spectral function S(q, ω)
(left panel) for L = 32 (OBC) with SIB(q, ω) calculated for
the IBMS model (right panel) at T/J = 0.3. A Gaussian
broadening with σω = 0.1J , similar to the DMRG spectra,
was applied to the IBMS model spectral function.

and this eventually reveals the actual character of the
temperature-induced spectral feature, which forms an ex-
tended continuum with an enhanced spectral weight at
its upper threshold (cf. Fig. 2 (g) and (h)).

This thermal spectral weight results from IBMS pro-
cesses that have been previously observed in dimerized
spin-1/2 chains [79–81]: the thermal population of the
magnon mode, predominantly in the vicinity of q = π,
where the magnon dispersion has its lowest excitation
gap, allows for scattering processes of a thermally ex-
cited magnon to another state on the single-magnon
branch, cf. the illustration in Fig. 1. Such processes
contribute to S(q, ω) upon respecting the conservation
of momentum and energy exchange with the scatter-
ing particle (such as, e.g., in neutron scattering). More
quantitatively, this thermal IBMS contribution SIB(q, ω)
to the dynamical spin structure factor can be approx-
imately obtained using a magnon-state representation
within a basic kinematic model. We denote by |k, σ〉
a single-magnon (Stot = 1) excitation of momentum k
and Sztot = σ ∈ {0,±1} atop the Stot = 0 ground
state |0〉, with an excitation energy εk along the single-
magnon branch. The multi-magnon states are subject to
a hard-core constraint that can be treated in several ap-
proximate ways that all yield the same low-temperature
asymptotics. We found it convenient to use a k-space-
based hard-core boson approximation of the initial (i)
and final (f) states in the Lehmann representation of
S(q, ω) = 3

∑
i,f e−βEi/Z |〈f |Szq |i〉|2δ(ω−Ef +Ei). Here,

the factor of three accounts for the SU(2) symmetry of
the Hamiltonian H. Neglecting further interaction ef-
fects, Ei (Ef ) equals the sum of the occupied single-
magnon state energies in the initial (final) state, and the
partition function Z =

∏
k,σ(1 + e−βεk). The leading-

order scattering processes, whereby a thermally excited
magnon is scattered into another unoccupied single-
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magnon state, then yield

SIB(q, ω) = 3
∑
k,σ

|〈k + q, σ|Szq |k, σ〉|2
(1 + eβεk)(1 + e−βεk+q )

δ(ω−εk+q+εk).

Finally, we approximate the nonvanishing scattering ma-
trix elements as |〈k + q,±1|Szq |k,±1〉|2 ≈ 1/L, which
would hold exactly, if the single-magnon states were ob-
tained as |k,±1〉 = S±k |0〉 and Szq |k, 0〉 = 0, using that

[Szq , S
±
k ] = ±S±k+q, with S±q = 1√

L

∑
j e−iqjS±j . The over-

all 1/L-scaling of the matrix elements renders SIB(q, ω)
convergent in the thermodynamic limit. In addition to
the above explicit treatment of the longitudinal (Szq )
channel, one can also perform a similar calculation for
the transverse sectors of SIB(q, ω), which then indeed
exhibits its anticipated SU(2) symmetry.

We evaluated the IBMS contribution from this ba-
sic model, based on the single-magnon dispersion taken
from Ref. [45]. The resulting IBMS spectral function at
T/J = 0.3 is shown in the right panel of Fig. 3, next
to the corresponding DMRG result for S(q, ω). Here,
we convoluted the IBMS model spectral function with a
Gaussian resolution of width σω = 0.1J , i.e., the broad-
ening in the DMRG spectral functions. We find that our
rather simple model qualitatively captures the shape of
the IBMS contribution, in particular its upper boundary.
Near this threshold, as well as near q = 0, the spectral
weight is enhanced due to the van-Hove singularity in
the magnon density of states near k = π/2 and π. The
full extent of the IBMS continuum as obtained within the
IBMS model is indicated in Fig. 1. Within the maximum
energy regime ω/J ≈ 2 of the IBMS signal near q = π/2,
where finite-size effects are expected to be weakest, we
can use the L = 20 ED data for a more detailed compar-
ison, since in the ED approach, we can choose a smaller
broadening σω = 0.05J . A comparison of the ED spec-
tral functions for q = π/2 and q = 0.4π to the IBMS
model is shown in Fig. 4 for T/J = 0.3.

For q = π/2, where we can directly compare ED data
for L = 20 and L = 16 (since for both chain lengths,
q = π/2 is an available lattice momentum) we conclude
that indeed the L = 20 data in the relevant energy re-
gion exhibit only weak residual finite-sizes effects. By
a direct comparison to the T = 0 data, we identify
the thermally induced spectral weight, with a peak at
ω/J ≈ 2.3, and clearly separated from the magnon peak
at ω/J ≈ 2.7. The position of the thermal peak is well
reproduced by the IBMS model. To compare the corre-
sponding spectral weight in the ED data to the IBMS
model, one needs to account for the additional weight in
the ED spectral function that is due to the broadened
magnon peak; this elevates the IBMS signal in the ED
data as compared to the background-free IBMS model.
A similar comparison for q = 0.4π, a momentum that is
accessible on the L = 20 chain, is shown in the inset of
Fig. 4. Also here, we observe that the IBMS contribu-
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FIG. 4. Comparison of the ED spectral functions S(q, ω)
with the IBMS model for SIB(q, ω) at T/J = 0.3. The main
panel shows results for q = π/2, and the inset those for q =
0.4π. For comparison, ED results for T = 0 are also included.
A Gaussian broadening with σω = 0.05J was applied to all
spectral functions in this figure.

tion to the ED spectral function is well reproduced by the
IBMS model. While the above basic kinematic model al-
ready captures the overall properties of the IBMS contri-
bution to S(q, ω), it would nevertheless be interesting to
account for direct magnon-magnon interactions. As men-
tioned above, these lead to band-narrowing and broad-
ening of the single-magnon mode at finite temperatures
and should be accounted for in a more thorough analyt-
ical description of the IBMS process. Furthermore, our
approximate treatment of the scattering matrix elements
renders the ω-integrated IBMS spectral weight less q-
dependent than observed in the numerical results, which
show an overall increase in the IBMS signal for increas-
ing finite values of q (cf. Figs. 2 and 3). Nevertheless, our
basic model clearly demonstrates the mechanism behind
the IBMS contribution to the dynamical spin structure
factor at finite temperatures.

Thermally activated IBMS scattering is expected to
be a general phenomenon in gapped quantum magnets,
and indeed it is known from dimerized spin-1/2 chains
[79–81]. The case of the Haldane spin-one chain that we
have investigated in the present Rapid Communication
is characterized by a large bandwidth as compared to
the gap such that the maximum intensity of the IBMS
continuum appears close to the single-magnon mode. In
the present case, the IBMS thus provides an important
contribution to the finite-temperature spin dynamics at
low-to-intermediate scattering momenta. It would be in-
teresting to identify the thermal IBMS signal from the
scattering intensity in inelastic neutron scattering exper-
iments on spin-one chain compounds. We anticipate the
IBMS signal to be well accessible within a temperature
regime set by the spin excitation gap. It may however
be important to examine the influence of a single-ion
anisotropy and inter-chain couplings on the IBMS sig-
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nal. Furthermore, we expect the reduction of the spin
gap by an applied magnetic field to enhance the IBMS
signal toward lower temperatures, eventually making it
relevant for the zero-temperature longitudinal response
when the Haldane gap closes.
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Fielden, P. Kögerler, H.-J. Mikeska, C. Luckmann, and
M. T. F. Telling, Temperature effects on multi-particle
scattering in a gapped quantum magnet, J. Magn. Magn.
Mater. 310, 1236 (2007).

[80] A. J. A. James, F. H. L. Essler, and R. M. Konik, Finite-
temperature dynamical structure factor of alternating
Heisenberg chains, Phys. Rev. B 78, 094411 (2008).

[81] D. A. Tennant, B. Lake, A. J. A. James, F. H. L. Essler,
S. Notbohm, H.-J. Mikeska, J. Fielden, P. Kögerler, P. C.
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SUPPLEMENTAL MATERIAL

Momentum cuts of the DMRG spectral functions

In order to compare more directly the evolution of the
dynamical spin structure factor for a given fixed momen-
tum, we show in Fig. S1 the spectral functions obtained
from the DMRG calculations (i.e. the same data as shown
in Figs. 2 and 3 of the main text) for different values of
the momentum q within the regime where we observe the
intra-magnon scattering contribution.
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FIG. S1. Dynamical spin structure factor S(q, ω) from DMRG
calculations for a chain length of L = 32 with OBC for differ-
ent values of q and temperatures T/J = 1/24 ≈ 0.0417, . . . , 1.
Due to the truncation of the iterative Chebyshev expansion at
order 2000, the DMRG spectra have an estimated broadening
σω of the order of 0.1 J .

Spectral functions from ED

Exact diagonalization (ED) has to deal with a Hilbert
space dimension that is exponentially large in the chain
length L. A previous full diagonalization study [48] of
the spin-one chain went up to L = 8. We have been
able to perform full diagonalization up to L = 12. In or-
der to compute spectral functions for system sizes up to
L = 20 at finite but sufficiently low temperatures, we fol-
low a similar strategy as in Ref. [55]. First, we compute
a certain number of low-lying initial states |i〉 using the
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FIG. S2. Dynamical spin structure factor S(q, ω) from ED
calculations for chain lengths of L = 16 (left) and L = 20
(right) with PBC at various temperatures T . A Gaussian
broadening of σω = 0.05 J was applied to the raw ED data.

Lanczos procedure [57, 58]. The thermal occupation of
each of these states is obtained with a Boltzmann weight
for the corresponding energy Ei. Then we apply another
Lanczos iteration to each start vector Szq |i〉 and compute
the position and weight of the individual poles from the
eigenvalues and -vectors of the tri-diagonal matrix gen-
erated during this second Lanczos procedure [58]. The
main difference to Ref. [55] is that here we do not employ
a continued fraction expansion for the spectral function
[58–60], but rather subject each pole to Gaussian broad-
ening.

In Fig. S2, we show the ED data for the dynamical
spin structure factor of the spin-one chain at different
temperatures and chain lengths with PBC. Similarly to
the DMRG results shown in the main text, we can iden-
tify the IBMS contribution at finite temperatures.
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FIG. S3. Dynamical spin structure factor S(q, ω) from QMC
simulations with OBC as well as PBC for L = 32 spins at two
different temperatures T .
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QMC for OBC and Edge-State Contribution

In Fig. S3, we compare the QMC results for the dy-
namical spin structure factor of the spin-one chain with
L = 32 at different temperatures for PBC and OBC.
Like DMRG (see Fig. 2 of the main text), the QMC
dynamical spin structure factor for OBC also exhibits
the sub-gap mode emerging from the edge-state contri-
bution. To quantify the finite-size scaling of this edge-
state contribution, we performed a spectral weight in-
tegration in the sub-gap region to obtain the total in-
tegrated edge-state mode weight, calculated as Sedge =∫ π
0

dq
∫ ωmax

0
dω S(q, ω), where ωmax = 0.2J for the QMC

results and ωmax = 0.25J for the DMRG spectra, ac-
counting for the increased (thermal) broadening. The
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FIG. S5. Dynamical spin structure factor S(q, ω) at T/J =
1/24 ≈ 0.0417 from ED (L = 20 lattice sites) as well as QMC
and DMRG calculations (L = 32 lattice sites) for two different
momenta. ED data is subjected to a Gaussian broadening
σω = 0.1 J , the broadening of the DMRG spectra is estimated
to be of the same magnitude due to the truncation of the
Chebyshev expansion at order 2000.

resulting finite-size scaling of Sedge for different temper-
atures and from both DMRG and QMC data is shown
in Fig. S4. This shows that the edge-state contribution
vanishes as 1/L with the chain length, indicative of its lo-
cal character due to the localized edge states in the OBC
spin-one chain.

Figure S3 also shows that the magnon line is gener-
ally broader for OBC (panels (a) and (c)) than for PBC
(panels (b) and (d)). To some extent, this may be due
to q not being a good quantum number for OBC and
a related mixing with neighboring momenta, although
the broadening due to mixing should be negligible at the
minimum (q = π) and maximum (q ≈ π/2) of the dis-
persion. This broadening is investigated in more detail in
Fig. S5, where we compare directly QMC, DMRG, and
ED results for the spectral functions between PBC and
OBC for a set of momenta q, with a focus on the magnon
peak. We find that overall the spectral function, as ob-
tained for both boundary conditions, compare rather well
between the different methods. Just at q ≈ 0.81π, ED
yields a peak at a slightly higher ω owing to the fact
that in this case, the data is actually for q = 0.8π. For
q ≈ 0.81π, QMC also evidently yields a line with a width
below σω = 0.1 J for PBC.

By comparing the OBC results to the corresponding
QMC spectra for PBC in Fig. S5, we confirm that the
magnon peak has a larger width than for PBC. This could
be due to additional scattering processes for OBC of the
magnon excitations with the edge states, while for PBC,
this scattering channel is not available. It might thus
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FIG. S6. Peak energy of the single-magnon peak at q = π for
finite temperatures, ∆(T ), comparing QMC results for L = 64
with PBC (circles) with the σ-model prediction from Ref. [49]
(solid line).

be interesting to analyze this effect of the edge states on
the magnon excitation in more detail in further investiga-
tions. However, we also expect such additional edge-state
scattering to become less relevant for larger system sizes.

Thermal Shift on the Single-Magnon Mode

In Fig. S6 we compare our results for the energy po-
sition of the single-magnon peak in S(π, ω) as obtained
from the QMC simulations for L = 64 with PBC to the
results from the σ-model calculation from Ref. [49]. Like
previous work (compare Fig. 3 of Ref. [52]), we find that
the σ-model describes the numerical data well in the sub-
gap temperature region T/J . 0.4 J , but we observe de-
viations at higher temperatures.

QMC Results for the Three-Magnon Contribution

Our QMC results for the three-magnon contribution
differ from another recent QMC investigation [46] and
here we would like to offer an explanation of this dis-
crepancy. In Fig. S7 we present the spectral function
S(π, ω) as obtained from the analytic continuation of the
QMC data for L = 64 and T/J = 1/24 using the stochas-

tic analytic continuation procedure from Ref. [78]. Here,
we identify, besides the dominant single-magnon peak,
a broad single continuum contribution that extends be-
tween ω/J ≈ 1.5 and 5.5. This is in overall accord with
the extent and the shape of the three-magnon continuum
reported from the zero-temperature DMRG calculations
in Ref. [45]. In a more recent QMC study of the dynami-
cal spin structure factor of the spin-one chain [46], using
the maximum entropy approach, the authors obtained
a spectral function at q = π that exhibits two distinct
peaks instead of a single broad continuum. We find that
this result can also be reproduced based on our QMC
data, if one artificially samples the spectral functions ob-
tained within the stochastic analytic continuation pro-
cedure within the overfitting region. This suggests that
the peculiar two-peak structure seen in the spin spectral
function S(π, ω) in Ref. [46] may result from an analytic
continuation performed in the overfitting regime.
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FIG. S7. Spectral function S(π, ω) at q = π as obtained from
the analytic continuation of the QMC data for L = 64 and
T/J = 1/24. The black solid line shows the result obtained
using the procedure from Ref. [78]. When manually forced
into the overfitting regime (red dashed line), the analytic con-
tinuation yields two distinct peaks.


